Comp. Appl. Math. (2018) 37:641-674 @ CrossMark
https://doi.org/10.1007/540314-016-0358-0

An evaluation of point-insertion sequences
for incremental Delaunay tessellations

Sanderson L. Gonzaga de Oliveira! -

Jéssica Renata Nogueira®

Received: 5 March 2016 / Revised: 29 May 2016 / Accepted: 4 June 2016 / Published online: 5 July 2016
© SBMAC - Sociedade Brasileira de Matemadtica Aplicada e Computacional 2016

Abstract Currently, incremental algorithms may be seen as the lowest-cost computational
methods to generate Delaunay tessellations in several point distributions. In this work, eight
point-insertion sequences in incremental algorithms for generating Delaunay tessellations
are evaluated. More specifically, four point-insertion sequences in incremental algorithms for
generating Delaunay tessellations are proposed: with orders given by the red—black tree with
in-order and level-order traversals, spiral ordering, and H-indexing. These four incremental
algorithms with such sequences are compared with four incremental algorithms with point-
insertion orders given by the following sequences: the Hilbert and Lebesgue curves, cut-
longest-edge kd-tree, and random order. Six 2-D and seven 3-D point distributions are tested,
with sets ranging from 25,000 to 8,000,000 points. The results of computational and storage
costs of these eight algorithms are analyzed. It follows that the incremental algorithm with a
point-insertion sequence in the order given by the cut-longest-edge kd-tree shows the lowest
computational and storage costs of the sequences tested.

Keywords Mesh generation - Delaunay tessellation - Incremental algorithms -
Computer-aided design, engineering and manufacturing - Computational geometry
and topology - Insertion sequences - Non-uniform point distributions

1 Introduction

Meshes are employed in a number of applications, particularly in finite element discretiza-
tions, and are key tools in scientific computing. In this field of study, common meshes are

Bd Sanderson L. Gonzaga de Oliveira
sanderson@dcc.ufla.br

Jéssica Renata Nogueira
jessica.nogueira@ifsuldeminas.edu.br

Universidade Federal de Lavras, Lavras, Brazil

Instituto Federal de Educag@o, Ciéncia e Tecnologia do Sul de Minas Gerais/Campus Passos,
Passos, Brazil

@ Springer f DMAC

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-016-0358-0&domain=pdf

642 S. L. G. de Oliveira, J. R. Nogueira

Delaunay tessellations. For a d-dimensional point set, a Delaunay tessellation is described
as a mesh in which the d-dimensional ball of each polytope lacks inner points. These meshes
are popular mainly because they can be built rapidly and have very appealing geometric
properties; for example, the Voronoi diagram, a dual mesh of the Delaunay tessellation, may
capture proximity (Gonzaga de Oliveira et al. 2014). Furthermore, Delaunay tessellations are
used to represent discrete places of a continuous space in a manner that permits the use of
numerical methods to compute characteristics of that space (Edelsbrunner 2001). Delaunay
tessellations and Voronoi diagrams have been employed in several applications in science and
engineering, such as computer graphics, industrial design, medical applications, the mod-
eling of composite and porous materials, deformable objects, molecules, and terrain, the
tessellation of solid shapes, and video games (Gonzaga de Oliveira et al. 2014).

Currently, incremental algorithms may be seen as the lowest-cost computational methods
to generate Delaunay tessellations in several point distributions. In particular, Liu et al. (2013)
showed simulations in which an incremental algorithm with point-insertion order given by
the cut-longest-edge kd-tree outperformed the previous possible state-of-the-art algorithm
[an incremental algorithm with point-insertion order given by the Hilbert curve (Liu and
Snoeyink 2005)] for this task in several 3-D point distributions.

It should be noticed that algorithms for Delaunay tessellations may have different per-
formances in different point distributions. Since Liu et al. (2013) applied the computational
geometry algorithms library (CGAL) in their implementation, our approach employs a spe-
cificimplementation to verify if similar results are found. Moreover, a comparison of different
point-insertion sequences for incremental Delaunay tessellation algorithms is conducted with
various point distributions, from uniform cases to non-uniform cases. Computational cost and
memory requirements are measured. To be more precise, in our approach, eight incremental
algorithms were implemented using our own geometric methods. It is important to remark
that the execution time under diverse implementations will differ. In our assessment, given
the fact that we are re-implementing the Liu—Yan-Lo and Hilbert-curve incremental algo-
rithms, it is possible to verify whether the same behavior of the computational costs and
memory requirements is encountered. Then, we could investigate the influence of the CGAL
framework in the results. Thereby, our approach focuses on implementation details of incre-
mental algorithms using deterministic orders (without randomness) to generate Delaunay
triangulations in seven 3-D point distributions [the same ones employed by Liu et al. (2013)]
and also in six 2-D point distributions. To provide more specific detail, our domains are the
unit cube and unit square, instead of integer domains, such as employed by Schrijvers et al.
(2013) and other authors. Thus, eight point-insertion sequences are evaluated in the 2-D and
3-D unit intervals:

the Hilbert space-filling curve (Liu and Snoeyink 2005);

the Lebesgue curve, also called Z-order and Morton order (Bader 2012);
the H-indexing (Niedermeier et al. 2002);

the spiral ordering;

the random order;

the cut-longest-edge kd-tree (Liu et al. 2013);

the in-order and level-order red—black tree traversals.

NNk L=

To our knowledge, this paper is the first (published) instance employing the H-indexing
scheme (Niedermeier et al. 2002), the spiral ordering and the in-order and level-order red—
black tree traversals being used in incremental algorithms for Delaunay tessellations. In
particular, the Peano and Sierpiriski curves were not evaluated in this study because Schrijvers

@ Springer f bMA

An evaluation of point-insertion sequences 643

etal. (2013) found that the performances shown by these curves are inferior to the performance
shown by the Hilbert curve in incremental algorithms.

Additionally, for seven incremental algorithms — that is, except the incremental algorithm
using the cut-longest-edge kd-tree — three approaches are evaluated that seek the tetrahe-
dron that contains the point inserted most recently into the tessellation. The Liu—Yan—Lo
incremental algorithm (Liu et al. 2013) was implemented for the cut-longest-edge kd-tree.

Section 2 presents a brief review on insertion schemes in algorithms for generating Delau-
nay tessellations. Section 3 describes the incremental algorithms, with orders given by the
eight point-insertion sequences implemented. Section 4 describes the tests. Section 5 presents
and analyzes the results. Finally, Sect. 6 addresses the conclusions.

2 Review on insertion schemes

Delaunay and Voronoi tessellations have been broadly investigated, and many methods have
been used to build these structures. A detailed description about the development of algo-
rithms for generating these meshes is provided in Gonzaga de Oliveira et al. (2014). In
particular, with the biased randomized insertion order (BRIO) algorithm, Amenta et al.
(2003), considered the order in which the points are inserted into the tessellation. In this
algorithm, the spatial location of points is deemed to cause a larger number of cache hits. In
particular, some results with respect to cache misses are presented below (see Sect. 5).

Carey (1997) presented a number of techniques to generate the Delaunay tessellation, such
as the incremental approach. This author explained that the Hilbert curve is a good choice
of space-filling curve pattern in terms of minimizing the locality of objects within the multi-
dimensional space. The Hilbert curve is easily constructed by means of repeated reflections
and rotations. Since the Hilbert curve leads to a linear sequence, locality is preserved in this
approach.

Based on the idea of a larger number of cache hits, Liu and Snoeyink (2005) proposed an
incremental algorithm for generating Delaunay tessellations in which points are inserted into
the tessellation in the order given by the Hilbert curve. Liu and Snoeyink (2005) and Schrijvers
et al. (2013) give very detailed information about the various effects of choosing the order,
choosing the right amount of randomness, etc. Moreover, Liu and Snoeyink (2005), Zhou
and Jones (2005), Buchin (2005, 2007), and Boissonnat et al. (2009) have shown algorithms
that use some combination of randomness and deterministic orders.

On the other hand, one can consider that it is more important that the various parts of the
data structure and algorithms used work well together. This is also the key improvement of
the Liu—Snoeyink algorithm (Liu and Snoeyink 2005) over the BRIO scheme (Amenta et al.
2003). This in turn means that it is quite important to also consider carefully the specifics of
the Delaunay triangulation implementation used, if it is not a standard one (such as the one
used here), because it may have a considerably higher effect on the performance than the
specific order [see Liu and Snoeyink (2005); Zhou and Jones (2005); Buchin (2005, 2007);
Boissonnat et al. (2009)].

Schrijvers et al. (2013) provided computational experiments showing that an algorithm
with point-insertion order given by the Hilbert order (Liu and Snoeyink 2005) superseded
several algorithms (including algorithms with some kind of randomness) in six 2-D data
distributions (which three of them are also considered here). Despite several other proposals
and simulations in the following years, probably until 2013, the Liu—Snoeyink algorithm
(Liu and Snoeyink 2005) was the possible state-of-the-art algorithm for generating Delaunay

@ Springer f DMAC

644 S. L. G. de Oliveira, J. R. Nogueira

tessellations. In 2013, Liu et al. (2013) proposed an incremental algorithm that outperformed
the incremental algorithm using the Hilbert curve (Liu and Snoeyink 2005) to generate
Delaunay tessellations in seven 3-D point distributions.

3 Description of point-insertion sequences in the incremental algorithms
implemented

Inincremental algorithms for Delaunay tessellations, the order in which the points are inserted
into the tessellation influences the computational cost of the algorithm. It affects the time for
both point location and structure update, and consequently the overall execution time of the
incremental DT algorithm (Liu et al. 2013). This influence occurs because the computational
costs of these algorithms depend on the number of tetrahedrons checked in the circumsphere
test. In this test, a procedure verifies whether a point is inside a tetrahedron using a rela-
tively expensive circumsphere test. Since a low-cost approach must check a small number of
tetrahedrons, we evaluated three approaches (termed hist_tet, Ist_tet, and fet_inc) to seek the
tetrahedron that contains the most recently inserted point into the tessellation. We describe
these approaches in Sect. 4. In addition, the computational costs of these algorithms also
depend on updates in the tessellation, i.e., the computational cost for updating a Delaunay
tessellation is proportional to the number of created and destroyed tetrahedrons.

Algorithm 1 shows a pseudocode related to the algorithms implemented in this work.
Entry points of Algorithm 1 can be inserted into the tessellation through different ways.
Consequently, entry points are ordered in line 2 of Algorithm 1.

Input: set of points P = {py, p2, -+, pn}.
Output: Delaunay tessellation DT(P).
1 begin
2 rearrange entry points pi, p2. -, Pn;
3 build a super triangle (tetrahedron) sz, which contains all the points of P;
4 insert st into DT(P);
5 i< 1;
6 while (i < |P|) do

// list_t is a list of triangles (tetrahedrons) whose

7 list_t < @, // circumcircle (circumsphere) contains p;

// Section 3 presents the strategies used in this work to
// find a triangle (tetrahedron) whose circumcircle

// (circumsphere) contains p;

8 locate a triangle (tetrahedron) ¢ whose circumcircle (circumsphere) contains p;;

9 insert ¢ into list_t;

10 foreach (triangle (tetrahedron) t, adjacent to triangles (tetrahedrons) stored in list_t) do

11 if (the circumcircle (circumsphere) of t, contains p;) then

12 L L insert ¢, into list_t;

13 remove from DT(P) tetrahedrons stored in list_t;

14 insert, into DT(P), those tetrahedrons formed by connection of p; with elements of the cavity
border formed after removal of tetrahedrons stored in list_t;

15 i<~ i+1;

16 remove from DT(P) those triangles (tetrahedrons) that contain vertices of the super triangle
(tetrahedron);
17 | return DT(P);

Algorithm 1: an incremental algorithm for generating Delaunay tessellations.

@ Springer f bMA

An evaluation of point-insertion sequences 645

The following is a brief description of point-insertion sequences in the incremental algo-
rithms implemented.

— Cut-longest-edge kd-tree: This is used in the incremental algorithm that is the possible
state-of-the-art algorithm for generating Delaunay tessellations for seven 3-D point dis-
tributions (Liu et al. 2013). In this order, points are inserted into the tessellation according
to a level-order traversal of the cut-longest-edge kd-tree (Liu et al. 2013).

— Hilbert and Lebesgue curves: aiming to order the set of points using the 2-D or 3-D Hilbert
and Lebesgue curves, the domain is divided into 22k or 23k gubdivisions, respectively,
where k is a number large enough so that each subdivision contains a small number
of points. When necessary, these subdivisions are divided again until each subdivision
contains only one point. The Hilbert curve was implemented here because it was used
in the algorithm that was the possible state-of-the-art algorithm for the generation of
Delaunay tessellations until 2013. Additionally, the Lebesgue curve was chosen to be
implemented because Schamberger and Wierum (2005) noted that for data arranged
in a spiral distribution and for data distributed uniformly, the Lebesgue curve showed
better results than the 8<2-indexing, Hilbert, and Sierpinski curves. The Lebesgue curve
required a smaller quantity of domain partitions than the other three orders. Although the
3-D Lebesgue curve was also tested by Snoeyink and Liu (2005), these tests were not in
the seven 3-D point distributions tested here and were not in the unit interval.

— Spiral ordering: The domain subdivisions are traversed from left to right, bottom to
top, from right to left, and from top to bottom. This path is performed again, more
internally until all domain subdivisions are covered. By using the 3-D spiral ordering,
initially, the points are ordered by their z coordinates; soon after, points with the same
z coordinates are ordered using the spiral ordering. If two or more points are in the
same subdivision, the indexing scheme is applied again in this subdivision. Duff and
Meurant (1989) studied 17 ordering methods and their effects when ordering unknowns
of linear systems arising from finite difference discretizations on the convergence of the
Preconditioned Conjugate Gradient Method. These authors concluded, through testing,
that the spiral ordering showed good results for all sets tested.

— H-indexing: the H-indexing scheme is based on a 2-D variant of the Sierpifiski curve. By
using the 3-D H-indexing, initially, the points are ordered by their z coordinates; soon
after, points with the same z coordinates are ordered using the H-indexing. It should
be noticed that this ordering step is not necessary in 2-D point distributions. If two or
more points are in the same subdivision, the indexing scheme is applied again in this
subdivision. Niedermeier et al. (2002) proved that this scheme has better locality than
the Hilbert indexes.

— Red-black tree with in-order and level-order traversals: Duff and Meurant (1989) showed
that the sequence given by the red—black tree was very competitive with other sequences
tested.

— Random order: this point-insertion sequence was evaluated here for being the most basic
scheme for inserting points into a tessellation.

4 Description of the tests

The eight incremental algorithms were implemented in the C++ programming language.
Specifically, the g++ 4.6.3-1 compiler was used, with the optimization flag —O3. A placement
test was used to maintain tetrahedron points in a counterclockwise direction. This step was
necessary for the circumsphere test to return consistent results. For all 2-D and 3-D point-

@ Springer f DMAC

646 S. L. G. de Oliveira, J. R. Nogueira

insertion sequences, six and seven point distributions were used, which are shown in Figs. 1
and 2, respectively.

Except for the incremental algorithm with a point-insertion sequence in the order given
by the cut-longest-edge kd-tree, three approaches to seek a point p to be inserted into the
tessellation were tested for the other seven incremental algorithms implemented. These three
approaches are described below.

— hist_tri (hist_tet): triangles (tetrahedrons) were verified in the reverse order in which they
were inserted into the tessellation.

— Ist_tri (Ist_tet): a breadth-first search beginning in the last triangle (tetrahedron) created
was performed. To provide more specific detail, a procedure checks if the last polytope
created (¢) contains the point p. If p is not contained in ¢, its neighbors are checked. This
procedure traverses the mesh in breadth-first order to find the polytope that contains p.

— tri_inc (tet_inc): k incident triangles (tetrahedrons) to the last point p inserted into the
tessellation were checked. If a circumcircle (circumsphere) of a triangle (tetrahedron)
containing the point p was not found, adjacent triangles (tetrahedrons) to the k triangles
(tetrahedrons) were also sought, from the least to the most recently verified triangle
(tetrahedron).

These searches terminated when a circumcircle (circumsphere) of a triangle (tetrahedron)
containing p was found. For the incremental algorithm with a point-insertion sequence given
by the cut-longest-edge kd-tree, the search of the triangle (tetrahedron) containing a point p
was performed as described by Liu et al. (2013).

The workstations used in the execution of the simulations contained the following (Intel®
Core™: Santa Clara, CA, USA):

— (M1)i3 CPU 550 3.20 GHz with 4 MB cache memory and 16 GB of main memory DDR3
1333 MHz;

— (M2) i3-2120 CPU 3.30 GHz with 3MB of cache memory and 8 GB of main memory
DDR3 1333 MHz;

— (M3) i3-2100 CPU 3.10 GHz with 3MB of cache memory and 8 GB of main memory
DDR3 1333 MHz;

— (M4)i7-4790K CPU 4,00 GHz with 8 MB of cache memory and 12 GB of main memory
DDR3 1.6 GHz.

The Ubuntu 14-04 LTS 64-bits operating system was used in the four machines, with
kernel 3.13.0-39 generic on the M1 machine, kernel 3.13.0-43 generic on the M2 and M3

() (b) (©) (d) (e)

Fig. 1 Six point distributions on the unit square: a random; b cross; ¢ line; d cluster; e circle; and f spiral
distributions. Each set was composed of 50,000 points

(@) - (b © (d) (e) ® (@

Fig.2 Seven point distributions on the 3-D unit interval: a random points in a unit cube; b points on a cylinder;
¢ points around a disk; d points around three planes; e points along three axes; f points around a paraboloid;
and g points around a spiral. Each set was composed of 25,000 points

@ Springer f bMA

An evaluation of point-insertion sequences 647

machines, and kernel 3.19.0-31 generic on the M4 machine. Five executions were carried
out for each instance.

It was not our intention that the results of the eight incremental algorithms implemented
outperform results from highly enhanced versions that employ corresponding point-insertion
sequences in incremental algorithms. Our purpose was to obtain reasonably efficient imple-
mentations of these algorithms to allow an appropriate comparison of their results. To provide
more specific detail, our goal is to evaluate whether the CPU times of eight point-insertion
sequences in these algorithms [such as the one proposed by Liu et al. (2013)] may be inde-
pendent of a framework. For updated times in Delaunay mesh generation, for instance, we
rely on Lo (2015). Lo (2015) reported low execution times when generating a 2-D Delaunay
triangulation (1 million points). He argues that the speed of a triangulation is very sensitive
to the order of how the points are processed, from a quasi-linear behavior (when applied to
sorted data) to a quadratic behavior (when applied to unsorted data).

For the construction of the mesh, a data structure is used to store the point coordinates.
More specifically, in this data structure, the coordinates and a unique number for each point
are stored. In addition, for each tetrahedron, four indices are stored and each index refers to
the number of a point. This number is employed when a tetrahedron is created. Additionally,
an adjacency matrix was used.

The incremental algorithm with a point-insertion sequence given by the Hilbert and
Lebesgue curves, and the H-indexing order use a C++ vector data structure to store points
with indices repeated when applied to the spiral distribution. In addition, the incremental
algorithm with a point-insertion sequence given by the H-indexing order sorts the points. A
matrix was used to store the resulting order.

For the construction of the cut-longest-edge kd-tree, an array stores the point coordinates.
In addition, a data structure keeps the largest difference between point coordinates. This
data structure also stores the largest, smaller and median point coordinates in such interval.
For each node inserted into the cut-longest-edge kd-tree, indices to child nodes are stored.
Additionally, this data structure maintains a reference to the axis where the subdivision was
carried out.

5 Results

This section presents results of computational costs and memory requirements in six 2-D
and seven 3-D point distributions when using eight point-insertion sequences in incremental
algorithms for generating Delaunay tessellations. In addition, three approaches were used to
seek the circumcircle (circumsphere) of the triangle (tetrahedron) that contained the point
most recently inserted into the tessellation, in instances up to 1,000,000 in six 2-D and
8,000,000 points in seven 3-D point distributions.

Executions that computed for more than 10 and 30 min in 2-D and 3-D point distributions
to return a Delaunay tessellation were aborted, respectively. These executions are indicated
as “-” in the following tables. Numbers in bold face are the best results.

Table 1 (Table 2, with respect to 3-D Delaunay tessellations) shows the results of the
computational costs and memory requirements when using the incremental algorithms with
point-insertion sequences given by the orders of Hilbert and Lebesgue curves, H-indexing,
spiral ordering, orders given by the red—black tree with in-order and level-order traversals,
and random insertion points, in six 2-D (seven 3-D) point distributions. Similarly, Fig. 3
(Fig. 4 with respect to 3-D Delaunay tessellations) illustrates the results of the computational

@ Springer f DMAC

648 S. L. G. de Oliveira, J. R. Nogueira

Table 1 Results of computational costs (in s) and memory requirements (in MB) of incremental algorithms
with point-insertion sequences given by seven sequences, and with three approaches to seek the triangle that
contains the most recently inserted point in six 2-D point distributions

Distribution Size of dataset Insertion order Results hist_tri Ist_tri tri_inc
Random 1,000,000 Hilbert Time 5.88 6.19 5.89
Memory 336.61 277.34 283.32
Lebesgue Time 7.83 8.41 8.76
Memory 314.21 302.40 307.73
H-indexing Time 6.47 6.40 6.35
Memory 1342.37 1279.55 1290.69
Spiral Time 9.48 8.17 7.78
Memory 292.46 262.39 273.41
Red-black tree Time 14.97 366.54 379.11

with in-order
Memory 294.34 231.82 240.67

100,000 Red-black tree Time 159.70 329.38 378.34
with level-order

Memory 29.33 29.69 30.59
Random Time 342.51 - -
Memory 20.02 - -
Cross 1,000,000 Hilbert Time 68.83 16.25 16.48
Memory 418.12 369.79 368.19
Lebesgue Time 19.84 19.86 21.04
Memory 405.66 383.75 385.78
H-indexing Time 94.68 12.88 12.92
Memory 1336.90 1281.23 1292.20
Spiral Time 8.77 9.08 8.38
Memory 283.85 218.75 229.39
Red-black tree Time 62.84 90.41 110.40

with in-order
Memory 344.69 232.93 245.39

250,000 Red-black tree Time - 479.95 510.58
with level-order

Memory - 73.14 72.23
100,000 Random Time 335.76 - -
Memory 20.89 - -
Line 1,000,000 Hilbert Time 124.40 7.56 8.12
Memory 580.27 566.98 557.87
Lebesgue Time 8.63 9.40 9.83
Memory 592.72 567.25 564.89
H-indexing Time 12.84 12.90 13.44
Memory 1342.18 1279.43 1291.42
Spiral Time 8.54 7.96 8.47

Memory 264.75 198.92 213.50

@ Springer f bMA

An evaluation of point-insertion sequences 649
Table 1 continued
Distribution Size of dataset Insertion order Results hist_tri Ist_tri tri_inc
Red-black tree Time 124.05 122.61 135.30
with in-order
Memory 510.22 227.52 240.10
Red-black tree Time - 355.43 361.64
with level-order
Memory - 26991 275.80
100,000 Random Time 286.26 - -
Memory 19.82 - -
Cluster 1,000,000 Hilbert Time 6.30 5.78 5.98
Memory 388.50 326.79 333.56
Lebesgue Time 7.55 7.78 8.22
Memory 364.75 355.62 364.73
H-indexing Time 439.26 591 6.13
Memory 1326.00 1275.01 1285.18
Spiral Time 384.21 7.13 7.31
Memory 271.74 268.70 269.82
Red-black tree Time 13.95 116.81 119.85
with in-order Memory 286.21 229.59 240.68
100,000 Red-black tree Time 105.06 197.49 208.72
with level-order
Memory 28.41 30.03 29.00
Random Time 88.80 316.44 326.62
Memory 19.04 2291 21.03
Circle 1,000,000 Hilbert Time 14.01 5.82 6.07
Memory 390.97 336.87 338.86
Lebesgue Time 7.97 7.95 8.38
Memory 369.47 358.16 361.76
H-indexing Time 6.72 5.96 5.98
Memory 1335.47 1275.74 1288.02
Spiral Time p 8.15 8.31 8.56
Memory 286.72 231.48 244.06
Red-black tree Time 12.70 50.80 49.19
with in-order
Memory 299.14 228.70 239.71
100,000 Red-black tree Time 108.27 295.20 311.67
with level-order
Memory 29.03 30.34 30.26
Random Time 309.53 - -
Memory 20.73 - -
Spiral 1,000,000 Hilbert Time 6.29 6.08 6.26
Memory 386.21 331.50 335.09
Lebesgue Time 10.06 7.54 7.88
Memory 368.29 35391 356.65

@ Springer f DMAC

650 S. L. G. de Oliveira, J. R. Nogueira

Table 1 continued

Distribution Size of dataset Insertion order Results hist_tri Ist_tri tri_inc
H-indexing Time 6.67 6.24 6.21
Memory 1334.38 1277.95 1287.79
Spiral Time 9.35 9.77 10.13
Memory 265.27 236.38 246.17
Red-black tree Time 11.74 111.58 117.47

with in-order
Memory 289.21 231.34 242.44

100,000 Red-black tree Time 118.74 292.64 -
with level-order

Memory 27.96 30.48 -
Random Time 305.78 - -
Memory 20.69 - -

costs when using the incremental algorithms with a point-insertion sequence given by the
orders of Hilbert and Lebesgue curves, H-indexing, spiral ordering, and order given by the
red—black tree with level-order traversal, in six 2-D (seven 3-D) point distributions (instances
composed of 1,000,000 points). In general, these results corroborate the results obtained in
smaller instances (25,000, 50,000, 100,000, 250,000, 500,000, and 750,000 points).

Table 3 (Table 4 with respect to 3-D Delaunay tessellations) resumes the strategies that
presented the lowest computational cost in each distribution. These simplex-search (triangle
in 2-D and tetrahedron in 3-D Delaunay tessellations) strategies within the point-insertion
sequence in the corresponding incremental algorithm were selected to be compared with
the Liu—Yan-Lo incremental algorithm. The incremental algorithms with point-insertion
sequences given by the random order and the red—black tree with level-order traversal were
considered to be dominated by the other five incremental algorithms in all 2-D and 3-D point
distributions. In particular, in accordance with the findings presented in the current literature
(Liu et al. 2013), the incremental algorithm with random point-insertion sequence obtained
a high computational cost, as shown in Tables 1, 2.

Table 5 and Figs. 5 and 6 (Table 6; Figs. 7, 8 with respect to 3-D Delaunay tessellations)
show the average computational costs, largest standard deviations and coefficient of variations
(in spite of the small number of executions for each algorithm in each instance), and memory
requirements of the other six incremental algorithms with point-insertion sequences in six
(seven) point distributions in the 2-D (3-D) unit interval: the cut-longest-edge kd-tree, the
Hilbert curve, the Lebesgue curve, the H-indexing, the spiral ordering, and the red—black tree
with in-order traversal.

One can observe that the incremental algorithms with a point-insertion sequence in the
order given by the cut-longest-edge kd-tree and Hilbert curve dominated the other algorithms.
Consequently, we performed tests with 8,000,000 points in seven 3-D point distribution
only with these two algorithms (see Table 6). Moreover, Table 7 shows the results with
respect to cache misses of our implementations for the incremental algorithms with a point-
insertion sequence in the order given by the cut-longest-edge kd-tree and Hilbert curve.
Cachegrind, a tool of the Valgrind tool suite (Nethercote and Seward 2007), was used as
cache profiler (Cachegrind 2016). Additionally, Table 8 shows the results with respect to
the number of circumsphere tests and the numbers of created and destroyed tetrahedrons

@ Springer f bMA

An evaluation of point-insertion sequences

651

Table 2 Results of computational costs (in s) and memory requirements (in MB) of incremental algorithms
with point-insertion sequences given by seven sequences, and with three approaches to seek the tetrahedron
that contains the most recently inserted point in seven 3-D point distributions (random points, points on a
cylinder, points around a disk, points around three planes, points along three axes, points around a paraboloid,

and points around a spiral)

Distribution Size of dataset Insertion order Results hist_tet Ist_tet tet_inc
Random 1,000,000 Hilbert Time 138.68 104.00 102.66
Memory 1057.08 899.23 898.85
Lebesgue Time 131.30 171.43 164.68
Memory 958.80 988.12 988.51
H-indexing Time 361.79 698.77 371.86
Memory 1198.89 861.53 861.77
Spiral Time 363.96 703.88 378.84
Memory 1205.63 873.70 873.62
Red-black tree Time 346.49 745.24 364.31
with in-order
Memory 1128.02 789.93 787.75
100,000 Red-black tree Time 382.14 - -
with level-order
Memory 98.75 - -
Random Time 1122.02 - -
Memory 89.51 - -
Cylinder 1,000,000 Hilbert Time 225.95 124.31 123.42
Memory 1050.73 903.78 899.47
Lebesgue Time 159.84 204.51 202.07
Memory 961.05 985.31 987.83
H-indexing Time 462.57 827.80 461.37
Memory 1195.77 863.92 861.23
Spiral Time 454.67 837.34 461.73
Memory 1206.66 872.72 872.14
Red-black tree Time 436.36 938.14 457.37
with in-order
Memory 1131.80 787.91 786.12
100,000 Red-black tree Time 423.40 - -
with level-order
Memory 98.41 - -
Random Time 1408.29 - -
Memory 90.11 - -
Disk 1,000,000 Hilbert Time 248.71 106.36 105.08
Memory 1094.93 959.77 958.81
Lebesgue Time 131.83 153.82 148.57
Memory 1020.25 990.76 988.73
H-indexing Time 473.02 988.06 496.89
Memory 1211.93 859.34 857.29
Spiral Time 483.11 1797.76 690.21
Memory 1209.54 860.61 859.39

@ Springer f DMAC

652 S. L. G. de Oliveira, J. R. Nogueira

Table 2 continued

Distribution Size of dataset Insertion order Results hist_tet Ist_tet tet_inc

Red-black tree Time 320.17 546.79 329.20
with in-order

Memory 1119.42 792.05 789.02

100,000 Red-black tree Time 363.46 - -
with level-order

Memory 96.64 - -

Random Time 1169.01 - -
Memory 89.74 - -
Planes 1,000,000 Hilbert Time 232.52 117.85 117.88
Memory 1068.29 938.07 937.58
Lebesgue Time 144.61 141.55 135.94
Memory 994.46 959.28 959.00
H-indexing Time 495.13 916.48 498.65
Memory 1194.69 858.49 859.23
Spiral Time 474.24 1196.39 563.28
Memory 1204.28 869.51 867.31
Red-black tree Time 450.26 1429.88 669.51

with in-order
Memory 1130.02 798.62 795.56

100,000 Red-black tree Time 415.25 1711.18 1679.78
with level-order

Memory 93.33 97.26 98.91
Random Time 379.71 1626.50 1562.05
Memory 88.36 92.20 89.55
3 axes 1,000,000 Hilbert Time 165.27 103.81 104.61
Memory 1123.82 982.65 985.46
Lebesgue Time 142.89 136.10 132.03
Memory 1044.75 1005.12 1003.69
H-indexing Time 363.57 45221 433.49
Memory 1212.87 891.68 886.69
Spiral Time 375.51 796.20 424.74
Memory 1204.61 892.23 890.46
Red-black tree Time 348.14 715.32 417.06

with in-order
Memory 1115.52 792.01 789.53

100,000 Red-black tree Time 334.37 1725.35 1708.03
with level-order Memory 94.47 94.69 95.68
Random Time 391.15 - -
Memory 82.89 - -
Paraboloid 1,000,000 Hilbert Time 532.67 98.52 98.28
Memory 1141.28 1082.16 1084.50
Lebesgue Time 164.27 120.63 114.58

Memory 1136.32 1116.81 1114.06

@ Springer f bMA

An evaluation of point-insertion sequences 653

Table 2 continued

Distribution Size of dataset Insertion order Results hist_tet Ist_tet tet_inc
H-indexing Time 301.50 370.21 308.80

Memory 1181.54 875.10 873.92

Spiral Time 305.62 504.46 322.12

Memory 1191.97 919.92 919.07

Red-black tree Time 273.01 319.30 265.72

with in-order
Memory 1100.10 786.41 788.17

100,000 Red-black tree Time 402.23 - -
with level-order

Memory 94.58 - -

Random Time 1174.85 - -
Memory 86.76 - -
Spiral 1,000,000 Hilbert Time 231.74 103.83 102.69
Memory 1148.40 1058.16 1058.45
Lebesgue Time 152.25 123.15 119.96
Memory 1106.25 1069.73 1075.12
H-indexing Time 387.80 452.45 378.31
Memory 1195.54 896.50 895.73
Spiral Time 374.30 619.77 398.44
Memory 1182.32 895.50 895.96
Red-black tree Time 335.76 393.25 330.84

with in-order
Memory 1098.58 786.45 788.91

100,000 Red-black tree Time 417.84 - -
with level-order

Memory 98.03 - -
Random Time 1383.22 - -
Memory 86.39 - -

using the incremental algorithms with a point-insertion sequence in the order given by the
cut-longest-edge kd-tree and Hilbert curve. Table 9 shows experimental tests conducted in
three dimensions, to evaluate how the incremental algorithms with a point-insertion sequence
given by the cut-longest-edge kd-tree and Hilbert curve perform under the CGAL framework.
In accordance with the findings presented in the current literature (Liu et al. 2013), the
incremental algorithm with a point-insertion sequence in the order given by the cut-longest-
edge kd-tree shows very stable performance, whereas the incremental algorithm with a point-
insertion sequence in the order given by the Hilbert curve varies with point distributions.

6 Conclusions

Four point-insertion sequences in incremental algorithms for Delaunay tessellation were pro-
posed: the order given by the red—black tree with in-order and level-order traversals; spiral

@ Springer f DMAC

654 S. L. G. de Oliveira, J. R. Nogueira

Execution times on random 2-D points 2 Execution times on cross dataset
1
o8 o 100
22 2w
gu mhistti 3 mhist_tri
o8 mstwi § © mist_ti
c ¢ tri_inc o 4 tri_inc
| z
Q 2 L 20
Eo E [|| -
Hilbert Lebesgue H-indexing Spiral Red-black tree Hilbert Lebesgue H-indexing Spiml Red-black tree
L. . with level-order L. . with level-order
Point-insertion sequence Point-insertion sequence
Execution times on straight-line distribution Execution times on cluster dataset
160 140
17; 140 ﬁ 120
g w B 10
g mhistti S g Whist_tri
g @ mist_tri 2 o mist_tri
= & tri_inc = tri_inc
< 4 = 40
O L
£ - N E —
L Hilbert Lebesgue H-indexin Spiral Red-black tree Ll - -
<9 S i el Hibert Lebesgue H-indexing Spiral Red-black tee
Point-insertion sequence Point-insertion sequence"ith level-order
Execution times on circle dataset Execution times on spiral dataset
60 140
—~ 5 o 2
3 B w0
s® anst i S @ o
o hist_tri o W hist_tri
o ® mist_ti ® w mist_tri
c 20 tri_inc = tri_inc
= =
© 1 L g 2
E ° - |] - = o e |t — -
Hilbert Lebesgue H-indexing Spiml Red-black tree Hilbert Lebesgue H-indexing Spiral Red-black tree
P . with level-order L.) with level-order
Point-insertion sequence Point-insertion sequence

Fig. 3 Computational costs (times lower than 300 s) of incremental algorithms with five point-insertion
sequences and three approaches (hist_tri, Ist_tri, and tri_inc) to seek the triangle that contains the most
recently inserted point into the triangulation tested in six point distributions in the unit square (1,000,000
points): points randomly distributed, cross, straight-line, cluster, circle, and spiral distributions

ordering; and H-indexing. Computational costs and memory requirements of these incre-
mental algorithms were compared to computational costs and memory requirements of four
incremental algorithms with point-insertion sequences given by the cut-longest-edge kd-tree
(Liu et al. 2013), Hilbert (Liu and Snoeyink 2005) and Lebesgue curves, and random order.
Tests were performed in instances up to 8,000,000 points. It follows that the incremental
algorithm with a point-insertion sequence given by the cut-longest-edge kd-tree showed the
best computational costs in all six 2-D point distributions and in all seven 3-D point distrib-
utions tested, in all instances. Therefore, the Liu—Yan-Lo incremental algorithm (Liu et al.
2013) dominated the other seven algorithms, in all point distributions tested. Furthermore,
results obtained in this study corroborate the tests presented by Liu et al. (2013), where the
Hilbert-curve incremental algorithm was dominated by the cut-longest-edge kd-tree incre-
mental algorithm.

The incremental algorithm using the spiral ordering achieved smaller memory require-
ments than the cut-longest-edge kd-tree incremental algorithm (Liu et al. 2013) in the largest
2-D instances. In addition, the incremental algorithm using the in-order red-black tree tra-
versal achieved smaller memory requirements than the cut-longest-edge kd-tree incremental
algorithm (Liu et al. 2013) in two 3-D point distributions: points around a paraboloid and
around a spiral. These results were obtained in the largest instances. However, the memory
requirements of the Liu—Yan-Lo incremental algorithm was competitive with those algo-

@ Springer f bMA

An evaluation of point-insertion sequences 655
mEXECUUOH times on 3-D random points __Execution times on cylindrical dataset
— D 100
8 700
B a0 B w
S o whist tet S w0 mhist tet
400 (1]
g & mist_tet) mist_tet
£ 20 tet_inc £ 20 tet_inc
£ = = = =B
Q - - o 0 .
£ Hilbert Lebesgue H-indexing Spiral Red-blacktree £ Hibest Lebesgue Hrindexing Spiral Red-black tree
= with level-order [with level-order

Point-insertion sequence

Execution times with entry points around a disk

Hilbert Lebesgue H-indexing Spiral Red-black tree
with level-order

Point-insertion sequence

D 20
g

1500
S 0 whist tet
2 mist_tet
E= ‘ tet_inc
:; FRESSE————
£
I—

Execution times on points along 3 axes

X
80
B w0
g X mhist tet
8 w0 mist_tet
300 tet_ i

;%200 et_inc
2% B EN
i Hilbert Lebesgue H-indexing Spiral Red-blacktree

L . with level-order

Point-insertion sequence
Execution times on spiral dataset

™ 700
T 600
S s0
O 40 W hist tet
8 w0 mist_tet
c 20 tet_inc
$% e mm -
o o0
E Hilbert Lebesgue H-indexing ~Spiral Red-blacktree
| with level-order

Point-insertion sequence

Point-insertion sequence

Execution times on points around 3 planes

Hilbet Lebesgue H-ndexing Spiral Red-blacktree
with level-order

Point-insertion sequence

~
@ 160
'E 1400

1200
8 12003 W hist tet
& 600 Wist_tet
£ o tet_inc
= 200
o o M= ==
E
-

Execution times on paraboloidal dataset

0
50
0 mhist tet
0 Wist_tet
20 tet_inc
100 -

0

Time (in seconds)

Hilbert Lebesgue H-indexing Spiral Red-blacktree
with level-order

Point-insertion sequence

Fig. 4 Computational costs of incremental algorithms with five point-insertion sequences with three
approaches (hist_tet, Ist_tet, and tet_inc) to seek the tetrahedron that contains the most recently inserted
point into the tessellation tested in seven point distributions in the 3-D unit interval (1,000,000 points): ran-
dom points, points on a cylinder, points around a disk, points around three planes, points along three axes,

points around a paraboloid, and points around a spiral

Table 3 Approaches to seek the triangle that contains the most recently inserted point in six 2-D point

distributions

Point distribution ~ Hilbert order = Lebesgue order ~ H-indexing Spiral order ~ Red-black tree with
in-order traversal

Random hist_tri hist_tri tri_inc tri_inc hist_tri

Cross Ist_tri hist_tri Ist_tri tri_inc hist_tri

Line Ist_tri hist_tri hist_tri Ist_tri Ist_tri

Cluster Ist_tri hist_tri Ist_tri Ist_tri hist_tri

Circle Ist_tri Ist_tri Ist_tri hist_tri hist_tri

Spiral Ist_tri Ist_tri tri_inc hist_tri hist_tri

These approaches presented the lowest computational cost in incremental algorithms with point-insertion

sequences given by five sequences

@ Springer f DMAC

656 S. L. G. de Oliveira, J. R. Nogueira

Table 4 Approaches to seek the tetrahedron that contains the most recently inserted point in seven 3-D point
distributions

Point distribution Hilbert order Lebesgue order H-indexing Spiral order Red-black tree
with in-order

traversal
Random tet_inc hist_tet hist_tet hist_tet hist_tet
Cylinder tet_inc hist_tet tet_inc hist_tet hist_tet
Disk tet_inc hist_tet hist_tet hist_tet hist_tet
Planes Ist_tet tet_inc hist_tet hist_tet hist_tet
3 axes Ist_tet tet_inc tet_inc hist_tet hist_tet
Paraboloid tet_inc tet_inc hist_tet hist_tet tet_inc
Spiral tet_inc tet_inc tet_inc hist_tet tet_inc

These approaches presented the lowest computational cost in incremental algorithms with point-insertion
sequences given by five sequences

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on 2-D random points g Memory usage on 2-D random points
. 5
.. (@ S e (b) /
2. 3 E— . Cut-longest-
s g = edge kd-tree
2" £ = — Hilbert
9 . by Lebesgue
é . g& - == H-indexing
GEJ Q- == Spiral
) > = Red-blacktree
(= E‘ - _»,;::_/ with in-order
L— ___‘--""
. £
[
=

Fig. 5 Computational costs and memory requirements of incremental algorithms with six point-insertion
sequences tested in one point distributions in the unit square: a, b points randomly distributed

rithms in all tests. Therefore, the Liu—Yan—Lo incremental algorithm shows good scalability.
Furthermore, one may implement this incremental algorithm with a smaller memory usage
than the one used in this work. In particular, the computational costs of the Liu—Yan—Lo
and Hilbert-curve incremental algorithms found in our appraisal are slightly higher than
those encountered by Liu et al. (2013). This can be explained partly by our usage of specific
implementations, and different machines used. To provide more specific detail, the Hilbert-
curve and cut-longest-edge kd-tree implementations of Liu et al. (2013) employ the highly
enhanced CGAL framework. Despite the higher computational cost encountered here, our
programs without using the CGAL framework presented similar behavior to the Liu, Yan
and Lo implementations (Liu et al. 2013). This shows evidence that the behavior of these
algorithms are independent of implementation.

The Liu—Yan—-Lo incremental algorithm (Liu et al. 2013) ensures a more uniform subdi-
vision of the points in the tessellation than the other seven incremental algorithms tested in
this computational experiment. Probably for this reason, a smaller number of circumcircle
(in 2-D instances) or circumsphere (in 3-D instances), and orientation tests were carried out
in relation to the other seven incremental algorithms, and a smaller number of created and
destroyed tetrahedrons in the tessellation was required. Therefore, the Liu—Yan-Lo incre-
mental algorithm may be seen as the state-of-the-art algorithm for the generation of Delaunay
tessellations in the seven 3-D point distributions tested. Future works will be related to parallel
implementations of these algorithms.

@ Springer f bMA

657

An evaluation of point-insertion sequences

- - S € 0 0 0 0 ‘WA
- - 0 0 0 0 0 8 sy, 11599 Jo "ON
- - €76 IPELT 69°06C1 ITrie 19°9¢¢ 75°90¢ WO
(119qTH)
(M9qITH) T6'¥ 20 61°GI 88°L 879 8LL L9 L6V s, 0001
- - 60'1€C €TTIT 0T'sTel 9¢'LET SET9T €99€C WA
(119q[TH)
(M9qITH) 89'F 120 06701 06'S 69 LL'S L9V 68°€ sy, 0SL
- - 99671 65°'8b1 SH0911 TST9T LOELT 1661 WA
(engseqo) (engseqa)
¥6'€ S1°0 06'9 00 e 18°¢ 06T ST oy, 00S
- - TE8L €548 9¢'€601 8568 9556 SS6L WO
(PeIg—pay) (en3saqory)
0S'T 10°0 Sre 0T ST LLT vl Wl oy, 0ST
- - S0°TE 98'et 89°CS01 09°'9% vE6F 8L'€E WO
(rends) 82’1 (readg) 10°0 (48! 960 090 L9°0 950 61°0 swiy, 001
- - SE€T 16'L€ 129101 9L'6€ 170 Trse WA
(rqH) 11°¢ (rends) 10°0 780 6L°0 70 050 wo LE0 auly, SL
- - 86'9T 19°0€ 61°6£01 IL1E €eee 0L’LT WA
(Tends)
(9qITH) 96°1 6000 750 ¥9°0 620 €0 870 ST'0 auy, 0S
- - 09°6 €THT 8101 10°ST 99°6T ¥6'6 WO
(Burxepur-H) (Burxepur
TN 0TI -H) 10°0 ¥T0 670 S1°0 S1°0 €10 o sy, ST wopuey
uon UONBIAD
-BLIBA JO JUQID pIepue)s 21 Ydr[q Surapio QAIND QAIND Jon-py a8pa (0001 %) syurod uonnqrisIp
TN -1Je0o 1sa3re] Js98Ie] —PalIoplo-ul rends Surxopur-g angsoqo] 11qITH 1S93uo[-In) S)NsSAY Jo requnN urod

arenbs j1un ot ur ([eards pue ‘9[oIIO “1)SN[O ‘U] ‘SSOID
‘wopuer) suonnqrnsip jutod X1s ur suone[nSueLn Aeune[d(] 2)LIdUS 0) SWYILIOF[B [RIUSWRIOUL XIS JO (A Ul) sjuswaimbar L1owaw pue (s ur) s3sod [euoneindwo)) ¢ dqel,

JBINAC

pringer

&Hs

S. L. G. de Oliveira, J. R. Nogueira

658

- - S € 0 0 0 0 W
- - 0 0 0 0 0 8 aurry, 11529 Jo "ON
- - 99'¥1¢ 6€°67T €T'18C1 99°60r 6L69€ 0S'L0E WO
(Surxopur-H) Operq
81 —Pay) T¥'0 6979 L¥'8 90°€T 8L°61 191 96 aurty, 000°T
- - €L¥ST 60°181 SS8ITI LTE6T 68°69C 08°LEC WO
(e01-py)
(rends) 61 600 60TE 88'S 80'8 86'11 066 £8°¢ o, 0SL
- - 8€°66T 0S"bET LY PSTT SL96T TTSLI 6v°SST WO
(Surxopur-H) (Surxepur
L1E -H) €1°0 eeel LS€ w©y 98'G €0's SH'T i, 00
- - pI'8L 17'8L 701601 7766 9'68 8I'6L WO
(Burxepur-H) (Burxoput
S1'9 -H) 01°0 LLE 99'1 9L'1 LT €6l €T i, 0T
- - LY'TE LSty 871501 69'8% 961 6£€E WO
(Burxepur-H) (Burxoput
611 -H) LO°0 o'l $9°0 99°0 ¥L0 89°0 150 g, 001
- - 09°'vT 79°9¢ 1T°$H01 16°0% SI'LE vove TWON
(1orIg-pay) Orerq
vL'8 —Pa¥) 90°0 LLO 0S°0 970 €50 6v'0 LEO g, SL
- - 10°L1 87°0€ SL'8E01 68T 79°0¢ 8L°LI WO
(Surxopur-H) (Surxopur
0TS -H) 100 90 €€°0 0€0 €0 €0 ST0 g, 0
- - $9°6 96'€T SSTE01 0$°ST 4% ¢4 0001 WO
(1rIq-pay) Oerq
TN 6’1 —Pod) €000 170 81°0 S1°0 910 S1'0 o aurty, ST $S0I1D)
uon UOTJRIAID
-RLIBA JO JUSIO pIepue)s Qa1 yor[q Suropio QAIND QAIND Qa1m-py 23po (0001 %) syurod uonnqrnsip
N -1Jo09 1sa3re] Js98Ie] —palIoplo-uf rends Surxopur-g angsoqe] JRQIIH Jso3uU0[-IN) SINSAY Jo IoquunN jurod

panunuod ¢ Jqe],

@ Springer f bMA

659

An evaluation of point-insertion sequences

- - S € 0 0 0 0 WeN
- - 0 0 0 0 0 8 urL 11899 JO "'ON
- - ¢SLTT 76°861 81'Crel LTS 86'99¢ §6'90¢ W
(Surxopur
(rends) 6z'1 “H) 110 ¥9°CCl 00'8 68°Cl 0L'8 SS'L 98y wrLL 0001
- - LYELT 69°9S1 YO'TLTL [4%41% L8'79¢ 69'9¢C W
(Surxopur-F) (Oroerq
or'l —PaY) ¥5°0 60°6S 8¥'¢ 96°L 359 61'¢ 99°¢ aurLL 0SL
- - LLSTIT [k4°1141 €8I 8LYET 9L'81¢C 1222 W
(1ov1q-pay) (roerq
0LC —PY) 650 80°CC 9Tt ol'y 1443 ere €€ wrLL 008
- - °0°6S 9¢'0L €L°SOTT 6V Il YL 'LOT CT8L W
(Burxepur-H) (Burxopur
€61 -H) 200 9Ly Lyl €91 0S'l 171 LT'T wiL 0S¢
- - 9T 68°6¢ 8¢'8S01 86'CS LO'8Y Iv'ee WeN
(1ends) $6'¢ (rertds) 200 860 9¢°0 9¢°0 S0 0 LYo awrLL 001
- - 85°0C £6°C¢e 08'6101 ey o1°or [2Y4 W
(engsoqoT) (ongsoqa])
€€C 6000 $9°0 170 70 6¢°0 8¢°0 SE°0 urLL SL
- - wel LE6C S0 Tvol SI've LI'CE 6L°L1 WeN
(en3soqo) (ongsoqa])
6v'1 €000 8¢°0 LT0 920 920 ¥T0 €00 wrLL 0S
- - S8°L 96°¢C IT¥€01 S0'9¢ 19v¢ 1001 W
(rends)
N (rendg) 121 100°0 LT°0 €r'o cro o cro 170 wLL SC aurg
uon UOTBIAID
-BLIEA JO JUQIO prepue)s Qon yoelq Suuopio QAIND QAIND 9o1-py 93pa (0001 %) syurod uonnqLIsIp
N -IJe0d 1sa8re 19318 —paIIopIo-uf rends Surxepur-y ongseqo] MOqIH 1808uo[-In) synsoy Jo ToquInN juroq
panunuod g I[qeY,

JBINAC

pringer

Qs

S. L. G. de Oliveira, J. R. Nogueira

660

- - S € 0 0 0 0 WOW
- - 0 0 0 0 0 8 QWIL], SINSAI S9Q JO JoquunyN
- - 17°98¢ 0L'89T 10°SLTI SL'Y9E 6L'9TE T9L0E WO
(fends) 87 (rends) 0T°0 60¥1 €l'L S6'S 0S'L 9L'S €9y swiy, 0001
- - 8LTCC 65°081 01Tl 89VLT 68'SHT 0LET WO
(en3s0qaT) OPerq
vel —pad) ¢1°0 ! 90°S wr 'S 8T'¥ 65°€ sy, 0SL
- - LLEPT 78°'8C1 Y6'ISTI 8TS8T SS'S91 OP'SST Wl
(angseqa) (engsaqa)
80'T €00 9%'9 e ¥6'C 6v'€ 8T 1€°C sury, 00S
- - IS'SL 99L 19'1601 LY'L6 9188 LEQL WO
(angseqa) (engsaqa)
951 200 66'C P81 91 89'1 LET 9IT'T sy, 0ST
- - SS'TE SOTy 62°€501 98y €LY or'ee welN
(Surxoput-H) (1erq
ST —Pa¥) 10°0 80'T 060 LSO ¥9°0 ¥S°0 LY sy, 001
- - S0°€T 18°S¢€ LT'SYOT YO0y 1T'8E 696z WO
(enSsaqo) (Tendg)
9I'l L000 6L°0 9L°0 w0 L¥'0 010 SE0 sy, SL
- - 9L'9T €6'6C vL'8€0T §9Te L¥OE 6L°LT WO
(1eIq—pay) Croerq
€6'T —PY) L00'0 150 190 870 1€°0 LTO €20 sy, 0S
- - 6€°6 v6'€T SSTe0t 9TST 9EWT 1001 WO
(engsaqa) (endg)
TN 8T'1 2000 €20 6€0 €10 S0 €10 110 auy, ST Isny
uon UOTJRIAID
-BLIBA JO JUIID pIepue)s Jan yoelq Suwspio AAIND QAIND 3am-pY a3pe (0001 %) syurod uonnqrisIp
TN -1Je0d 3sadIe] 1898187 —paI1IopIlo-uf rendg Surxepur-H ongsoqe] MeqIIH 1593uU0[-IN) S NSAY Jo rquinN urod
ponunuod ¢ I[qey,

@ Springer f bMA

661

An evaluation of point-insertion sequences

- - 9 4 0 0 0 0 uRK
- - 0 0 0 0 0 8 QWII], SINSAI)S9Q JO JoquInN
- - vI'66C TL'98T YLSLTI 91'86€ L8'9EE PILOE WO
(Ioe1q-pay) (1or1q
ST P 610 6LTI 208 109 w6'L 8L'S S6p owlL 0001
- - 8I'ECEC 99'TET 96'STTI 09'S9T €6'9%C 90'LET WO
(1or1q
(reds) 9L 1 —pad) #1°0 €6 LO9 (454 L9°S 8¢t I8 oui 0SL
- - 89°'IST 89°091 TSTSII OL'SLT ST'T91 TLYST WO
(1or1q
(eom-pY) 1€ —PA) I1°0 06'S (7 86'C 6S°¢ 98'C ST QWL 00S
- - 18°'8L ¥0°S6 670601 €CT6 8T98 6L WO
(Burxoput-H) (Burxeput
80°1 -H) 100 €LT €0'C 91 69'1 1! €TT sy, 0SC
- - 1] 4 LL6Y SHIS01 P9y S6'EY 0rye wel
(1or1q-pay) (Perq
YT —PA) 100 001 780 LSO 790 ¥S°0 0s'0 Puwiy 001
- - 00°ST 69'6¢ 86'SH0T 0T6E €579¢ oFsc W
(rerq
(IqIIH) LL'T —Po¥) LOO0 €L0 79°0 wo 910 10 8€°0 QwIf SL
- - Ll T6'CE LL'8E0T wie 1T0g 6L°LT WO
(PoeIq—paxD) (rerq
16T —P¥) 800°0 970 70 870 0€0 LTO §T0 Quwif, 0S
- - $9°6 87T LSTE0T 8LYC €I'fT 1001 WON
(Surxoput-H) (Surxopur
N vLY -H) 9000 170 €20 €10 710 €10 o Qwif ST JpID
uon UOIBIAJD
-BLIBA JO JUQIO prepue)s a1 Yor[q Sunepio QAIND QAIND om-py 28p2 (0001 x) syurod uonnqrysip
N -1JJR0d 1s8Ie] Js98Ie] —palloplo-uf endg Surxepur-H ongseqeT MeqIIH 1s93uU0[-IN) S NSAY Jo rquinN urod

panunuod ¢ Jqe],

JBINAC

pringer

&Hs

S. L. G. de Oliveira, J. R. Nogueira

662

- - 9 C 0 0 0 0 WO
- - 0 0 0 0 0 8 QuIJ, SINSAI}$Aq JO JQUINN
- - 17°68¢ LT'S9T 6L°L8TI1 16'¢Se 0S'1¢e £8°90¢ WO
(Burxepur-H) (Burxepur
€6l -H) Tl'0 8911 1840 LT9 LS'L 809 L6'Y QwiL, 0001
- - Y¥'LTT S8'TIT oLveel °8'79T 0L'SHT 6S'LET WO
(fendg) 817 (rends) G1°0 w8 wL o't LSS 9y 98°¢ oy, 0sL
- - 191 98'8Y1 ¢S6SII 0TTLT 007291 68151 WA
(fends) 96’1 (rends) L0°0 6S°S 69t 80°¢ 69'¢ 96'C €€°C uiy 00s
- - S6°LL oL'16 17601 S9'68 1698 LE6L WO
(engseqo) (engseqo)
SE'l 00 ILe 8¢€T (43! SL'T Ly'1 STT uiy 0s¢
- - 6T°CE Ly P1IvS01 8L9% €O’y yeee WO
(angseqa) (engsaqo)
£9'¢ 00 901 w1 19°0 690 650 1s°0 oy, 001
- - Yo've €coy 0S9%01 67°6¢ y0°LE L1'ST WO
(Ioe1q-Ppay) (1or1q
STT —PaA) 600°0 8L°0 8L°0 Sv'o S0 a4 6€°0 oy, SL
- - 96'91 98'C¢ yS6£01 €ele 61°0¢ 69°L1 WA
(Ioe[q-Ppay) (1or1q
€C'T —PY) 900°0 0s°0 €S0 0€0 €€°0 620 ST0 Qi 0S
- - €9°6 8C'ST 8'ce0l LLYCT €I've 0001 WO
Croerq
€N ORqIH) 65T —Pa¥) €00°0 ¥T0 90 S1'o 91°0 71°0 o QwiL 54 [eads
uon UONBIAD
-BLIEA JO JUQID plepue)s Qon yoelq Suuepio QAIND QAINDd 2am-py 23pa (0001 %) syutod uonnqLIsIp
N -1JR0d)sadre] 1s98Ie] —paI1Ioplo-uf rendg Surxepul-H an8soqe] MeqIH 1593u0[-IN) SINSAY Jo oquinN jurog

panunuod g Iqe],

@ Springer f bMA

An evaluation of point-insertion sequences

Execution time on cross dataset

. (a)

Time (in seconds)

: ——

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on straight-line distribution

o

. (c)

§

»

Time (in seconds)

.
25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on cluster dataset

« (e)

Time (in seconds)

.
25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on circle dataset

“

- (g)

2

Time (in seconds)

.
25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on spiral dataset
. ()

Time (in seconds)

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Memory usage (in megabytes) Memory usage (in megabytes) Memory usage (in megabytes) Memory usage (in megabytes)

Memory usage (in megabytes)

663

Memory usage on cross distribution

. (b) _

- . Cut-longest-
edge kd-tree

= «= Hilbert
Lebesgue

= == H-indexing

Py == Spiral

— Red-black tree
with in-order

2‘5000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Memory usage on straight-line distribution

we

= (d) __ Cut-longest-

- / edge kd-tree

e Jrm—— ~ Hilbert

- Lebesgue

== H-indexing

== Spiral
Red-black tree

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

=0

<o

Memory usage on cluster dataset

uo

o (—f)__/// . Cut-longest-
bl edge kd-tree
- «= Hilbert

Lebesgue
=e == H-indexing
- == Spiral

Red-black tree
= J with in-order

°
25000 50000 75000 100000 250000 500000 750000 1000000

Number of points
Memory usage on circle dataset
o
. Cut-longest-
o edge kd-tree
_ « Hilbert
Lebesgue
=0 == H-indexing
o == Spiral
Red-black tree
= —_/ with in-order
25000 50000 75000 100000 250000 500000 750000 1000000
Number of points
Memory usage on spiral dataset
= L// . Cut-longest-
wm edge kd-tree
« Hilbert
= Lebesgue
-o == H-indexing
- == Spiral
Red-black tree
=0 with in-order

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Fig. 6 Computational costs and memory requirements of incremental algorithms with six point-insertion
sequences tested in five point distributions in the unit square: a, b cross distribution; ¢, d line distribution; e,
f cluster distribution; g, h circle distribution; i, j spiral distribution

@ Springer j DMAC

S. L. G. de Oliveira, J. R. Nogueira

664

- - 0 0 0 0 C L TWN
- - - 0 0 0 0 0 6 wiy 1389g JO °'N
- - - - - - IT'0€0L 9¢'ITIL "W
YN - - - - - - LI'16S (48133 ouiLy 0008
- - w08Cll £9°60C1 68'8611 08°8S6 99'868 I€°€68 WRN
(on3s2go) 00T (IOBIG—PY) 6€°€ 0S°Ste 09°69¢ LS'T9¢ 89°0¢1 61°¢01 €079 QL 0001
- - P£'658 (4N 9I'l16 ¥9°0SL 76°689 €r'069 WRIN
(CPRIQ-PAY) TH'T - (1PRI-PIY) 19°€ SEYST 65°€9C §e'€9C 0076 9S'9L ST'LY QwiL 0SL
- - oS 08°109 69°€09 eryis (43814 Ly WA
(PRIQ-Pay) LO'T (1PRIQ-PY) 1L°T 0y'091 YL LT 0891 0r'6S 16708 LO'TE QL 00S
- - ST¥8C £7'66C 77 10€ 98°L8C STSLT 8Y°97C WA
(Surxopur-H)
(onSsaqa) LE'T 0L0 LLEL 789L G8'9L 8C°LT 1TYe 61'S1T owtL, 0S¢
- - YOLIT 0s'ecl 9°0C1 05091 0T’ IST 98°'L6 WPN
(3urxoput-H)
(1qH) 161 €C0 1T9¢ wLe 00°LC 9¢°01 7’6 (14'] QL 001
- - 26'06 4% 05°¢6 9L°GEl or'rIetr L6'0L WO
(en3seqo) gy'e (anSseqa) 970 0881 8€'61 or'el 89°L 68'9 €LY QwiL SL
- - 6209 £€°79 I7°S9 el 4! 10°Ts "W
(en3seqo) 98°T (IOBIG—PY) ST°0 G811 €1'el et o'y Sy e QL 0S
- - Sele 65°6¢ So'ee 8L'16 £7'06 vLLT WO
[44 (12q1H) 09°€ (12q11H) L0°0 0€'s or's 8€'S €T 81°C SST QwiL ST wopuey
uon UONRIAD
-BLIBA JO JUQIO plepuels Qo1 yoe[q Surxopur AIND 9AID 91-pY A3po (0001 %) uonnqLIsIp
W -1JJ200 1sa3Ie] Js98Ie] —pal I9pIo-uf rends Surxopurl-H angsoqo] MOqIIH -1seSuo[-n) s)nsay syutod jo 1oquiny jutod
[eAloyul

jiun (-¢ 2y} ut (fends e punore syutod pue ‘projoqered e punore sjurod ‘soxe 221y} Suofe sjutod ‘soued do1yy punote sjutod Ysip e punore syurod ‘Iopur[£d e uo syurod ‘syurod
wopuel) suonnquisip jutod (-¢ U9AIS UT SUONR[[35sA) ABUNE[(ILIQUAT 0 SWYILOT[E [BIUSWIOUL XIS JO (A Ul) stuawanmbar A1owaw pue (s ur) s1s00 [euoneindwo) 9 ajqe],

@ Springer f bMA

665

An evaluation of point-insertion sequences

- - 0 0 0 0 1 8 WP
- - - 0 0 0 0 0 6 QuuLy, 11599 J0 °N
- - - - - - EVEIIL c0cCIL WA
YN - - - - - - €1°209 L9°9T¢ QuIy, 0008
- - 08° 1€l 99°90¢1 €C'198 S0'196 LY'668 TTE68 WO
(I9qITH) €0°'C (I9qITH) €6°T 8Evey LO'LSY S0'09% 65091 69'vCl L9 QL 0001
- - 88'658 81°606 ¢Sor9 OYyL LS€69 06889 WA
(93m-py) 81°1 (rends) €6°0 r8YvIe 60'92¢ £9°CE€ SLITI 1S'16 LT'TS ol 0SL
- - 8¥' 198 89°009 yTey YOS ({3214 oSy W
(Surxoput-H)
(1RqH) 1€'1 260 9T'10¢ 8C°90C 9¢°€le 69 9009 Iee Sl 00s
- - 0€'¥8¢ 01'66¢ 0celc 88'68C Y6'LLT 0€°'SCT "W
(Surxopur-H)
(119q[H) SS°'1 080 15726 SE'E6 17°S6 89°C¢ $8'8¢ 1891 QuuLy, 0S¢
- - CLOIT £€9°0¢1 8¥°L8 9851 S 051 68°'L6 UPIN
(1ov19-pay)
(1qITH) 99'1 9¢'0 9¢°Ce 9¢'ce 10°ee 9I'ct 18°01 LL9 QwiL, 001
- - 8C°06 L9°€6 <089 9L9¢1 L1TTEL ITIL WA
(ov[a-pay)
(921-pY) $€'1 020 8¢°€C 9I'ee 8¢°€C 888 908 s suL SL
- - 15°6S 18°€9 9208 6¥' 911 69l STIS W
(roeIq-py)
(9a1-pY) 8¢€'1 610 6V v (41 oLyl LS 9T's 9¢°¢ QuuLy, 0s
- - 19'0¢ Svee (4314 €06 crie 8¥'8C WP
(1oe19-pay)
IN (1RqiH) L1°€ 600 6£'9 €9 879 ¥9°C 0T 91 QuiLy, 4 Topur[A)
uon UOTIBIASD
-BLIA JO JUQIO pIrepuels 901} yor[q Surxopur AIND oAmMO 99m-pY 98pe (0001 %) uonnqrisIp
‘W -1JJo0o 1sa31e] Js98Ie] —pa1 I9pIo-uf [ends Surxepur-yH ongseqo QT -1seSuo[-n) synsey sjutod Jo roquiny jutod

panunuod 9 d[qe],

JBINAC

pringer

&Hs

S. L. G. de Oliveira, J. R. Nogueira

666

- - 0 0 0 0 0 6 WO
- - - 0 0 0 0 0 6 owiL "1152q JO "ON
- - - - - - pE8LI8 TTITIL WO
YN - - - - - - 08859 8L°8T€ Quwilf, 0008
- - LLSTTT ¥$°60C1 €6'11¢CT ST0T01 18856 88°688 WO
(1qITH) 91 (rexds) 1¢°¢ e 66'C8Y LLTLY TTTEl ¥6'50T €r'99 owiL 000T
- - ¥8'9%8 Y0'+26 ¥0'€T6 L8'SLL €F'8TL 000069 WO
(IoB[q-Ppay)
(90m-pY) €0'1 L6'T 88'C€T 6L°6Y€ YL YYE TLS6 1T8L 970§ PwiL 0SL
- - LSS 98'909 €0'119 91°0€S 1120 88'Lbh WO
(en3s2ga7) 98°0 (erdg) 89°1 S6°Ly1 99°€TT ¥6°0TC €5°09 018 10°€€ QwiL 00S
- - 68'8LT LS¥0€ 10+0€ 89°L6T 1€728C €6'97C WO
(Surxopur-H)
(221-pY) +0'1 2\ S¥'99 9t"€01 £6'201 €€'8C 06+ 6£9T owiL, 0ST
- - cEPIT €T'8CI 4374 98°6S1 81151 W96 WO
(Ioe1q-Ppay)
01 (exds) s¢°0 9T'€T 0S'LE 1TLE 6%°01 156 §9'9 ouif, 001
- - T0°L8 98'L6 9t°86 €T Ov1 €TEEl TTIL WO
(Ioe1q-Ppy) (4oB1q-Py)
96°0 91°0 7991 16'9C L9t L9L 00°L 66’y ouwlf, SL
- - T€68 SL'S9 62'99 SSTIl LOOTI €CIS WO
(Burxoput-H)
(92m-pY) 0¢'1 60°0 €01 €0'LI €691 16 LSY 6T¢ ouwif 0S
- - LOEE €6'7€ 60°S€ LL06 0088 SLLT WO
EN (rendg) v1°1 (rerds) 800 1454 YLL oL'L €€'C 61'C 79T Quiy ST IS
uon UOTIRIAID
-BLIBA JO JUQIO plepuels Q2 Yoe[q Surxopur QAIND OAIND 99m-pY 93po (0001) uonnqrysip
‘W -JJo0o }saSIe Js98Ie] —palIaplo-uf rendg Surxepur-y an3soqo JOqII -1seSuo[-n) Ssynsey syutod jo roquiny urod

panunuod 9 Jqey,

@ Springer f bMA

667

An evaluation of point-insertion sequences

- - 0 0 0 0 0 6 WO
- - - 0 0 0 0 0 6 owiL "1152q JO "ON
- - - - - - 6TS06L 88'SOIL WO
YN - - - - - - 69TLS $0'87€ owi], 0008
- - TO0ETT 8TH0T1 697611 00656 L0'8€6 €7°068 WO
(Burxoput-H)
(112q[TH) 88°0 86'C LL'ISY SSvLY LST6Y 8¢LET LEOTT S0'89 owiL, 0001
- - 91°958 8I'T16 9i'I16 T6°SEL TITIL 9'p89 WO
(Burxoput-H)
(22m-py) LO'T €T 18°LTE 86'¢HE vL'ESE 9€'66 6598 6V'IS owiL 0SL
- - 9€'69¢ 60°56S 89'66S ¥L'20S ISt61 €8°LbP WO
(rexds) 9z'1 (rexds) £2T 86'L0T LT'61C 9€'€TT 97'€9 §5'9¢6 p6'eE PwiL 00S
- - ¥9'18¢C 0L'86C 96'10¢ ¥L98T LE6LT 6I'PTT WO
(Burxeput-H)
(IRqIIH) SS°T €6°0 8756 1266 01101 0£'6T vI'LT pO'LT Pwil 0ST
- - 09911 SLETT 99'1C1 6€°SST LTEST LE'E6 WO
(Burxeput-H)
(onSs0qa]) 87'1 10 LL'EE 8¢ ILse €L ol €01 pg'9 ouwif 001
- - 9t'68 TLS6 LT'S6 PI°GEl 0S'TET 6TIL WO
(or1q-poy) (or19-pay)
vl SE0 1€%C €8°'%C 09'ST 8L L9L LI'S ouif, SL
- - €519 80°€9 Y SEETl 1601 90 IS WO
(1RqrH) €L°1 (rexds) 70 [ANY! 0961 ¥6°ST 00°S 00'S 6€'€ ouwif, 0S
- - sTTe 98'1¢ 8T'C¢E vE'16 S0°06 LLT WO
[IN (enSsaqo) g¢'¢ (onSsaqaT) 80°0 ¥9'9 €6'9 €0'L €V'C ST 89'T ouiL, ST soue[q
uon UOTIRIAID
-BLIBA JO JUQIO plepuels Q2 Yoe[q Surxopur QAIND OAIND 99m-pY 93po (0001) uonnqrysip
‘W -JJo0o }saSIe Js98Ie] —palIaplo-uf rendg Surxepur-y an3soqo JOqII -1seSuo[-n) Ssynsey syutod jo roquiny urod

panunuod 9 Jqey,

JBINAC

pringer

&Hs

S. L. G. de Oliveira, J. R. Nogueira

668

- - 0 0 L 0 0 [AEENCE)
- - - 0 0 0 0 0 6 owiL '1159q JO "ON
- - - - - - IL'Y6T8 LS'STIL WO
YN - - - - - - 10°S6L 86'I€E QuwL 0008
- - TSSITT 19'%0C1 69'988 69°€001 $9'286 CEETC6 WO
(rends) 861 (rends) #1°0¢ 8%°'617¢ 16°L6€ 1L°TSH 79'9¢1 08°€01 LT€9 Pwil 0001
- - LT'SH8 L¥'106 15°S99 1T°L9L 19°ThL 68°L69 WA
(rexds) 09°s (rends) $2°61 ¥8'€ST ¥L°08¢C 10°62€ 7€'86 99°9L 8TLy PwiL 0SL
- - 97'95¢S TL'66S 8L 6P LETTS ¥STIS 6079 WO
(rerds) 62°9 (reridg) 9611 66'191 8581 IvyIc L919 69°0S 9’1 Qwif, 00S
- - 9L°08C 0€°10€ €1'97C 1T¥8C TE€'T8C or'LTT WA
(31oB1q-Ppay) (IoB1q-Ppy)
¥S'1 SI'l 8L 09°6L S0°001 S8'LT YT 89°ST owi], 0S¢
- - 85911 88°€T1 85°€6 16751 81°CS1 €TI01 WOl
(12q[TH) 0L°0 (rexds) £1°0 65'9C €€'8C €6'S€ 10°01 1+'6 199 owif, 001
- - LL'68 ¥8'66 1S°CL L8TEL Sreel STTIL WO
(rexds) €01 (rextds) 0z'0 el AN ¥9°6T Se'L 69 (43 2Bl SL
- - °T68 19 SL'LY €0ETl 8TTII 1805 WO
(1or19-pay)
(12qITH) 80°T 01°0 66'T1 69°C1 9L’SI YL €Sy 6I'¢ ouwif, 0S
- - 6€°S¢ L9€€E 66'ST 1068 09’16 0S'8T WO
(4or[q-PpaY)
TN (221-py) 96°0 S0°0 'S S9'¢ 6L°9 STT LTT 9¢'T ouif, ST SOXE ¢
uon UOIBIAID
-BLIBA JO JUIID plepue)s Qa1 or[q Surxepur QAIND QAIND 2am-py a3pa (0001 %) uonnqrysip
‘W -JJo0o }sadIe] 1893187 —pa1.1opIo-uf rendg Surxopur-g an3soqo JoqIIH -1seSuo[-n) synsoy sjutod Jo Ioquiny urod

panunuod 9 IqeY,

@ Springer f bMA

669

An evaluation of point-insertion sequences

- - 8 0 0 0 0 I WN
- - - 0 0 0 0 0 6 sy, '1159q JO "ON
- - - - - - 0I'S908 9L'8S0L WO
YN - - - - - - 98°1¢CS 0S°7TE iy, 0008
- - LI'S8L L6'IGII 101811 90FIIT 91'€801 G8'¢L8 WO
(1oe[q-pay)
(IRqIIH) 91°T 10°¢ €h'L9C TIH0¢ SS'10¢ CLYIT £€'86 STH9 awiy, 0001
- - L6°88S 1$°L88 7' L68 L8°6¥8 YrHI8 €I'SLY WP
(1oe1q—pay)
(9qIIH) SL°0 Pe'l LS¥61 TL8IT LE9IT $9°'¢8 #8°0L pL'8Y auwiy, 0SL
- - €T'E6€E LS'68S 60°L6S 06995 L6°SSS 68°LEY WO
(or1q—-pay)
(IRqIIH) 6€°1 91l €Teel 08'8€1 96'9¢1 Y0'+S SToY (1] 4 sy, 00S
- - €€'961 81°76C 9t'96C 78°01¢ ¥'20¢ 86'81C WO
(rexds) 9t°1 (rexds) 2670 $6'tS $6'79 L8'19 9792 9T S8'ST oy, 0ST
- - 0L'es 8L911 16°L11 08'9S1 PI°LST LOE6 WO
(3n3s2qaY) $1°1 (rexds) 81°0 90°61 1§12 SEIT 6L°6 898 SH'9 awiy, 001
- - €Y 09'88 SS'68 S0'9¢l TLegl LL'S9 WO
(1oe[q—-pay)
(IqIIH) #0'1 01°0 SLET 6T°SI 1761 1cL) S8t auwig, SL
- - SEv 00°'8S LY'8S ILTIT 6011 So'gy WO
(1oe1q—-pay)
(221-py) 9¢'[01°0 ¥$'8 LS'6 0S'6 69 wy 4%y auiy, 0S
- - psTe 002 66'€€ LT°06 61'16 ov'LT WO
(Surxopur-H)
¢IN (dnSsaqo) GT'[€00 6L¢ YTr 1Tt 0€T 0T PS1 iy, ST projoqereqd
uone UONBIASD
-LIBA JO JUSIOL pIepuels 31 Yoe[q Surxopur QAIND QAIND Qa1m-py 93pa (0001 %) syutod uonnqrysip
‘W -Jo0d)safIe| Js98Ie] —pal IopIo-uf rends Surxopur-H angseqo FRETe] 118 -)seuol-InD SINSAY Jo IoqunN jurod

panunuod

9 91qE.L

JBINAC

pringer

Qs

S. L. G. de Oliveira, J. R. Nogueira

670

- - 8 0 0 0 0 [wep
- - - 0 0 0 0 0 6 el 11599 JO "ON
- - - - - - 86908 SCTOIL WOl
YN - - - - - - 0F1$S (4% <4 LN 0008
- - 16'88L TET8II €L°668 TISLOT SP'8S01 16688 WAl
(Burxepur-H) (Surxepur-H)
€91 079 1€ LI'SLE SE08¢ LY'8I1 16201 Ly'99 euwi 0001
- - TT68S L8688 71899 PP918 0£°88L $9'189 WO
(Surxoput-H) (Surxopur-H)
91 a4 LTOVT PSTILT 10°TLT 05°L8 88°GL Seos ewy, 0SL
- - STS6E 0L'S8S SS9ey 10'79S 96°€YS 6 €y WO
(1oe1q-pay) 88T (AOBIA-PY) S+ 8TTSI TTELL LY'ELL 87°96 0667 66C¢ PwiL 00S
- - 167007 76T 68°0€C 76'66C SI'76T 1€7ec WO
(on30g0) L6'0 (NORIG-P) 8770 €9°L9 1€9L YELL 65°9C 8TC €991 owif, 0T
- - 9L'T8 69°611 7668 LELST Y6 HS1 9¢'€6 WO
(rqIH) L'z (IBIQ—PaY) 0€°0 8°€T $8'ST ¥T9T 0r01 6 L9°9 ouwi, 001
- - 95°€9 £6'06 7869 resel STYEL 969 WO
(Surxopur-H) (Surxopur-H)
9I'l 120 7991 1+81 09°81 16'L 88'9 S0’ oury, SL
- - vy 69°6S 78°8Y SSENL SObIL 006 WO
(Surxoput-H) (Surxopur-H)
0T'1 €10 €01 or'1l [N P0°S SS sg'e el 0$
- - 9bT or' 1€ €8'6T 96 £8'68 0L "W
(Surxopur-H)
IN (on3s0qo]) 8L°C 600 LS 10°§ 80°S €5°C €T L9T ou, (Y4 [ends
uone UONBIAJD
-LIBA JO JUSIOY paepuels Qon yoe[q Jurxopur JAIND QAIND 9on-py 23pa (0001 %) sutod uonnqrysip
‘N -J200 }sodIe| JS9318] —pal JopIO-Uf rends Surxopur-H angdsoqe 1I_Q[IH -18o3Uo[-IN) SINSY Jo 1oquinyN jurod

ponunuod 9 Jqey,

@ Springer f bMA

75000 100000 250000 500000 750000 1000000

°
25000 50000 75000 100000 250000 500000 750000 1000000

An evaluation of point-insertion sequences 671
Execution time on 3-D random points g Memory usage on 3-D random points
- 5 -
% =0 (a) ‘g;‘ zo __cut .
g »e £ = edge kd-tree
Y = c ww Hilbert
3 = " Lebesgue
= = [T ~= H-indexing
; = §‘ w— Spiral
£ = g - Red-black tree
F = / > = with in-order
o e 1<)
25000 50000 75000 100000 250000 500000 750000 1000000 g 15000 50000 75000 100000 250000 500000 750000 1000000
Number of points = Number of points
Execution time on cylindrical dataset "2 Memory usage on cylindrical dataset
- .
- Q
-3 we g B . Cut-longest-
b= g - edge kd-tree
S = — Hilbert
3 »e é Lebesgue
c o = H-indexing
= - g‘ = Spiral
g a Red-black tree
s with in-order
F = g —
£
[
=

Number of points

Execution time with entry points around a disk

o

=0

N*J

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Time (in seconds)

Execution time on points around 3 planes

wo

- (2)

m‘___,//-/’;“

Time (in seconds)

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Execution time on points along 3 axes

%

5000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Time (in seconds)
vo 8 B E BB 8 HEELE

Memory usage (in megabytes)

Memory usage (in megabytes)

Memory usage (in megabytes)

Number of points

Memory usage with entry ponts around a disk

el . Cut-longest-

m edge kd-tree
w Hilbert

b Lebesgue

- == H-indexing
== Spiral

o Red-black tree

e with in-order

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

3
8

Memory usage on points around 3 planes

uo

-~ (h)

wo

. Cut-longest-
edge kd-tree

«= Hilbert
Lebesgue

== H-indexing

= Spiral
Red-black tree
with in-order

o

25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

Memory usage on points along 3 axes

. Cut-longest-
edge kd-tree
« Hilbert
Lebesgue
== H-indexing
== Spiral
Red-black tree
with in-order

2‘0C0 50000 75000 100000 250000 500000 750000 1000000
Number of points

B 5 8 ¢ B OB OB

Fig. 7 Computational costs and memory requirements of incremental algorithms with six point-insertion
sequences tested in four point distributions in the 3-D unit interval: a, b random points; ¢, d points on a
cylinder; e, f points around a disk; g, h points around three planes; i, j points along three axes

@ Springer j DMAC

672

S. L. G. de Oliveira, J. R. Nogueira

Execution time on paraboloidal dataset

(@)

5

Time (in seconds)

Memory usage on paraboloidal dataset

O —

w®

=o

wo

<o

e Cut-longest-
edge kd-tree

«= Hilbert
Lebesgue

~= H-indexing

=== Spiral
Red-black tree

—

.
25000 50000 75000 100000 250000 500000 750000 1000000
Number of points

=0 J with in-order

°
25000 50000 75000 100000 250000 500000 750000 1000000

Memory usage (in megabytes)

Number of points

Execution time on spiral dataset g Memory usage on spiral dataset

- 5
_— [
% = (c) g = (d) . Cut-longest-
g »o £ wo edge kd-tree
[V = ~= Hilbert
a ": Lebesgue
c g . — Hiindexing
© ﬁ == Spiral
g - > = Red-black tree
= / > = with in-order

- o
ISOBI; 50000 75000 100000 250000 500000 750000 1000000 § ;5000 50000 75000 100000 250000 500000 750000 1000000

Number of points

Number of points

Fig. 8 Computational costs and memory requirements of incremental algorithms with six point-insertion
sequences tested in three point distributions in the 3-D unit interval: a, b points around a paraboloid; and ¢, d

points around a spiral

Table 7 Cache misses [independent first-level instruction (I1), number of L3 instruction misses (L3i), data
cache (D1), number of L3 data misses (L3d), combined instruction and data figures for the L3 cache (L3)
miss rates] of the implementations for the incremental algorithms with a point-insertion sequence in the order
given by the cut-longest-edge kd-tree and Hilbert curve. Seven point distributions (random points, points on a
cylinder, points around a disk, points around three planes, points along three axes, points around a paraboloid,
and points around a spiral) were evaluated in the 3-D unit interval. Executions performed on the M4 machine

Point-insertion Number of I1 (%) L3i(%) DI1(%) L3d(%) L3(%) 3-D point
sequence points (X 10%) distribution
Cut-longest-edge 8 0.01 0.0 0.4 0.0 0.0 7 3-D point
kd-tree distributions
1
Hilbert curve 8 1.7 Cylinder
2.7 3 Axes
0.00 1.1 Spiral
1.5 Random
2.3 Disk
2.6 Planes
11.2 5.0 1.8 Paraboloid
1 0.9 0.0 0.0 Random
Cylinder
3 Axes
0.6 Disk
0.7 Planes
10.5 Paraboloid
0.7 0.1 Spiral

@ Springer j br\A

An evaluation of point-insertion sequences 673

Table 8 Number of circumsphere tests, and numbers of created and destroyed tetrahedrons of incremental
algorithms with a point-insertion sequence in the order given by the cut-longest-edge kd-tree and Hilbert curve
tested in seven point distributions (random points, points on a cylinder, points around a disk, points around
three planes, points along three axes, points around a paraboloid, and points around a spiral) in the 3-D unit
interval (8 x 106 million points). Executions performed on the M4 machine

Point-insertion Number of circum- Number of tetrahe- Number of tetrahe- 3-D point dis-
sequence sphere tests drons created drons destroyed tribution

Cut-longest-edge 377,886,370 213,889,614 159,825,125 Random
kd-tree

Hilbert curve 553,308,719 299,596,298 245,531,798

Cut-longest-edge 378,368,065 214,133,904 160,053,937 Cylinder
kd-tree

Hilbert curve 555,573,159 300,176,462 246,096,497

Cut-longest-edge 378,022,644 213,862,664 159,849,400 Disk
kd-tree

Hilbert curve 551,076,946 297,508,522 243,495,309

Cut-longest-edge 384,528,669 213,866,244 159,852,833 3 Axes
kd-tree

Hilbert curve 714,881,399 299,155,300 245,141,860

Cut-longest-edge 384,236,914 213,309,526 159,425,501 Planes
kd-tree

Hilbert curve 712,582,468 295,864,990 241,981,054

Cut-longest-edge 372,279,246 210,162,332 156,775,498 Paraboloid
kd-tree

Hilbert curve 570,664,906 278,895,322 225,508,444

Cut-longest-edge 377,903,796 212,151,622 158,334,481 Spiral
kd-tree

Hilbert curve 535,212,116 284,673,158 230,855,990

Table 9 Results of incremental algorithms with a point-insertion sequence given by the cut-longest-edge kd-
tree and Hilbert curve tested in seven point distributions (random points, points on a cylinder, points around
a disk, points around three planes, points along three axes, points around a paraboloid, and points around a
spiral) in the 3-D unit interval (10 x 10° million points)

Point-insertion sequence Random Cylinder Disk 3 Axes Planes Paraboloid Spiral

Cut-longest-edge kd-tree 50 49 48 50 48 46 47
Hilbert curve 89 86 96 461 118 64 79

Executions performed on the M4 machine (CPU times in s)

Acknowledgements This work was developed with the support of CAPES - Coordenagdo de Aperfei¢oa-
mento de Pessoal de Nivel Superior (Coordination for Enhancement of Higher Education Personnel, in Brazil),
and FAPEMIG - Funda¢@o de Amparo a Pesquisa do Estado de Minas Gerais (Minas Gerais Research Support
Foundation, in Brazil). We would like to thank the reviewers for their valuable comments and suggestions.

References

Amenta N, Choi S, Rote G (2003) Incremental constructions con BRIO. Proceedings of the nineteenth annual
symposium on Computational geometry., SCG’03ACM, New Yord, NY, pp 211-219

@ Springer f DMAC

674 S. L. G. de Oliveira, J. R. Nogueira

Bader M (2012) Space-filling curves: an introduction with applications in scientific computing. Springer Sc.
& Business Media, Berlin

Boissonnat JD, Devillers O, Samuel H (2009) Incremental construction of the Delaunay graph in medium
dimension. Proceedings of the 25th Annual Symposium on Computational Geometry. Aarhus, Denmark,
pp 208-216

Buchin K (2005) Constructing Delaunay triangulations along space-filling curves. Proceedings of the 2nd
International Symposium Voronoi Diagrams (ISVD) in Science and Engineering. Seoul, Korea, pp 184—
195

Buchin K (2007) Organizing point sets: Space-filling curves, Delaunay tessellations of random point sets, and
flow complexes. Ph.D. thesis, Free University, Berlin

Cachegrind: a cache and branch-prediction profiler: Webpage. URL: http://valgrind.org/docs/manual/cg-
manual.html. Accessed May 19, 2016

Carey GF (1997) Computational grids: generations, adaptation & solution strategies. CRC Press, Boca Raton

Duff IS, Meurant GA (1989) The effect of ordering on preconditioned conjugate gradients. BIT Numer Math
29(4):635-657

Edelsbrunner H (2001) Geometry and topology for mesh generation. Cambridge University Press, New York,
Cambridge monographs on applied and computational mathematics

Gonzaga de Oliveira SL, Nogueira JR, Tavares JMRS (2014) A systematic review of algorithms with linear-
time behaviour to generate Delaunay and Voronoi tessellations. CMES -. CMES Comput Model Eng Sci
100(1):31-57

LiuJF, YanJH, Lo SH (2013) A new insertion sequence for incremental Delaunay triangulation. Acta Mechan-
ica Sinica 29(1):99-109

Liu Y, Snoeyink J (2005) A comparison of five implementations of 3D Delaunay Tessellation. In: Goodman J,
PachJ, Welzl E (eds) Combinatorial and computational geometry, vol 52. MSRI Publications, Cambridge,
pp 439-458

Lo DSH (2015) Finite element mesh generation. CRC Press, Boca Raton

Nethercot N, Seward J (2007) Valgrind: a framework for heavyweight dynamic binary instrumentation. In: Pro-
ceedings of ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation
(PLDI 2007). San Diego, CA

Niedermeier R, Reinhardt K, Sanders P (2002) Towards optimal locality in mesh-indexings. Discrete Appl
Math 117(1-3):211-237

Schamberger S, Wierum JM (2005) Partitioning finite element meshes using space-filling curves. Future Gener
Comput Syst 21(5):759-766

Schrijvers O, van Bommel F, Buchin K (2013) Delaunay triangulations on the Word RAM: Towards a practical
worst-case optimal algorithm. Proceedings of the 10th International Symposium onVoronoi Diagrams in
Science and Engineering (ISVD). Saint Petersburg, Russia, pp 7-15

Snoeyink J, Liu Y (2005) TESS3: a program to compute 3D Delaunay tessellations for well-distributed
points. In: Proceedings of the 2nd International Symposium Voronoi Diagrams (ISVD) in Science and
Engineering. Seoul, Korea

Zhou S, Jones CB (2005) HCPO: an efficient insertion order for incremental Delaunay triangulation. Inf
Process Lett 93:37-42

@ Springer f bMA

http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/cg-manual.html

	An evaluation of point-insertion sequences for incremental Delaunay tessellations
	Abstract
	1 Introduction
	2 Review on insertion schemes
	3 Description of point-insertion sequences in the incremental algorithms implemented
	4 Description of the tests
	5 Results
	6 Conclusions
	Acknowledgements
	References

