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Abstract In the paper we consider the one-level and two-level iterative penalty finite ele-
ment methods for the steady incompressible magnetohydrodynamic problem based on the
iteration of pressure with a factor of penalty parameter. Firstly, the H' and L? error estimates
of numerical solutions of one-level iterative penalty finite element method are provided.
Secondly, the stability and convergence of two-level iterative penalty finite element method
are analyzed. Finally, some numerical results are provided to verify the effectiveness of the
developed numerical schemes.
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1 Introduction
In this paper, let @ C RY(d = 2 or 3) be a convex polygonal/polyhedral domain (see

Gunzburger et al. 1991, 2004). We consider the following steady incompressible MHD
problem:
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—Re_lAu—i—u-Vu—i—Vp— SccurlBx B=f in Q,

SCR,glcurl(curlB) —SeccurlluxB) =g in 2, (L)
V.-u=0 in 2, ’
V.-B=0 in 2,

subject to the boundary conditions

u=20 on 9%2,
B-n=0 on 02, (1.2)
nxcurlB=0 ono<,

where u is the velocity field, B denotes the magnetic field, f and g are the source terms.
n is outward normal unit vector of 9<2, p is the hydrodynamic pressure, R., R,, and S,
are the hydrodynamic Reynolds number, magnetic Reynolds number and coupling number,
respectively.

The steady incompressible MHD problem can be used to describe the interaction between a
viscous, incompressible, electrically conducting field and an external magnetic field. Namely,
the steady incompressible MHD problem is a coupled system, which is composed of Navier—
Stokes equations of fluid dynamics and Maxwell’s equations that couple Lorentz’s force with
Ohm’s law. We refer to Hughes and Young (1966) and Moreau et al. (1990) for comprehensive
accounts of the physical background of MHD problem. Several papers have been devoted to
the design and the analysis of numerical schemes for the MHD problem. For example, we
can refer to Gunzburger et al. (1991, 2004) for the existence and uniqueness of the solutions,
Discacciati (2008) for numerical approximation of the steady MHD problem, Hasler et al.
(2004) and Schozau (2004) for the mixed finite element method (FEM), and Dong et al.
(2014) and Tao and Zhang (2015) for the iterative method and so on.

The first main difficulty of solving the MHD problem is the nonlinear terms u- Vu, curlB x
B and curl(u x B). Two-level method is an efficient numerical scheme for the nonlinear terms,
and this method was pioneered by Marion and Xu (1995) and Xu (1996). The main idea of
two level method is to find an initial approximation on a coarse mesh firstly, and then to
solve a linear problem by using the coarse mesh solution on a fine mesh. It is a good strategy
to decrease the computational cost. Therefore, two-level method has been wildly studied
in recent years. For example, we can refer to Girault and Lions (2001), He (2003, 2004)
and Zhang and Yang (2014) for the research of the Navier—Stokes equations, the nonlinear
parabolic problem (Zhang 2013) and the natural convection problem (Zhang et al. 2015a, b).
The other main difficulty is that the velocity and the pressure are coupled. Penalty method is
a method to overcome this difficulty. Certainly, many researchers have focused on studying
penalty method for solving different problems. For example, we can refer to Dai (2007)
for the pure Neumann problem, and An and Shi (2015), Gunzburger (1989), He (2005) and
Shen (1995) for the incompressible flow. From above mentioned literature, we know that
the combination of two-level method and penalty method is quite efficient for solving the
nonlinear system. Especially, from the numerical results of An and Shi (2015) and Qiu et al.
(2014), we can see that two-level iterative FEM can save much CPU time than one-level
iterative FEM with the same convergence order.

In this paper we consider the one-level and two-level iterative penalty FEMs to solve
problem (1.1). The penalty parameter ¢ (0 < ¢ < 1) is set as a real number. For any positive
integer k, which is the number of iteration, the error estimates of the one-level iterative penalty

FEM solution ((uf,,, Bf ). pk,) are
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Ilw—uf, . B=BE)I+1lp — pullo < Clu+&5Th,

l(w—uf, . B—B)lo < C(u* + e + 5,

e
and the error estimate of two-level iterative penalty FEM solution ((u, B!), p") is
llw—ul, BBl +1p—pllo < Ch+ H* +eH + ).

Thus, if we choose ¢ = O(H) = O(h'/?), the one-level and two-level iterative penalty FEMs
have the same order as the standard Galerkin FEM (see Dong et al. 2014). While from the
point of view of numerical tests, we know that the two-level iterative penalty FEM can save
a large amount of computational time than one-level iterative penalty FEM with the same
order.

The paper is organized as follows: some notations and basic results of problem (1.1) are
recalled in Sect. 2; stability and convergence of iterative penalty FEM are presented in Sect.
3; the stability and convergence of two-level iterative penalty FEM are analyzed in Sect. 4;
and some numerical experiments are provided to validate the established theoretical analysis
in Sect. 5. Finally, some conclusions are given in the last section.

2 Preliminaries

To gain the variational formulation for the steady incompressible MHD flow, we choose
the standard Sobolev space H/(2) = W/2(Q) for any nonnegative integer j with norm

lvll;j = (Z{y\=0 ||Dyv||g)%. We use the standard Sobolev space H/ () = (H/(2))? with

the corresponding norm || v||; = (Z?zl [|v; ||§)% (see Adams 1975; Girault and Raviart 1986
for more details). Furthermore, we introduce some spaces as follows.

X=H)(Q) ={veH(Q):V)jo=0}, M=L§R) = ‘q e LX(Q): / gdx = 0] ,
Q

W={weH (@ Q):w-njjo=0}, V={veX:V-v=0 inQ},
Vh={weW:V.-w=0 in Q}.

With the equivalent norms || Vw/||o and [[w||g o) of X, we denote the product space Wo, =
X x W equipped with the usual graph norm || (w, ®)||;, V(w, ®) € Wy, where [|[(w, ®)|; =
(Iwl? + [I|2I) /2 = 0,1,2). The dual space of H} () is denoted as H™!(2) which
equipped with the norm || - ||—1. In addition, the following two formulas

((axb)yxe)-d=(axb)-(cxd)=—(axb)-(dxc),

and
/(Vx®)~\IJdX:—/ (<I>xn)~\I/ds+/d>~(Vx\Il)dx,
Q Q2 Q

imply that

(curl(w x @), W)g = —((W x ®) x n, ¥V)|yq + (W X ®, curl¥)q

= WwWx d,curl¥V)g = —(curl¥ x d,w)g, VweX, O,V e W,
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where (-, -)o stands for L2 inner product on the domain 2. Define the trilinear term as
follows:
1
ai(u,w,v) = fu-Vw + E(V SUW)W, V
Q

N =

1
(u-Vw,v)q — E(U -Vv,w)q, VYu,w,veX. 2.1)

With above notations, for f € H'(Q), g € L2(Q)4, the weak variational formulation of the
steady incompressible MHD problem (1.1) reads as: Find ((u, B), p) € Won x M such that

Ao((u, B), (v, ¥)) + A1((u, B), (u, B), (v, ¥)) — do((v, ¥), p) + do((u, B), ¢)
= (F, (v, V), V((v,WV),q) € Won x M, 2.2)
where
Ao((,B), (v. W) = R, 'ap(u, v) + S.R;,'bo(B, W),
Ar((w, @), (u,B), (v, ¥)) = a;(w,u,v) —c(B, P, v) + c(V, &, u),
do((v,¥),q) = (V-v,q)a, ao(u,v)=(Vu, Vv)g,
bo(B, V) = (VXB,VxW¥)q+(V-B, V- -V)gq,
cB, P, v) = Sc(curlB x &, v)q, (F,(v,¥))=(,v)g+(g ¥V)g-
Furthermore, we define

(F, (v, ¥))
IFll-1 = sup —
0.00£v,9)eW,, 1V, ¥l

The following properties of trilinear form a; (-, -, -) are useful to obtain the existence and
uniqueness of a solution to problem (2.2) and gain the corresponding convergence (Adams
1975; Girault and Raviart 1986):

a(u,v,w) = —a;(u,v,w), Vw,u,ve X, 2.3)

la (u, v, w)| < C3lIVullo VYol VWllg, VW, u,v e X, 24
N
lai(u, v, w)| < E”“”O(HVVHO”W”LW + IvliLs VW),
vue L2(Q),ve X, we L® Q) NX, (2.5)

N
lar(, v, W)l = = ([[ullL=[[V¥lio + [ Vuligs [IVliLs) Iwllo.

Vue L®(Q)NX,ve X, weL¥(Q), (2.6)
1 1
IVllo = »ollV¥llo. [IVliLs < CIvIgIIVVllg. [IvliLs < ClIVYlo. ¥veX,  (2.7)
1 1
IViLe < CIVIFIVIZ, Vv e HA(Q), (2.8)

where N > 0 is a constant, yp (only dependent on 2) is a positive constant and Co (only
dependent on €2) is an embedding constant of HY(Q) — L*Q) (see Adams 1975) (—
denotes the continuous embedding), namely

wWilgs < CollVwlo, YweX.
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The trilinear form A (-, -, -) is skew symmetric with respect to the later two variables, and it
satisfies

A((w, @), (u,B), (u,B)) =0, V(w,®), (u,B) € W,. (2.9)

To obtain the well-posedness of the problem (2.2), we list the coercivity and conti-
nuity of Ag(-,-) and the continuity of Aj(-,-,-) (see Gunzburger et al. 1991): for all
(w, @), (u,B), (v, ¥) € Wy, such that

Ao((,B), (v, V) <max{R,", 2+ d)S:R;, '} (w, B)|1 | (v, W)]|1, (2.10)
Ao((w,B), (u,B)) > min{R; ", S.CiR;,"}|(u, B)|I1, .11
Ar((w, @), (W, B), (v, ¥)) < V2C§ max{1, V25 }[(w, )11 | (w., B) [ [|(v, ¥)[l1. (2.12)
where C (only dependent on €2) is the constant from the following inequality:
IV x WIE+ V- W= CiIw|], Y¥eW,
V2 and d come from two inequalities as follows:
lleurlvllo < V2[IVVllo. IV - vllo < Vd[|VV]o.

where d is the dimension of the considered domain £2.
Thanks to (2.3)—(2.8), the following properties of A;(-, -, -) hold (see Lemma 1 of Dong
et al. 2014):
|A1((w, @), (u, B), (v, ¥))| < Cv2CF max{1, v2S} | (w, )0l (w, B) |12 ]| (v, ¥)]I1,
V(w, ®) € L2(Q) x L2(Q), (u,B) € H*(Q) x HX(Q), (v, V) € Wp, (2.13)

|A1((w, @), (u, B), (v, ¥))| < CvV2CF max{1, V25 }[|(w, @) 2]l (w, B)[[1]| (v, ¥)]lo.
V(w, ®) € HX(Q) x H2(Q), (u, B) € Wp, (v, ¥) € L?(Q) x L*(Q). (2.14)
Throughout this paper, the letter C > 0 denotes different constant at different places, and C
is independent of the mesh size ; and penalty parameter .
The bilinear form dy (-, -) is continuous on Wy, x M, and it satisfies (see Gunzburger et al.
1991):
ldo((v, V), q)|

> Pollgllo, Vg € M.
v WeW,, 1V, W)l

Moreover, for all w € Hi(Q) NX, & e Hi(SZ) NW (@G =0,1,2), we set
. — — 1

[llow, ®)[[l; = min{R; ", ScC1 R, J(IWIF + 191172,

We end this section by recalling the following important conclusions.

Theorem 2.1 (See Theorems 1 and 2 of Dong et al. 2014) Suppose that R,, Ry, S¢, and C
satisfy
 V2C3 max{1, V25, |F|_;

0<o T T
(min{R; ", ScC1 Ry })?

1, (2.15)

then problem (2.2) admits a unique solution ((u, B), p) € Won X M. Moreover,

[l (u, B)[[l1 < [[F[[-1. (2.16)
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Theorem 2.2 (See Theorem 1 of Zhang et al. 2014) Set Q2 is a convex polygon/polyhedron
and 0 < o < 1, iff, g € L?(Q), the solution ((u, B), p) of problem (2.2) satisfies

I, B)[[l2 + lIpllt = ClFlfo. .17

3 The stability and convergence of iterative penalty finite element method
3.1 Finite element spaces

Set {7, } is a family of triangulations or tetrahedrons of €2, and 7, is a shape-regular partition
of  with mesh size w. The real parameter u© > 0 takes & or H(h < H) tending to 0.
The fine grid partition 1), is taken as a mesh refinement generated from the coarse grid tp.
Based on the regular partitions 7, and ty, we can construct the conforming finite element
spaces (Xj, My, Wp) and Xy, Mg, Wg) C (X, My, Wj,). Denote Wgn =X, x W, and
assume the finite element spaces X,,, W, and M, satisfy the following assumptions.

Assumption A1 There are a mapping r;, € LHX(Q)NV, X ) which satisfies
(V-(v=ruv).q) =0, [V =r,lo < Culvlz, YveH Q) NV, Vg € M,
and an L?-orthogonal projection operator pu: M — M, which satisfies
lg = pugllo < Cullglls. Vg € H' () N M,
and a mapping R, € L(H?*(Q) N Vy, W,,) which satisfies
(VXR, O, VXUV + (V- R, P,V - W)= (VXD VXWY)+(V.-D, V.-V
=(VxP,VxV¥), YVeW,
[® = Ru®llo + pll® — R, @1 < Cu?|[ @2, VP € H(Q) N Vy.

Assumption A2 Assume that the bilinear form dy (-, -) satisfies the discrete inf-sup condition,
namely, there exists a positive constant 8o such that:

|do((v, ¥), q)|

> Poligllo, Vg € M.
v, W)eWh, (v, W)l .

There are many finite element spaces satisfying Assumptions A1 and A2 with a convex
polygonal or polyhedral domain 2. In this paper we choose the stable finite element spaces
that have been used traditionally for the Navier—Stokes equations to approximate velocity
and pressure. Here, the mini-element is chosen to approximate the velocity and pressure, and
those finite element spaces as follows:

X, =P )'NX, M, ={q, €CQ:qulx € Pi(K), VK €1,},
where
PP ={v, € C%Q): vulx € Pi(K) @ span{b}, VK €1},
P1(K) is defined as the space of polynomials of degree (the degree < 1 on K), and bisa
bubble function. For the magnetic field approximation space W, there is unrestricted. For
the sake of convenience, we choose the same finite element space for the magnetic field space

as the one for velocity field, i.e., we use W, = (Pll” M)d N W to approximate the magnetic
field.

@ Springer f bMA



Iterative penalty finite... 1643

Now we define the discrete form of the divergence-free space V as:
Veo={veX, :dy((v,¥),q) =0,YVg € M,,, V¥ € W,}.

Introduce two L2-orthogonal projectors Py, : L32(Q) —» V,. and Ry : L2(Q) —» W,..
Define the discrete Stokes operator Ay, = —P, A, where A, is defined by (see Sermane
and Temam 1983)

—(Apuy, v) = (Vu,, Vvy), Yug, v, e Xy,

i
and its corresponding discrete normis ||V, || j,,. = ||A12MVM |lo with the order j € R, in which

||Vu||1,p. = ”VVM”()v ”Vu ”2,u = ||A1MVM||0, VV;/. S Vp.-

Similarly, define the discrete operator A, B, = Ro,(Vy xV xB, +V,V-B,) € W, as
follows (see He 2015; Sermane and Temam 1983)

1 1
(A By, W) = (AfMBM, A22MIIJ) =(VxB,, VxW¥)+(V-B,,V-¥), VB,,VeW,
j
and its corresponding discrete normis [|B, |l ;. = ||A22MBM||0 with the order j € R, in which

1
B, = 143, Bll5 = IV x BLlI§ + IV - Bllg,

B2, = IV XV xB, +V,V-Byllo.

Moreover, we also introduce some discrete estimates as follows (see Adams 1975; He 2003,
2015)

1 1
IVVlis + Iviliee < CIVVelig lAvelly,  1VVelis < CllAYullo, ¥vu € Vi

The Galerkin FEM for problem (2.2) reads as: find ((u,, B,), pu) € Wgn x M, such
that

AO((UM, Bu)7 (Vv \IJ)) + Al((uLU BM)7 (ulu B,U.)! (V’ \IJ)) - d()((V, \I',)s Pu)
+do((uy, By), q) = (F, (v, W), V((v,¥),q) € Wh x M,. (3.1)

Using the similar argument to Theorem 2.1, we can obtain the following conclusions (see
Theorems 3 and 4 of Dong et al. 2014).

Theorem 3.1 Under the condition of (2.15) and Assumption Al , the discrete problem (3.1)
admits a unique solution ((u,,B,), p,) € Wgn x M, which satisfies

e, Bl < I1F[l-1. (3.2)

Theorem 3.2 Under the Assumptions Al and A2 and the condition of (2.15), the solutions
of problem (3.1) satisfy
(A1, Az B)lllo < CliFllo. (3.3)

Furthermore, it holds

(@ —u,. B=By)lo+pdll@—u,, B=B)l+lp - pullo) < CL’llFlo. (34)
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3.2 Penalty finite element method
The penalty FEM for problem (2.2) is as follows: find ((Wey, Bey), pep) € Wgn x M, such
that for all (v, W), q) € Wy, x M,
AO((ue,u» Bs,u)s (v, %)) + Al((us,u» Bs,u)a (ue,tu Be,u)s (v, W) —do((v, W), pap.)
“l‘dO((usp,» Bs,u,)a q) + ‘9(pe;u q) = (F, (v, ¥)), (3.5)

where 0 < ¢ <« 11is a penalty parameter. This is the standard penalty FEM for problem (2.2).
Now we present the stability and convergence of the standard penalty FEM.

Theorem 3.3 Under the condition of (2.15) and the Assumption Al, the discrete problem
(3.5) admits a unique solution (g, Bey), pep) € Wgn x M, which satisfies

ey, Be 1T + 26 min{R; ™, S.Cr R, Ml peye I < IFIZ, (3.6)
Furthermore, we have
| pepllo < ClIF]-1.
Proof Choosing (v, W) = (ug;, B¢,) and g = pg, in (3.5), using (2.11) and (2.9) to get
min{R; ", ScCi Ry, Ml Wep, Bep) 17 + el pen 15 < IFIl-111(ueye, Bey) 1
< %mm{R;‘, SeC1R, Y ey, Bey) 17 + %(min{R;‘, ScCiR, D THIFIZ,,
thus
min{R; ", S.C1 Ry ey, Bep) 12 + 26 pe 13 < (min{R; L, S.C1R;"H~IF|12 .
(3.7)
On the other hand, taking ¢ = 0 in (3.5), applying (2.10) and (2.12) to obtain
Bollpepllo < max(R; ", 2+ d) SRy, Ml (weye. Bey) I
+v/2CF max{1, V2Sc} | (e, Be,) [T + [1Fl| 1.
With the help of (3.7), we have
max{R;, 2+ d)S.R;') N V2C3 max(1, v2S:}[[F|| - N 1} FI
min{R, ', S.C1 Ry} (min{R; "', S.C1Ry'})?
- [max{Rgl, Q2 +d)S.R;"}
L min{RS, S.CiR;"}
Thus, the proof is completed.

Bollpepllo = |:

+o+ 1} IFll-1 < C||F|l-1,

Theorem 3.4 Let Q2 be a convex polygonal/polyhedral domain. Under the Assumptions Al,
A2 and (2.15), the solution of problem (3.5) satisfies

[(a — Ugy, B— Bsu)|”1 +lp— psp.”O < C(u+e).
Proof Subtracting (3.5) from (2.2), we obtain the following error equation

Ap((u — Ugy, B - Bs,u)s (v, V) + Ay ((ueu» Beu)s (u— Ugy, B - BS/L)v (v, %))
+A1((a—uey, B—By), (0, B), (v, ¥)) —do((v, ¥), p — pep)
+d0((ll—llsu,B—Bsu)7£])—S(PmaCI)=0- (3.8)
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Taking (v, ¥) = (ryu —ugy,, R,B — B, ) andqg = p, p— pey in (3.8), using (2.9) we have
AO((V/L“ — Ugy, RHB - BSH)! (ru“ — Ugy, RHB - Bsu)) + 8(;0,,,[7 — Peps Pul — psu)
+ A]((I”Mll — Ugp, RMB - Bau), (u, B), (r,uu — Ugp,s R,uB - Bs,u))
= Ao((rpu —u, RMB -B), (rpu —ugy, R;LB - Bau)) +eloup, pup — Pep)
+ A1 ((rpu —u, R;J.B —B), (u,B), (rpu —ugy, R;/,B - ng,))
+ A ((ué‘//n Bé‘;,b)v (ruu —u, R;/_B - B), (ru_u — Ugy, RMB - Bsu_))
+d()((r,,'ll — Ugy, R;/.B - Bs;/.), p— pau) —dp((u — Ugy, B - Bsp.)» PuP — psp.)~
3.9)
Due to the Assumption Al, we get

Ao((ryu —u, R,B — B), (ryu —ugy, RyB — Bey)) = R, 'ap(ryu —u, rpu — ugy,),
(3.10)
and
do((rpw — ey, RyB —Bey), p— pep) — do((u — gy, B—Bep), 0 p — pep)
=do((rpu—ugy, RyB—Bg,), p—pup). 3.11)
Using (2.11) and (2.12) to obtain
(min{R; !, S.C1 R} — V2C3 max{1, V25:}||(u, B)[|)[|(ryu — U, RyB — B3
+ellpup — Penlly
< ((R;" + V2C3 max{1, V253 (1w, B) [l + [[(Wepe, Bep) 1)}l (riu — w, R, B — B
+dllp = pupllo)
X |[(rpw —wey, RyB —Be)ll1 +ellopplollp — pupllo + lp — pepllo)- (3.12)
Choosing ¢ = 0 in (3.8), applying (2.10), (2.12) and Assumption A2, one finds
Pollp = peullo < (max{R; ', Sc(2 + d)R,,"} + v2C5 max{1, v2S:}(| (u, B)||;
+ ey, Be) ) (@ — wey, B —Bey)
< (max{R; ", S;2 + d)R;;"} + v2C3 max{1, v2S.}(|(u, B)||;
+ [ (eye, Be) D) (1 rp — wgy, RyB — Byl + [[(rpu —u, Ry B —B)l1).
(3.13)
Substituting (3.13) into (3.12), with the conditions of Theorem 2.1 and (3.6), we obtain

(1 —o)min{R; ", S.C1R, "M (ruw — ugy, RyB =BT + €l ppp — el
< ((R;" + 20 min{R;", ScCi R, DI (rpu — w, R,B —B)|[; + V| p — pupllo
+ellpllopy ' (max{R; ", S.2 + d)R,,"}
+20 min{Re_l, SCC1R,;1}))||(rMu — gy, RyB —Bg )l
+ellplollp — pupllo + By ' (max{R, ', S.2 + d)R,,"}
+20min{R, ", S:CiR,,' D (ryu —u, R,B —B)||})
< %(1 —o)ymin{R, !, S.Ci R, '} (rpu — ugy, R,B —Bey) |13

+C(lryu—u, R,B =Bl + |p = puplio +&)* + Ce(l|(ryu —u, R, B — B
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1646 J. Deng et al.

+1p = puplo)
< %(1 —o)min{R, !, S.Ci R, '} (rpu — ugy, R,B — B3

+C(l(rpu —u, R,B =Bl + [lp — pupllo + &)*. (3.14)

In virtue of the Assumption A1 we have
I(rpw — gy, RyB —Bey)lll
=C(lrpu—u, RyB—=B)[l1 + lp — pupllo+€) = Cu +¢). (3.15)

Applying the triangle inequality to gain

l(w—ugy, B—Bg)llh

= |||(V/Lu_us;u RuB _Bsu)ml + |||(I’Mll —u, R;}_B—B)”h <C(un+e).
(3.16)

Combining (3.13) with (3.16), the error || p — pgyllo can be bounded by
P — Pepllo < Clll(@ —ugy, B—Be)lll < C(n + ).

The proof of Theorem 3.4 is completed.

Next, we consider the relationship between ((w.,,Bg,), pey) and ((uy, By), py) as
g — 0.

Lemma 3.5 Let 2 be a convex polygonal/polyhedral domain. Under the Assumptions Al,
A2 and (2.15), the solution ((Wgy,Bey), pey) of problem (3.5) converges the solution
((uy, By), pu) of problem (3.1) as ¢ — 0.

Proof Subtracting (3.5) from (3.1), we obtain the following error equation
AO((“;}. — Ugpy, B/L - Beu)a (v, ¥)) + Ay ((ueu’ Bsu)a (ll;,_ — Ugpy, B;L - BS/L)5 (v, ¥))
+ Al((uu — Ugy, B/L - Bsp.), (up., B,LL)! (v, W) —do((v, V), Pp — pé‘p.)
“l‘d()((uu _uap.aBu _Bs,u,)a‘I) —S(PEM,CI) =0. (3.17)
Taking (v, V) = (u, —ugy, B, — Bgy) and g = p,, — pey in (3.17), using (2.9) we have
AO((“M — Ugp, B;L - Bsu)a (uu — Ugpy, BM - Beu))
+Aq ((uu — Ugpy, Bp_ - BE/L)! (up.s Bu)» (“,u — Ugy, Bp. - Bsu)) - 8(]7811.7 q) =0.
Using (2.11) and (2.12) to obtain
(min{R; ", S.C1 R} — v/2C3 max{1, V28 }[| (W, B) 1) (e — ey, By — Bey) |1}
< éllpeplloll P — Pepllo- (3.18)
Here,min{Re‘l, SCC1R,;1}—\f2C§ max{l, \/ESc}H(UM, Bl = min{R;l, ScCIR,,:]}(l—
o) > 0. Choosing ¢ = 0 in (3.17), using (2.10), (2.12) and the Assumption A2, one finds
Bollpu — Peullo < ((max{R; ", S.(2+ d)R,,"} + v2C§ max{1, v2S:} (|| (u,.. B,)
+”(u8,u’ Beu)” 1))”(“# — Ugpy, B/L - Bsu)”b (3.19)
Substituting (3.18) into (3.19), using (3.2) and (3.6) to obtain

Bollpr — pepllo < Cellpeplloll pu — pepllo)’?,
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thus
Py — Pello < Cellpeyllo < Ce'/2. (3.20)

Then, from (3.20) we know that || p, — peullo — Oas e — 0.
Substituting (3.20) into (3.18) to obtain

l(uy — ey, By — Bey) 17 < Cellpeyllo - €'/% < Ce. (3.21)

From (3.21) we know that |[(u, — ug,, B, — Bgy)lli — 0as e — 0. Thus the proof is
finished.

3.3 Iterative penalty finite element method

The one-level iterative penalty FEM for problem (2.2) reads as:

Step 1 Find ((uw, g ), p?u) € W’L x M, such that for all (v, ¥), g) € W(’fn x My,
Ao((m2, . BY ), (v, W) + A ((ul,. BY ), u,. BY), (v. ¥)) — do((v, V), p,)

+do((0,. BY,). q) +e(pl,. q) = (F, (v, ¥)). (3.22)
Step 2 For k = 1,2,3,..., find ((u
V((v, W), q) € Wy, x MM
Ao((uf,. BE). (v. W) + Ap((uf, . BE), (uf, . BE). (v. W) —do((v. ). pf,)
+do((ul . BE) q) + (Pl q) = (F, (v, 0)) + e(pk 1 ). (3.23)
From above scheme, we can see that the initial value ((ue o B #), pgﬂ) of the one-level

iterative penalty FEM is gained by Step 1. From Theorems 3.3 and 3.4, we obtain the following
conclusion.

A ’;H),p’gﬂ) IS Wgn x M, such that for all

Theorem 3.6 Under the conditions of Theorem 3.4, the solution ((uf
problem (3.22) is unique and satisfies

I, BT 4+ 2e min{R; ", S.C1 R, M pd, 15 < IFII%,. (3.24)

9. B2). pY) of the

Furthermore, it holds
e —ul, B=B)li + Ip — pQullo < Clu+e). (3.25)
Now we study the stability of one-level iterative penalty FEM solution of (3.23).

Theorem 3.7 Under the conditions of Theorem 3.3, suppose that ((us e ’g ) p’s‘u) € Wgn X
M, is the solution of the discrete problem (3.23), then the solution satisfies

s, BEDIIT +emin{R; ", S.CLR, Pk, G < (k+ DIF|Z,.  (3.26)

Proof Taking (v, V) = (u
find

k. BE)and g = pf, in (3.23), using (2.9), (2.11) and (2.12) to

min{R; ", S.C1R;,"}[|(uf,,. B >||1+e||pw||0<||F|| g, BED I +elp ol pE, llo

1 . . _ IR T
5§mm{R , ScC1R, Y| (uk w)||1+5<mm{Re L S.CiRr, D HIFZ,

el

+5 €||p ||o+*8||p I5-
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Thanks to (3.24), it yields

k. g,i>|||1+smm{R S*CIR—‘}up’;,Lu%
< IFI12, + emin{R, ", S.C1 R, }Ipk, 13
<k|F|2, +emin{R; ", S.Ci R, YIp2, I5 < (k+ DIF|2,,

which implies (3.26). The proof of Theorem 3.7 is completed.
Next, we present the convergence of one-level iterative penalty FEM.

Theorem 3.8 Under the conditions of Theorem 3.4, the solution of problem (3.23) satisfies
ll—uf, . B=BE)I +1Ip— plllo < Cu+ . (3.27)

Proof From Theorem 3.6, we know if k = 0 (3.27) holds. Then we assume that (3.27) holds
fork — 1.
From (3.23) and (2.2), we obtain

Ao((u—uf, . B—Bf,). (v.¥)) + A ((uf,. LB —BL). (v, W)
+ A ((u— W,B B{,). (. B), (v. V) — do((v, V), p — pf,)

+do((u—uf, . B—BL). q) —e(pl,. ) +e(pl . q)=0. (3.28)

B! ). (u—u

Taking (v, V) = (r,u —uf,, R,B —B,) and g = p, p — pf, in (3.28), using (2.9) to get

Ao((ryu —uf,, R,B —BE), (ryu — v, R,B —Bf))
+A1((rpu—uf,, R,B—B), u,B), (ryu—uf, R,B-Bf))

+elpup — paw Pup — pw)

= Ao((rpu—u, R,B —B), (r,u— sw R,B — Bk ))
+A1((ryu—u, R,B —B), (u,B), (,u —uf,, R,B—Bf,))
+Ai((uf,.Bf,). (yu—u, R,B—B), (r,u—uf,. R,B—Bf,))

+do((rpu—uf, R,B—BE), p—pk) —do(u—u, . B—Bf,). pup—pk)
+e(oup — Py pup — PE)-

With the Assumption A1, we obtain

R,B—B!)) = R, 'ap(r,u —u, ryu —uf

Ao((rpu —u, R,B —B), (r,u — o)

su’
and
do((ryu — g, R,B—BE), p— pt,) —do((u—uf, . B—BL,), p.p—pt,)

= do((rpu —uf,. RyB—B,). p— pup).
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Using (2.11) and (2.12), one finds
(min{R;", S.CR,,'} — V2C§ max{1, V25 } || (w, B)[|}) || (r,u — u,. RuB —BE )17
+ellpup — phullo
< ({R;" + V2€G max{1, V2S:}([|(w, B) 11 + [|(uf,,. BE, ) [} (ruw — u, RyB = B)|y
+dllp - pupllo)
x |(ru =k, RyB —BE DI +elloup — plo + 12 — P55 M lo)
x (lpup — pllo+llp — Pwllo)~ (3.29)
Choosing ¢ = 0 in (3.28) and combining (2.10), (2.12) and the Assumption A2 to get
Bollp — pE,llo < ((max{R; ", S.2 + d)R,,"} + v2C3 max{1, v25.} (| (w, B)
+ut, BED I (@ —uf,, B—BE )
< (max{R;‘,SC(2+d)R,,;1}+fCO max{1, v/2S:}(||(u, B ;

+uf, BED D)l — k. RyB —BE )+ [(ru — w, RyB —B)|).
(3.30)
Substituting (3.30) into (3.29), and using (2.16) and (3.26) to gain
(1 —o)min{R;", S.Ci R, | (ryw —uf . RuB —BE )T+ ellpup — pEL 115
< ((R;' + 20 min{R; ", S, clR‘1}>||(r,Lu —u, R,B—B)|l1 + Vdllp — pupllo
+e(lpup — pllo+ Ip — pE o) By ' (max{R; !, S.2 + d)R,, ")
+Cmin{R; !, S.C1R,;'}))

x||(ru —uf,,. RyB—BE )+ e(llour — pllo+ P = pk M lo)Ulp — pupllo

+ By (max{R; ', S22+ d)R,,'} + Cmin{R, ", S.C\R,,'DI|(ru —u, R,B —B)|11)
R,B B}

1
< 5 —o)ymin{R, S.CiRy I (rm — u,

+C(l(ru—u, R,B =Bl + [Ip — puplio + elpup — pllo+ llp — Pl 10))°
+C8(|Ipup plo+llp = p&; o) (1w — w, RyB =Bl + 1 p — pypllo)
< —(1 —o)min{R, ", S.C1R,,"}I|(rpu — uf,. R,B — BT
+Clrpu—u, RB =Bl + lp = puplo +eUloup — pllo+ llp — pi; l0)*-
Using the Assumption Al to get
Ilru —uf,,. RyB=BE )l < C(Iru —u, R,B—B)l1 + [lp — purllo
+e(lpup = plo+ Ip — py o) < C(u + €571,
From the triangle inequality we gain
B—B{ Il < |I(ryu—uf,. R,B—B )|l +[lI(ruu—u, R,B—B)|[
< C(u+ &, (3.31)

- uf,,

Combining (3.30) with (3.31), the error estimate || p — p’gﬂ llo can be bounded by

Ilp = piullo < Clllw—uf, . B—BE )|l < Cu+ &), (3.32)
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Thus, the proof of Theorem 3.8 is completed.

Next, we present the L2 error estimate || (u — us e B — Bk lo- To achieve this aim, we
consider the following dual problem: find ((w, @), s) € WO,, >< M such that
Ap((v, W), (W, ®)) + A1 ((u, B), (v, ¥), (W, D)) + A1 ((v, V), (u, B), (W, P))
—do((v, W), 5) +do((w, ), q)
= ((u-— su’B Bk W (V) Vv, W), q) € Won x M.
(3.33)

If the solution of problem (3.33) satisfies w € H2(Q)NX, ® € HX(Q) N'W, then we have
(see Gunzburger et al. 1991)

lew, D)2 + lIslh < Cll(w — uf,, B —B,)]lo. (3.34)

en’
Theorem 3.9 Under the conditions of Theorem 3.4, the solution of problem (3.23) satisfies

l(w—uf, . B—B)lo < C(u* + pe + . (3.35)

e’

Proof Choosing (v, ‘-IJ) (ruw, R, ®) and g = —pys in (3.28), subtracting it from (3.33)
with (v, ¥) = (u — B—Bf) andq = pk, — p. we obtain

e,w en

LB =BG =Ao((m—uf, . B—Bf,) (W—r,w, ®— R,®))
+ A ((w—uf,,B—B!) B), (W—r,w, ®—R,®))

+Ai((,B), (w—uf, . B—Bf,). (w—r,w ®—R,®))
—Ai(u—uf, BB}, (u—uf, BB}, (Ww—r,w, ®— R,P))
+A((w—uf,,B—B!) w—ul, B—B}) (w, )

—do((W —r,w,® — R, @), p — pw) —do((u —

I(w —uf

BB s — pus)
—&(pk. pus) + el pus).

Applying the conditions of Theorem 2.1, (2.10), (2.12), (3.6) and (3.34), one finds

l(w—uf,.B—B )3

<max{R;', 2+ d)SR, '} (w—uf,,
+2v2Cmax{1, V2S:} |, B) |1 [[(w — uf,. B = BE)[l1 (W — row, @ — R, D)y
+v2CEmax{1, V2SI — uf B —BE )13l (w — rpyw, @— Ry ®) 1 +II(w, )11
+d|(u—uf,, B=B)lils — pusllo + V| (w—r,w, ® = R, ®)hllp — p,llo

LB =B+l —uf,. B—B)[IDIIW, )2
+Cnllu—uf, . B=BE)hlIsll + (W, D)2llp — p,,llo)

+elp = pEullolisllo +ellp — p&; Mllollsllo

< Cu(|ll—uf, . B=B)Ii +1lp — phullo) + |l —uf, . B =B}
+elp = plullo+elp — ph o) (w —uf, . B —BE)llo.
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Thanks to the Theorem 3.8, we have

lw—uf,,B—Bf)o=C (M(Ill(u —ul, BB )+ llp— pl,llo)
Hlw—uf, . B=B{)IIT +ellp— plo+elp— pk,' llo)

< Cu(u+ e + (w42 fe(u + &%) < C(u? + e + .

As a consequence, the desired result is obtained.

4 Two-level iterative penalty finite element method

In this section, we consider the stability and convergence of two-level iterative penalty FEM
for the stationary incompressible MHD problem.
The two-level iterative penalty FEM based on Stokes iteration can be described as follows.

Step 1 Find ((u?,, B%,)), p%,) € WZ x My such that for all (v, ¥), ) € Wi x My

Aoy, B, (v, W) + A1(wyy, BY ), @y, BY), (v, ¥)) — do((v, ), p2yp)
+do((, B), @)+ £(pPy, q) = (F, (v, ¥)). (4.1)

Step 2 For n = 1,2,3,...,k, find ((u},,B.;), piy) € Wg. X My such that for all
(v, W), q) € WH x My

AO((ugHa BZH)s (Va \I/)) + Al((u:Hs BZH)? (u:[-]» BZH)? (V» lIJ)) - d()((V, lIJ)v PQH)
+do((Wy, By, @) + e(Plyg. q) = (F, (v, W) +e(ply' @) (4.2)

In step 3, we solve a Stokes iterative MHD problem on fine mesh.
Step 3 Find ((u”, B!), p") € WA x M, such that for any ((v, ¥), q) € Wp, x My,

Ao((ull,BY), (v. W) + Aj (uf . BE ). (ul . BS ), (v. W) — do((v, W), pl)
+do((u, BY), q) +e(pl. q) = (F, (v, W) + &(pi . 9). (4.3)
Remark 4.1 In our two-level iterative penalty FEM, we adopt the Stokes iteration to treat the
nonlinear terms, other iterative schemes, such as the Newton iteration and Oseen iteration,

can also be used to treat the nonlinear terms. Here, we omit the analysis of these iterative
schemes due to the similar proofs.

Now we present the stability of the two-level iterative penalty FEM.

Theorem 4.2 Under the conditions of Theorem 3.3, the solution ((ué’, Bé’), pé’) defined by
scheme (4.3) satisfies

@, BDII +emin{R,", S.C1 R, M ptllo < K + 5k +SIF|2,.  (44)

where k is the number of iterative step.
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Proof Choosing (v, W) = (u”, B") and ¢ = p/ in (4.3), and using (2.11), (2.12), (2.15) and
(3.26), we gain
min{R; ", S.CiR,," I ul', BY)|IT + ell p1I3
< <fcomax{1, V28 I@E , BED 1T+ IFI-D @2, BD I+ ellpt ol pXllo
(14 ok + D) IF[—1l?, BY[1 + el p!lloll o5 llo
(k 4 2)?

IA

IA

| - e “ly—
Smin{RC S.C R, BOIT + (min{R;", S.C1R,, DT IFZ,

1 1
+3elpe 5+ el Pl I

As a consequence one finds

Il BT + emin{R, ", S.C1R,," I 2113
< (k4 2)2|F|% | + emin{R ", S.C1 R, Y pky 113 < (k% + 5k + 5)|[F|%,.

Then the proof is completed.

Theorem 4.3 Under the conditions of Theorem 3.6, the solution ((ug, Bé’), pé‘) of two-level
iterative penalty FEM defined by scheme (4.3) satisfies

llw—u?, B—B)|ll1 +llp— plllo < C(h + H> + He + 11, 4.5)
Proof Subtracting (4.3) from (2.2), we have

Ag((w—u?, B—B!), (v. 1)) + A (n —uf, . B—Bf,), (. B), (v, V)
+A1((u,B), (W —u¥,, B—Br,), (v, \P))—Al((u—usH,B B,),
(u—uf,, B=Bi,), (v, V) —do((v, ¥), p — p!) + do((u —u}, B—B}), q)
—e(p.q) +e(ply.q) =0. (4.6)
Taking (v, W) = (rpu — ué’, R;B — BZ) and g = ppp — pé’ in (4.6), using (2.11),(2.12),
(2.13) and (2.14) to gain
min{R; ', ScC1 R, "} (rpu — u?, RyB — BT + ellonp — pLIIG
< (R (rpu — u, RyB — B) |1 + CV2C3max{1, v25.}||(u, B)||2
xllw —ut . B = BX ) o + v2C2max(1, v2S.}[[(u — uf ;. B — B2
+dlpnp = plo)(rpu — ul, RyB — B |
+e(lonp = pllo+ 1lp — pEgllo)llonp = pllo + 1P = pLl0). 4.7)

Taking ¢ = 0 in (4.6), thanks to (2.10), (2.12), (2.13), (2.14) and Assumption A2, one finds
Bollp — plllo < Cv2C3max{1, V25 }lI(u, B)|l2[|(u — u? ;. B — BY)llo
+max{R; ", 2+ d)S. R, }([|(rpu — u, RyB — B)|
+ll (5w — u?, RyB —B)[|1)
+v/2Cimax{1, V2S,}|(u —ut,,, B — B, )|I3. (4.8)
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Substituting (4.8) into (4.7) and applying (2.17) we obtain
min{R; !, S.C1 R, Y| (rpu — ul', RyB — B3 +¢llonp — plI3
< (R (rpu — u, RyB — B) ||y + CvV2CEmax{1, v25.}I|(u, B)||2
l(w—u¥,, B—B)llo
+v/2CEmax(1, V28 }ll(u —ut B —B5, )13+ Vdlpnp — pllo
+e(lonp — plo+11p — pEyllo) By 'max{R; ", 2 + d)ScR,,' )
| (rpu — u”, R,B — B,
+e(lonp — pllo+1p — Py llo)Ulonp — pllo+By  (CV2C3max{1, V25:} ] (u, B) |
Nl —uf,, B =B )llo + max{R; !, 2+ d)ScR,, ' }I(au — u, RyB — B)|;
+v2Cimax(1, V2S:}[|(w — uf . B — B ,)1D)
1 . _ _
<z min{R, !, S.C1 R, '} (rpu — u”, R,B — B3 + C (||(rpu — u, RyB — B)|;
+Hl@ -ty B—B) o+ @ —uy, B—B5 )T + llowp — pllo
+ellpnp — plo+1Ip — Xy llo)* + Cellonp — pllo + 12 — pPEyllo)Ulonp — pllo
+ -t B—B5)lo + lw—uty,y, B—B5) 13 + 1Ghu —u, R,B —B)|1)
1 . _ _
< min{R;", S.C1 R, "} (rpu —ul, RyB — BY) |12 + C (| (rpu — u, R,B — B) |y
+ =ty BB )lo + Il —ub, B=B5) 13 + llowp — plo
+e(lonp — plo+ Ilp — Py llon>.

Using the Theorems 3.8 and 3.9 to obtain

I (rpu —ul’, RyB —BM)[I} < C(|(rpu — u, RyB — B) |1 + [|(u —ub,,, B—B5,)lo
+ @ =k, B =BT + oy — plo+ellonp — pllo + Ilp — pEyllo))
<Ch+ H>+He+ Y+ (H+ N 4 e(h + H+ 51
< C(h+ H*+ He + &1,

By the triangle inequality and the Assumption A1, it holds

|||(u—uf;‘,B—B£‘)III1 < C(Ill(rhu—ué',RhB—B’;)llll + [l(rpu — u, R, B —B)|[I1).
< C(h+ H* + He + k1. 4.9)

From (4.8) and (4.9), we have
Ip — plllo < C(h+ H? + He + &), (4.10)
We finish the proof by combining (4.9) with (4.10).

Remark 4.4 If we take ¢ = O(H) and h = O(H?) for the two-level iterative penalty FEM,
we can get the same order of convergence rate as the standard Galerkin FEM, namely, it
holds

ll(w—u”, B —=BH[ll1 + lIlp — ptlo < Ch.
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S Numerical analysis

In this section, we present some numerical results of one-level and two-level iterative penalty
FEMs for incompressible MHD equations. The software FreeFEm-++ is used in this numer-
ical experiments (see Hecht et al. 2015). The UMFPACK routine is applied to solve the
linear systems arising from the discrete algebraic equations. The mesh consists of triangular
elements that are obtained by dividing 2 into subsquares of equal size and then drawing the
diagonal in each sub-square. The (P1b, P1, P1b) finite element pair is used and the iterative
tolerance 107 is adopted in all numerical tests.

The example is quoted from Tao and Zhang (2015). The steady incompressible MHD
equations are defined on a convex domain §2 = [0, 1]2. The boundary and initial conditions
and right-hand side functions f and g are selected such that the exact solutions are given by

up = x> — )2y = DRy = 1); uz = —y*(y — D%x(x — )(2x — 1);
p=Qx—1Q2y—1); By =sin(wx)cos(ny); By = —sin(wy)cos(mrx);

where the components of u and B are denoted by (u1, u2) and (B, B>) for convenience.
Firstly, we choose the parameters R, = R, = S = 1 and ¢ = 0.001. In all numerical tests,
we use several mesh pairs 1/h = 9, 16, 25, 36, 49, 64, 81, 100 and H = h%. Comparison
of relative errors with different iterations are shown in Tables 1 and 2 for one-level and two-
level iterative penalty FEMs respectively. Then we show the relative errors between the exact
solution and the numerical solutions obtained from one-level and two-level iterative penalty

. _ BBy
FEMs in Tables 3 and 4. As observed from Tables 3 and 4, the errors HuHu]m I %,
HuH_ulIl\}Z) lo angd ”BH;T o pecome smaller and smaller as the mesh is refined. In all tables, the
0

symbol “Iteration” denotes the number of iteration in Step 2 of corresponding method. From
these tables, the observations and conclusions are obtained as follows:

e Based on Tables 1 and 2, the errors of the velocity and magnetic in H'- and L2-norms
become smaller as the iteration increasing in both one-level and two-level iterative penalty

Table 1 One-level iterative penalty FEM for incompressible MHD problem

llu—uyllo _ _ _ llu—up iy _ _ _

i h=1/6  h=1/12 h=1/18 B h=1/6 h=1/12 h=1/18
k=1 0.211875 0.0518668  0.0227872 k=1 0.621663  0.243481 0.15372
k=2 0.202109 0.0515975  0.0227779 k=2 0.516145  0.232147 0.150471
k=3 0.202108 0.0515977  0.0227781 k=3 0.516145  0.232147 0.150471
k=4 0.202108 0.0515977  0.0227781 k=4 0.516145  0.232147 0.150471
k=5 0.202108 0.0515977  0.0227781 k=5 0.516145  0.232147 0.150471
IB—By llo _ _ _ IB—By Il _ _ _

s h=1/6  h=1/12 h=1/18 -~ h=1/6 h=1/12 h=1/18
k=1 0.0673653  0.0174816  0.00782663 k=1 0.243099  0.123492 0.0825815
k=2 0.0673654  0.0174816  0.00782657 k=2 0.243099  0.123492  0.0825815
k=3 0.0673654  0.0174816  0.00782657 k=3 0.243099  0.123492  0.0825815
k=4 0.0673654  0.0174816  0.00782657 k=4 0.243099  0.123492  0.0825815
k=5 0.0673654  0.0174816  0.00782657 k=5 0.243099  0.123492 0.0825815
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Table 2 Two-level iterative penalty FEM for incompressible MHD problem with H = nl/2

llu—uy o _ _ _ lu—uy [l _ _ _
W h=1/9 h=1/16 h=1/25 W h=1/9 h=1/16 h=1/25
k=1 0.115708 0.0611698 0.0397726 k=1 0.375119  0.209218 0.13314
k=2 0.0917558  0.0288856 0.0117347 k=2 0.319636  0.170385 0.106938
k=3 0.0917622  0.0288912 0.0117391 k=3 0.319636  0.170385 0.106938
k=4 0.0917622  0.0288912 0.0117391 k=4 0.319636  0.170385 0.106938
k=5 0.0917622  0.0288912 0.0117391 k=5 0.319636  0.170385 0.106938
[IB—By [lo _ _ _ IB—By 11 _ — —

HBH(I) h=1/9 h=1/16 h=1/25 T8I, h=1/9 h=1/16 h=1/25
k= 0.0307716  0.00989297  0.00407113 k=1 0.163963  0.0928432  0.05953
k= 0.0307694  0.00989001  0.00406892 k=2 0.163963  0.0928431  0.05953
k= 0.0307694  0.00989001  0.00406892 k=3 0.163963  0.0928431  0.05953
k= 0.0307694  0.00989001  0.00406892 k=4 0.163963  0.0928431  0.05953
k=5 0.0307694  0.00989001  0.00406892 k=35 0.163963  0.0928431  0.05953
Table 3 One-level iterative penalty FEM for incompressible MHD problem

lu—uy o lu—up || lp—phllo
1/h Taly Rate Tall Rate Tolo Rate
9 0.0917622 0.319636 0.0491044
16 0.0288912 2.00858 0.170385 1.09343 0.0161331 1.93456
25 0.0117391 2.01801 0.106938 1.04375 0.00680877 1.93297
36 0.00563024 2.01506 0.0736314 1.02341 0.00338634 1.91547
49 0.00302794 2.01189 0.0538613 1.01413 0.0018876 1.8957
64 0.00177046 2.00943 0.0411348 1.00934 0.00114322 1.87768
81 0.00110332 2.00755 0.032451 1.00661 0.000737113 1.863
100 0.000722968 2.00605 0.0262581 1.00491 0.000498938 1.85202
IB—Byllo IB—By I :
1/h TBlo Rate TBI 11 Rate CPU(S) Iteration
9 0.0307694 0.163963 0.764 2
16 0.00989001 1.97266 0.0928431 0.988471 2.013 2
25 0.00406892 1.99008 0.05953 0.995842 4.868 2
36 0.0019654 1.99559 0.0413681 0.998156 10.124 2
49 0.00106161 1.99776 0.0304017 0.999062 18.689 2
64 0.000622505 1.99874 0.0232795 0.999473 31.934 2
81 0.000388696 1.99924 0.0183951 0.999682 53.555 2
100 0.00025505 1.99951 0.0149007 0.999797 79.638 2

methods. Especially, when k = 2 the results is as good as k takes 3, 4, and 5. Thus we
choose the iteration k = 2 in following numerical tests.
e From Table 3, we can see that the optimal numerical convergence orders of one-level
iterative penalty FEM are agreed with the ones predicted by the theoretical analysis in
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Table 4 Two-level iterative penalty FEM for incompressible MHD problem

VH  1/h W Rate w Rate W Rate

3 9 0.0917558 0.319636 0.049104

4 16 0.0288856 2.00879 0.170385 1.09344 0.016135 1.93434
5 25 0.0117347 2.01841 0.106938 1.04375 0.00680994 1.93285
6 36 0.00562686 2.01567 0.0736312 1.02341 0.00338713 1.9153
7 49 0.00302532 2.01275 0.0538612 1.01413 0.00188816 1.89549
8 64 0.00176839 2.01056 0.0411347 1.00934 0.00114363 1.87743
9 81 0.00110166 2.009 0.032451 1.00661 0.000737433 1.8627
10 100 0.000721607 2.00784 0.0262581 1.00491 0.000499192 1.85167
1/H 1/h W Rate I‘B‘ﬁ;lﬁ}l‘ I Rate CPU(S) Iteration
3 9 0.0307694 0.163963 0.377 2

4 16 0.00989001 1.97266 0.0928431 0.988471 0.998 2

5 25 0.00406892 1.99008 0.05953 0.995842 2.372 2

6 36 0.0019654 1.99559 0.0413681 0.998156 4.576 2

7 49 0.00106161 1.99776 0.0304017 0.999062 8.271 2

8 64 0.000622505 1.99874 0.0232795 0.999473 13.952 2

9 81 0.000388696 1.99924 0.0183951 0.999682 22.624 2

10 100 0.00025505 1.99951 0.0149007 0.999797 34.298 2

Theorems 3.8 and 3.9, namely, O(h) for velocity and magnetic in H'-norm and pressure
in L?-norm, and O(h?) for velocity and magnetic in L2-norm.

e From Table 4, two-level iterative penalty FEM can achieve the optimal numerical con-
vergence orders of O(h) for velocity and magnetic in H' -norm and pressure in L?-norm,
as proven in Theorem 4.3. Furthermore, we can find that two-level iterative penalty FEM
can reach the optimal orders of O(h?) for velocity and magnetic in L?-norm.

e By comparing the Tables 3 and 4, we can see that two-level iterative penalty FEM
significantly takes the least CPU time than the one-level iterative penalty FEM with the
same approximation results.

6 Conclusion

In this paper, we present the theoretical analysis of the one-level and two-level iterative
penalty FEMs for the steady incompressible MHD problem. The stability and error estimates
of these numerical methods are obtained. Numerical experiments are made to show that the
one-level and two-level iterative penalty FEMs are valid for solving the incompressible MHD
problem, and the numerical results are consistent with the theoretical analysis. Moreover, in
our further works we will consider the extensions of the Stokes iteration on fine mesh to
other linearization methods, such as the Oseen and Newton iterations, combining the present
methods with some stabilization techniques likes subgrid method or variational multiscale
method, and solving large Reynolds number MHD problem.
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