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Abstract In this paper, we extend the two-step matrix splitting iteration approach by intro-
ducing a new relaxation parameter. The main idea is based on the inner–outer iteration for
solving the PageRank problems proposed by Gleich et al. (J Sci Comput 32(1): 349–371,
2010) and Bai (Numer Algebra Cont Optim 2(4): 855–862, 2012) and the two-step splitting
iteration presented by Gu et al. (Appl Math Comput 271: 337–343, 2015). The theoretical
analysis results show that the proposed method is efficient. Numerical experiments demon-
strate that the convergence performances of the method are better than the existing methods.

Keywords Two-step splitting iteration · Inner–outer iteration · Relaxation parameter ·
PageRank · Numerical test

Mathematics Subject Classification 65F10 · 65F30

1 Introduction

Consider the solution of the eigenvalue problem with the following form:

Ax = x, A = αP + (1 − α)veT , (1.1)

Communicated by Jinyun Yuan.

The Project was supported by the National Natural Science Foundation of China (Grant Nos. 11071041,
11201074), Fujian Natural Science Foundation (Grant Nos. 2016J01005, 2015J01578), and Outstanding
Young Training Plan of Fujian Province universities (Grant No. 15kxtz13, 2015).

B Chang-Feng Ma
macf@fjnu.edu.cn

1 Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, China

2 School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350117, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-016-0338-4&domain=pdf


222 Y.-J. Xie and C.-F. Ma

where P is the column-stochastic matrix with appropriate dimension, i.e., its entries are
nonnegative real numbers and all its columns sum to one. α ∈ (0, 1) denotes the damping
factor which determines the weight given to the Web link graph. e is a column vector with
all the ones, and v is a personalization vector or a teleportation vector. x is the eigenvector
to be determined.

The above linear system (1.1), the so-call PageRank problem, occurs when one determines
the importance of the Web pages based on the graph of the Web. PageRank can be viewed as
a stationary distribution of a Markov chain (Langville and Meyer 2005). The PageRank has
been widely exploited by Google as part of its search engine technology with the rapid devel-
opment of the Internet. Although the exact ranking techniques and calculation approaches
used by Google have been improved gradually, the PageRank method still receives great
attention and becomes a hot issue in the field of science and engineering calculation in the
last years.

At present, the method for solving the model (1.1) can be classified as a direct method and
iterative method. The direct method often involves a lot of storage of the filling elements;
especially when the coefficient matrix and the condition number are very large, the stability
of the direct method is weak. In view of the sparsity of the matrix P , one can take advantage
of the sparse structure to reduce the storage space and computation. The iterative method has
become a popular approach for solving the eigenvalue problem. Sauer developed the Power
method to compute PageRank, as it converges for every choice of a nonnegative starting
vector (Sauer 2005). But, when the damping factor α is large, the Power method easily causes
a low efficiency in the convergence performance. An extrapolation method was proposed,
which speeds up the convergence by calculating and then subtracting off estimates of the
contributions of the second and third eigenvectors (Kamvar et al. 2003). Also, Kamvar et al.
(2004) proposed the adaptive methods to improve the computation of PageRank, in which
the PageRank of pages that have converged are not recomputed per iteration. PageRank-
type algorithms are used in application areas other than Web search (Morrison et al. 2005).
Capizzano considered the Jordan canonical form of the Google matrix, which is a potential
contribution to the PageRank computation (Capizzano 2005). The Krylov subspace methods
have also been considered recently. Jia presented the restarted refined Arnoldi method (Jia
1997) which can be regarded as the variant of the Arnoldi-type algorithm proposed by Golub
et al. in (2006). A lot of approaches have been given; see the book (Langville and Meyer
2006), which provides a more comprehensive description of the PageRank problem, the
papers (Bai et al. 2004, 1996; Bai 2012; Berkhin 2005; Gleich et al. 2010; Langville and
Meyer 2005, 2006; Page et al. 1999; Yin et al. 2012; Golub and Van Loan 1996; Wu and
Wei 2007; Kamvar et al. 2003; Huang and Ma 2015; Fan and Simpson 2015; Skardal et al.
2015), which contain many additional results and useful references, and the book (Stewart
1994), which includes overviews of the Markov chains.

Gu et al. (2015) developed a two-step matrix splitting iteration (TSS) for computing
PageRank which is based on the inter–outer iteration (IOI) approach proposed by Gleich et
al. in (2010) and Bai in (2012). Inspired by these works, in this paper, we construct a new
relaxed two-step splitting iteration method (RTSS) for computing PageRank, which can be
showed as a more efficient and flexible technique for this problem.

The remainder of the paper is organized as follows. In Sect. 2, we first give a brief review
of the inter–outer iteration and two-step matrix splitting iteration methods. Also, consider
a new relaxed two-step splitting iteration method for computing PageRank (1.1). In Sect.
3, we provide the convergence analysis in detail. Some numerical experiments are given to
illustrate that the new method is efficient in Sect. 4. Finally, we end the paper with some
conclusions in Sect. 5.
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2 The RTSS method

In this section, we review the inner–outer iteration and two-step matrix splitting iteration
approaches for computing the PageRank problem.

It is obvious that the eigenvector problem (1.1) is equivalent to solve the following linear
system

(I − αP)x = (1 − α)v, (2.1)

where I denotes the identity matrix with the corresponding dimension clear from the context.
By (2.1), it is known that the smaller the damping parameter α, the easier it is to solve

the problem. In view of this consideration, Gleich et al. presented the inner–outer iteration
approach for solving the system (2.1) (Gleich et al. 2010). Now, we give a brief review of
this approach.

The coefficient matrix of (2.1) can be written as the following splitting:

A := (I − αP) = M1 − N1, (2.2)

where M1 = I − βP, N1 = (α − β)P. Then, the fixed point equation of (2.1) gives

(I − βP)x = (α − β)Px + (1 − α)v.

So the stationary outer iteration scheme

(I − βP)xk+1 = (α − β)Pxk + (1 − α)v, k = 0, 1, 2 . . . ,

where 0 < β < α. Moreover, the inner Richardson iteration

y j+1 = βPy j + f

is considered to speed up the outer iteration, where f = (α − β)Pxk + (1 − α)v, j =
0, 1, 2 . . . , l − 1, y0 = xk . The l-th step inner solution yl is assigned to be the next new
xk+1. The inner–outer iteration method is listed following Algorithm 2.1.

Algorithm 2.1 (The inner-outer iteration (IOI) method)

Step 1 Input P , α, β, v, τ , η. Compute x0 = v, z0 = Px0. Set k := 0.

Step 2 while ‖αzk + (1 − α)v − xk‖1 ≥ τ, update

f = (α − β)zk + (1 − α)v,

otherwise, go to Step 3.

Step 3 update

xk+1 = f + βzk, z(k+1) = Pxk+1,

until ‖f + βzk+1 − xk+1‖1 ≥ η, go to Step 4.

Step 4 Set k := k + 1, return to Step 2.

Based on the inner–outer iteration method, Gu et al. proposed a two-step splitting iteration
(TSS) for PageRank which is closely related to the power method and Richardson iteration.
It is shown in the following Algorithm 2.2
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Algorithm 2.2 (The two-step splitting iteration (TSS) method)

Step 1 Input P , α, β, v, τ , η. Compute x0 = v, z0 = Px0. Set k := 0.

Step 2 while ‖αzk + (1 − α)v − xk‖1 ≥ τ, update

xk+1 = αzk + (1 − α)v, zk+1 = Pxk+1,

f = (α − β)zk+1 + (1 − α)v,

otherwise, go to Step 3.

Step 3 update

xk+2 = f + βzk+1, zk+2 = Pxk+2,

until ‖f + βzk+2 − xk+2‖1 ≥ η, go to Step 4.

Step 4 Set k := k + 1, return to Step 2.

(2.3)

(2.4)

In fact, an iteration updating (2.3) was considered before the vector f can be computed
in step 2 of the IOI method in Algorithm 2.1. It has been shown that the TSS method derived
better performances than the IOI method. Inspired by Gleich et al. (2010), Gu et al. (2015),
we further consider these methods by introducing a new relaxed parameter γ, which can
accelerate the TSS method to a certain extent. Specially, the TSS method only involves the
stationary outer iteration scheme, namely, the inner iteration must be a precise iteration. In
Algorithm 2.2, the inner loop is an inaccurate iteration. The convergence of the TSS method
was shown by Theorem 2 in Gu et al. (2015); however, the inner loop that leads to Algorithm
2.2 is a non-stationary iteration, which has been ignored. So, in the paper, we will discuss
the situation in detail.

Now, we consider the coefficient matrix A in the following splitting:

A = (I − αP) = M2 − N2, (2.3)

where M2 = γ I − βP, N2 = (γ − 1)I + (α − β)P, γ > 0. The relaxed two-step splitting
iteration is described in the Algorithm 2.3.
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Algorithm 2.3 (The relaxed two-step splitting iteration (RTSS) method)

Step 1 Input P , α, β, γ, v, τ , η. Compute x0 = v, z0 = Px0. Set k := 0.

Step 2 while ‖αzk + (1 − α)v − xk‖1 ≥ τ, update

xk+1 = αzk + (1 − α)v, zk+1 = Pxk+1,

f =
γ − 1

γ
xk+1 +

α − β

γ
zk+1 +

1 − α

γ
v,

otherwise, go to Step 3.

Step 3 update

xk+2 = f +
β

γ
zk+1, zk+2 = Pxk+2,

until ‖f + βzk+2 − xk+2‖1 ≥ η, go to Step 4.

Step 4 Set k := k + 1, return to Step 2.

Remark 2.1 In fact, if we set γ = 1, the RTSS is reduced to the TSS, so the RTSS approach
is a generalized version of the TSS method. The flexible choice of the relaxation parameter
γ of the RTSS generates excellent convergence performances than the TSS method, which
can be seen in our numerical test parts.

Remark 2.2 Algorithm 2.3 is generated by the stationary iteration scheme, so it can be
extended to study the absolute value equation (AVE) Ax +|x | = b (Mangasarian and Meyer
2006; Rohn 2012; Moosaei et al. 2015; Yong 2016; Yong et al. 2011), which can also be
expressed in the form of a stationary equation. The importance of the AVE derives from
the fact that quadratic programs, linear programs, bimatrix games and many other problems
can all be reduced to a linear complementarity problem (LCP) (Cottle and Dantzig 1968;
Cottle et al. 1992) which is equivalent to the AVE. Furthermore, we know that the AVE is
NP-hard. It was testified in (Mangasarian 2007) by reducing the LCP corresponding to the
NP-hard knapsack feasibility problem to an AVE. Under suitable hypotheses, such as when
the singular values of the coefficient matrix A exceed 1, some efficient approaches can be
utilized to solve the problem, for instance, generalized Newton method. In our future work,
we will devote ourselves to investigate the AVE by the proposed method or its improved
version.

3 The convergence properties

In this section, we discuss the convergence property of Algorithm 2.3 in detail. To this end,
we rewrite Algorithm 2.3 as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xk+ 1
2 = αPxk + (1 − α)v, xk,0 = xk+ 1

2 ,

xk, j+1 = β
γ
Pxk, j + γ−1

γ
xk+ 1

2 + α−β
γ

Pxk+ 1
2 + 1−α

γ
v, j = 0, 1, 2, . . . ,mk − 1,

xk+1 = xk,mk , k = 0, 1, 2, . . . .

(3.1)
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Theorem 3.1 Let parameters 0 < β < α < γ ≤ 1 and 1 − α < γ , mk be the inner loop
numbers for the k-th outer iteration. Algorithm 2.3 generates the iteration scheme

xk+1 = T kxk + (1 − α)Qkv, k = 0, 1, 2, . . . , (3.2)

where
{
T k = αγ

β
(

β
γ
P)mk+1 + α(γ−1)

β
�

mk
j=1(

β
γ
P) j + α(α−β)

β
�

mk
j=1(

β
γ
P) j P,

Qk = (
β
γ
P)mk + �

mk−1
j=0 (

β
γ
P) j + α−β

β
�

mk
j=1(

β
γ
P) j .

(3.3)

Then, the iteration solution xk generated by Algorithm 2.3 converges to the exact solution
x∗ of the PageRank problem (1.1).

Proof From (3.1), we obtain

xk+1 = xk,mk

= β

γ
Pxk,mk−1 + (γ − 1)I + (α − β)P

γ

(
αPxk + (1 − α)v

) + 1 − α

γ
v

= β

γ
P

[
β

γ
Pxk,mk−2 + (γ − 1)I + (α − β)P

γ

(
αPxk + (1 − α)v

) + 1 − α

γ
v

]

+ (γ − 1)I + (α − β)P

γ

(
αPxk + (1 − α)v

) + 1 − α

γ
v

=
(

β

γ
P

)2

xk,mk−2 +
[

γ − 1

γ

(
β

γ
P + I

)

+ α − β

γ

(
β

γ
P + I

)

P

]

αPxk

+ [γ − 1

γ

(
β

γ
P + I

)

+ (α − β)P + I

γ
(
β

γ
P + I )

]
(1 − α)v

=
(

β

γ
P

)mk

xk,0 + α(γ − 1)

β
�

mk
j=1

(
β

γ
P

) j

xk + α(α − β)

β
�

mk
j=1

(
β

γ
P

) j

Pxk

+ (1 − α)(γ − 1)

γ
�

mk−1
j=0

(
β

γ
P

) j

v + (1 − α)(α − β)

β
�

mk
j=1

(
β

γ
P

) j

v

+ 1 − α

γ
�

mk−1
j=0 (

β

γ
P) jv. (3.4)

Note that xk,0 = αPxk + (1 − α)v; moreover, we get

xk+1 =
[

αγ
β

(
β
γ
P)mk+1 + α(γ−1)

β
�

mk
j=1(

β
γ
P) j + α(α−β)

β
�

mk
j=1(

β
γ
P) j P

]
xk

+ (1 − α)
[
(

β
γ
P)mk + �

mk−1
j=0 (

β
γ
P) j + α−β

β
�

mk
j=1(

β
γ
P) j

]
v,

and therefore (3.2) holds.
It follows from (3.2)–(3.3) and the exact solution x∗ that

x∗ = T kx∗ + (1 − α)Qkv, (3.5)

where T k denotes the k-th step iteration matrix. Combined with (3.2) and (3.5), we have

xk+1 − x∗ = T k(xk − x∗) = · · · = T kT k−1 · · · T 0(x0 − x∗). (3.6)

Then, one gives

lim
k→+∞ xk = x∗
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Table 1 Numerical results with α = 0.901, β = 0.9 and γ = 0.94

Method IOI TSS RTSS

It 154 131 101

bfwa CPU 0.0729 0.0101 0.0066

RES 4.1885e−014 2.3019e−014 1.0993e−014

It 164 151 88

rdb CPU 2.5972 1.8607 1.0456

RES 1.1032e−014 9.8976e−015 6.5403e−015

It 38 33 28

cryg CPU 1.8602 1.7259 1.2429

RES 5.6366e−014 1.7114e−014 1.3795e−014

Table 2 Numerical results with α = 0.45, β = 0.4 and γ = 0.8

Method IOI TSS RTSS

It 26 25 20

bfwa CPU 0.0318 0.0023 0.0014

RES 3.9429e−015 3.0842e−015 1.8088e−015

It 32 28 23

rdb CPU 0.6156 0.5215 0.4079

RES 2.9758e−015 1.9350e−015 8.5085e−016

It 14 12 11

cryg CPU 0.8050 0.6540 0.4666

RES 6.8805e−014 5.6382e−014 9.7613e−015

if and only if

lim
k→+∞ T kT k−1 · · · T 0 = 0.

If ‖T k‖1 < η (0 < η < 1), then

lim
k→+∞‖T kT k−1 · · · T 0‖1 (3.7)

≤ lim
k→+∞ ‖T k‖1‖T k−1‖1 · · · ‖T 0‖1

=
+∞∏

k=0

‖T k‖1 ≤
+∞∏

k=0

η = 0.

Now, we will show the existence of the upper bound parameter ηk .
By (3.3), we get

T k = αγ

β

[(
β

γ
P

)mk+1

+ γ − 1

γ
�

mk
j=1

(
β

γ
P

) j

+ α − β

γ
�

mk
j=1

(
β

γ
P

) j

P

]
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Fig. 1 The bfwa398 matrix with α = 0.901, β = 0.9 and γ = 0.94

= αγ

β

[(
β

γ
P

)mk+1

+ �
mk
j=1

(
β

γ
P

) j (
γ − 1

γ
I + α − β

γ
P

)]

= αγ

β

[(
β

γ
P

)mk+1

+ �
mk
j=1

(
β

γ
P

) j ((

I − β

γ
P

)

−
(
1

γ
I − α

γ
P

))]

= αγ

β

[(
β

γ
P

)mk+1

+ β

γ
P −

(
β

γ
P

)mk+1

− �
mk
j=1

(
β

γ
P

) j ( 1

γ
I − α

γ
P

)]

= αγ

β

[
β

γ
P − �

mk
j=1

(
β

γ
P

) j ( 1

γ
I − α

γ
P

)]

.

It follows from eT P = eT that

eT T k = αγ

β

[
β

γ
eT − eT�

mk
j=1

(
β

γ
P

) j ( 1

γ
I − α

γ
P

)
]

(3.8)

= αγ

β

[
β

γ
eT − 1 − α

γ
�

mk
j=1

(
β

γ

) j

eT
]

= αγ

β

[
β

γ
− β

γ

(1 − α)[1 − (
β
γ
)mk ]

γ − β

]

eT

= αγ

β

[
β(γ − β) − β(1 − α)[1 − (

β
γ
)mk ]

γ (γ − β)

]

eT

= ηkeT ,

where

ηk := αγ

β

[
β(γ − β) − β(1 − α)[1 − (

β
γ
)mk ]

γ (γ − β)

]

.
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Fig. 2 The rdb5000 matrix with α = 0.901, β = 0.9 and γ = 0.94

Fig. 3 The cryg10000 matrix with α = 0.901, β = 0.9 and γ = 0.94

As

0 < β < α < γ ≤ 1 and 0 < 1 − α < γ, (3.9)

it holds that

0 < β < γ, 0 <
β(1 − α)

γ 2 < 1. (3.10)

Furthermore, we have
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Fig. 4 The bfwa398 matrix with α = 0.45, β = 0.4 and γ = 0.8

Fig. 5 The rdb5000 matrix with α = 0.45, β = 0.4 and γ = 0.8

β(γ − β) − β(1 − α)[1 − (
β
γ
)mk ]

γ (γ − β)
≤ β(γ − β) − β(1 − α)[1 − β

γ
)]

γ (γ − β)

= βγ (γ − β) − β(1 − α)[γ − β]
γ 2(γ − β)

= β

γ
(1 − 1 − α

γ
) < 1. (3.11)
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Fig. 6 The cryg10000 matrix with α = 0.45, β = 0.4 and γ = 0.8

So,

ηk ≤ α(1 − 1 − α

γ
) =: η < 1.

By (3.8)–(3.11), it means that

‖T k‖1 ≤ η < 1.

Combining with (3.7), we immediately get the conclusion, that is, the iteration solution xk

generated by Algorithm 2.3 converges to the exact solution x∗ of the PageRank problem
(1.1). This completes the proof. �	

4 Numerical experiments

In this section, we report some numerical results to illustrate the effectiveness of the relaxed
two-step iteration (RTSS) method for solving the linear system (1.1) arising from the Google
PageRank problem.All examples have been carried out byMATLABR2011b (7.13), Intel(R)
Core(TM) i7-2670QM, CPU 2.20GHZ, RAM 8.GB PC Environment. We compare our
algorithm to the IOI and TSS methods. We use the following examples to examine these
approaches with different iteration performances from these aspects of the iteration num-
bers(denoted by ‘IT’), elapsed CPU time in seconds (denoted by ‘CPU’) and the residual
(denoted as ’RES’) defined by

RES := ‖αzk + (1 − α)v − xk‖1 < 10−14.

Wecompare three approaches by choosing different parametersα,β, and γ in a reasonable
interval. Three sparse matrices, bfwa398, rdb5000 and cryg10000, are selected from the
University of Florida sparse matrix collection (available at http://www.cise.ufl.edu/research/
sparse/mat/). All numerical tests are shown in Tables 1,2 and Figs. 1, 2, 3, 4, 5 and 6. These
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results illustrate that the convergence of the RTSS approach performs better than the TSS
and IOI methods’ both CPU time and the numbers of the iteration step, which demonstrates
that the introduced approach is efficient.

5 Conclusion

In this paper, we have furthermore improved the two-step splitting iteration by introducing
an additional relaxation parameter γ and presented a relaxed two-step splitting iteration for
solving the PageRank problem, which can be regarded as a type of generalization for the
TSS method. If we choose γ = 1, the RTSS approach is reduced to the TSS method. It is
readily seen that the selection of the proper parameters γ may generate better convergence
performances than the TSS and IOI methods. Numerical experiments show the effectiveness
of the proposed approach.
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