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Abstract The objective of the present paper is to study orbital maneuvers to perform a mis-
sion to a triple asteroid. First, a genetic algorithm is used to find multi-impulsive maneuvers
to go from the Earth to the asteroid, with minimum fuel consumption. After that, swing-by
maneuvers with the two smaller bodies of the triple system are simulated and mapped to
show the possible gains of energy that can be accomplished with the use of this technique.
This study is made using the “patched conics approximation” and the “restricted three-body
problem”, to determine the accuracy of the approximated model. The system of asteroids
2001SN263 is used as an example for the calculations.

Keywords Orbital maneuvers · Close approach · Restricted three-body problem ·
Space trajectories · Genetic algorithm

Mathematics Subject Classification 70F05 · 70F07 · 70F15

1 Introduction

In astrodynamics, depending on the mission, the trajectory of the spacecraft can be controlled
by orbital maneuvers. It is possible to find in the literature many publications showing how
to make those maneuvers with minimum fuel consumption (Hohmann 1925; Hoelker and
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Silber 1959; Shternfeld 1959; Prussing and Chiu 1986). Besides the exclusive use of fuel,
several alternatives have been considered to help to perform the maneuver with fuel savings,
many times using the gravity field of other celestial bodies (Felipe and Prado 1999, 2004).
The use of genetic algorithms to find optimal solutions for orbital maneuvers is also common
in the literature (Santos et al. 2012; Santos and Formiga 2014). In the present paper, this
technique is used to study the problem of sending a spacecraft from the Earth to the triple
asteroid 2001SN263 to encounter the system. After that, a study is conducted to show the
potential of the Swing-By maneuvers to reduce the fuel expenditure in maneuvers around
those three bodies. This maneuver is common in planetary missions and can be used to make
the spacecraft to move around the three small bodies of this system. This technique uses the
gravitational attraction of one body to modify the spacecraft energy, in order to reach a given
goal. A description of this procedure is available in several references (Allen 2003; Battin
1987; Dowling et al. 1991; Formiga and Santos 2014; Formiga and Prado 2014). By dividing
the trajectory in a series of two-body problems, it is possible to simplify the calculations. An
important point to be considered is the accuracy of this method. This topic is addressed in the
present paper, for this specific system of bodies. This study is very important, because the
results are very much dependent on the particular system of primaries. Several studies are
available in the literature on this topic, in terms of practical missions or theoretical results,
like the ones presented in D’Amario et al. (1982), Farquhar and Dunham (1981), Flandro
(1966), Helton et al. (2002), Longuski and Williams (1991), Strange and Longuski (2002),
Petropoulos andLonguski (2000), Petropoulos et al. (1999), Striepe andBraun (1981),Gomes
and Prado (2008, 2010), Sukhanov et al. (2010), Sukhanov and Prado (2004), Swenson
(1991), Prado and Broucke (1995a, b, 1996), Prado (2005, 2007), Machuy et al. (2007).

The present study is made to determine the differences in the mean variations of energy
obtained when using the patched conics model and the restricted three-body problem. The
α–γ and α–β systems are considered, in order to see the accuracy of the patched conics
model in those particular systems. Another contribution of the present paper is the use of the
Tisserand’s criterion to validate the results.

2 The 2001SN263 System

The asteroid 2001SN263 (Araújo et al. 2012) was discovered in February 2008. Its orbit
around the Sun has semi-major axis of 1.99 AU, eccentricity of 0.48 and inclination of 6.7
degrees. The initial conditions used in the simulations are shown in Table 1 and the geometry
of the system in Fig. 1. The components of the system are: a central body α (M1), with radius
near 1.3 km, and two secondary bodies: β and γ . β is located in an orbit with semi-major
axis of 16.63 km and eccentricity of 0.015. γ has an orbit with semi-major axis 3.80 km
and eccentricity 0.016 (Araújo et al. 2012). The masses are: α = 917.47 × 1010 kg; β =

Table 1 Physical data and distance of close approaches in the triple system 2001SN263

System Distance
M1 −M2 (km)

Mass
ratioμ

Radius
ofM2 (km)

Distance of the close
approaches (km) rb = radius
of the secondary body

1.2 × rb 1.5 × rb 2.0 × rb

α–γ (γ : second body) 3.8 0.0105 rγ = 0.29 0.468 0.585 0.780

α–β (β: second body) 16.6 0.0255 rβ = 0.39 0.348 0.435 0.580
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Orbital maneuvers to reach and explore a triple asteroid 895

Fig. 1 Geometry of trajectories passing by the 2001SN263system

24.04 × 1010 kg and γ = 9.77 04 × 1010 kg. Table 1 also shows the periapsis distance of the
maneuvers studied here.

3 “Patched conics” mathematical model

The system under study is assumed to be dominated by two main bodies that are in circular
orbits around their center of mass. The spacecraft has negligible mass and is moving under
the gravitational attraction of those two primaries. Then, the problem can be studied using
the model given by the “Restricted Three-Body Problem”.

Using the approximations given by the “Patched Conics” model, the whole maneuver is
assumed to be divided in three phases, where each one can be modeled by the “Two-Body”
celestial mechanics. In the first part of the motion the spacecraft is moving around the largest
body, before the close approach with M2 (the smaller of the two primary bodies). In this
phase, the effects of M2 are neglected and the system M1–M3 is assumed to form a “two-
body” system, where M3 is the spacecraft, which has negligible mass. In the second part of
the motion it is assumed that M1 is too far and the system M2–M3 makes a new “two-body”
problem. In the third step of the maneuver, M2 is neglected one more time and the system
M1–M3 makes another “two-body” problem. The difference is that the orbit ofM3 aroundM1

is now different from the one in the first part of themotion. Figure 2 shows the geometry of the
close approach,P1 with P1 and P2 the initial and final points of the maneuver, respectively.

Figure 2 also shows the variables used to identify the close approach trajectory: rap (the
periapsis distance), �v−∞ (velocities of the spacecraft (M3)with respect to M2, before and after
the maneuver), �v+∞ (velocity of M3 with respect to M1), δ (half of the angle of curvature due
to the close approach), ψ (angle of approach) and θ (true anomaly of the spacecraft around
the primary body).

The orbital elements (a = semi-major axis, e = eccentricity), energy (E), angular momen-
tum (C) and velocity of the spacecraft with respect to M1 are modified by the passage near
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Fig. 2 The geometry of the close approach between a spacecraft and M2

Table 2 Gravitational
parameters of the two systems
formed with the triple asteroid

M1 μ(km3/s2)

α 6.123×10−7

M2 μ(km3/s2)

β 1.604 ×10−8

γ 6.520 ×10−9

M2. The values for the orbit before the encounter are given by Eqs. (1)–(4).

a = ra + rp
2

(1)

e = 1 − rp
a

(2)

E = − μ

2a
(3)

C =
√

μ.a(1 − e2) (4)

where rp is the periapsis of the orbit, ra is the respective apoapsis and μ is the gravitational
parameter. Two different systems are used (see Table 2) in the present paper: α–β and α–γ .

The magnitude of the velocity of the spacecraft with respect to the main body when the
approach starts (vi ) obtained using Eq. (5)

|vi | =
√

μ

(
2

rsp
− 1

a

)
, (5)

where rsp is the M1−M3 distance. The variations of velocity, energy and angular momentum
are obtained by Eqs. (6)–(9).

�v = �v0 − �v1 = 2 |�v∞| sin δ (6)

�E = E+ − E− = −2v2v∞ sin δ sinψ (7)

�C = �E

ω
, (8)
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where

δ = sin−1

⎡

⎣ 1

1 + r
ap v2∞
μ

⎤

⎦ (9)

with �v2 the velocity of M2 with respect to M1; �vi the velocities of M3 with respect to M1,
before and after the maneuver in the inertial frame, respectively; v∞ is the magnitude of the
velocity of the spacecraft with respect to M2 when the approach starts; ψ is the angle of
approach; ω is the angular velocity of the primaries; δ is half of the deflection angle and E−,
E+ are the energy before and after the maneuver, respectively. To obtain the semi-major axis
and eccentricity of the orbit of the spacecraft after the close approach it is possible to use
Eqs. (10) and (11).

ao = − μ

2E
(10)

e0 =
√

1 − C2

μa
(11)

In this paper, the average energy variations given by both the approximated model (“patched-
conics”) and the more realistic “restricted three-body problem” are obtained.

4 Rendezvous trajectories for the triple system

The first step is to calculate an interplanetary mission to encounter the triple system
SN2001263. The second step is to determine the location of the target body (body 2—point
P2). After that, the Lambert problem formulation is used to transfer the spacecraft from the
first body (Earth) to the second body (2001SN263), as shown in Fig. 3. This maneuver is made
using multiple impulses (�V ) (Santos et al. 2012), which means that a series of Lambert
problems are used to connect every two points. Conceptually, the transfer of a satellite with
minimum fuel consumption can be defined as: to change the state (position, velocity and
mass) of a spacecraft from the initial conditions (r0, v0 and M0), at the time t0, to the final
conditions (r f , v f and M f ), at the time t f (t f ≥ t0). It is very important to do this task
using the lowest possible fuel consumption (�V = M0 − M f ).

In this paper, a genetic algorithm is used to solve this problem, which is a stochastic global
search method inspired in the natural genetic and biological evolution. The genetic algorithm
operates on a population of potential solutions by applying the principle of survival of the
fittest to produce better and better approximations of the optimal solutions (Santos et al. 2012;
Santos and Formiga 2014). The best parameters for the solutions searched here constitute of
a population that comprises 800 individuals and up to 200 generations, but several situations
were made with different population sizes and quantities in the objective function. The
population number was adjusted and it was verified which values provided the best results.
The final maneuver divides the four impulses in the way shown in Fig. 3.

5 The restricted three-body problem

The dimensionless canonical system of units is used (Szebehely 1967). It means that the
mass of the smaller asteroid is μ = M2/(M1 + M2), where M1 and M2 are the real masses
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Fig. 3 Rendezvous maneuvers with four impulses to the triple system 2001SN263 showing the solution
provided by the genetic algorithm method (axes in normalized units)

of M1 and M2, respectively. The mass of M1 is (1 − μ), so the total mass of the system is
one. The unit of distances is the M1 − M2 distance. The mean angular velocity of the motion
of the primaries is one. The equations of motion are (Szebehely 1967):

ẍ − 2 ẏ = x − ∂V

∂x
= ∂�

∂x

ÿ − 2ẋ = y − ∂V

∂y
= ∂�

∂y

(12)

where

� = 1

2

(
ẋ2 + ẏ2

) + (1 − μ)

r1
+ μ

r2

with r1 is the M3 − M1 distance and r2 the M3 − M2 distance. The energy and angular
momentum are obtained from Eqs. (13) and (14).

E = (x + ẏ)2 + (ẋ − y)2

2
− (1 − μ)

r1
+ μ

r2
(13)

C = x2 + y2 + x ẏ − yẋ, (14)

where x and y are the coordinates of the spacecraft in the rotating system; E is the energy and
C is the angular momentum.
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6 Using the Tisserand’s criterion

The close approach can stronglymodify the trajectory of the particle. TheTisserand’s criterion
is a method that can be used to identify those news trajectories and it was created by Francois
Felix Tisserand. It is expressed as an equation that must be obeyed by the orbital elements
before and after the passage. It was used in several references to validate their results (Kresák
1954; Radzievskii and Tomanov 1986). This criterion says that two particles are probably
the same if they satisfy Eq. (15).

1

āi
+ 2

√
āi (1 − e2i ) cos ii ≈ 1

āo
+ 2

√
āo(1 − e20) cos i0, (15)

where the particle has orbital elements āi , ei and ii before themaneuver and āo, eo and io after
that. Figure 4 shows the Tisserand’s parameter before and after the close approach for both
models: the “Patched-Conics” (PC) and the “Restricted Three-Body Problem” (3PB). Several
close approach distances with the body γ were used, as well as two values for the periapsis
distance: rap = 1.5Rγ and rap = 2.0Rγ. This study was made for several ranges for the angle
of approach � and periapsis distance. Figure 4 shows only the case � = 180◦, using 2550
simulations, as an example. Other values have similar results. Figure 4 shows that the results

Fig. 4 Tisserand’s parameter
considering several distances of
close approach and � = 180◦ a
rap = 1.5Rγ , b rap = 2Rγ
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follow the Tisserand’s criterion, because the values before and after the close approach are
very similar for both dynamics, which means that the models are working correctly. These
coefficients were calculated before and after the maneuver by the PC and the 3PB models,
considering several values of V∞, the velocity of approach ofM3 with respect toM2, before
the maneuver.

7 Numerical study of the energy variation

A numerical comparison is now performed using both models: “Patched-Conics” (PC) and
the “Restricted Three-Body Problem” (3PB) to know the differences between them in this
particular system. Near 450,000 simulations were made for each rap (periapsis distance).
Different values for the velocity and angle of approach were used.

The results are shown in Table 3 for rap = 1.2Rγ (radius of γ ), where |�Em| =
|�EmPC − �Em3c|; �Em3c is the result given by the restricted three-body problem,
�EmPC is the result given by the “patched conics approach”, �Em is the mean variation
between the models; C ji and C j f are the initial and final Jacobian constants, respectively;
V i and V j are the initial and final velocities, both in the canonical units.

Figures 5 and 6 present the differences of energy between the two models, �Em, as a
function of the velocity and angle of approach. The mass ratio for both systems are: α–γ
= 0.0105366 and α–β = 0.0255335. The initial conditions were divided in seven intervals
for the angle of approach and ten intervals for the velocity of approach. Table 4 shows this
division.

Figure 5 shows the results for the α–γ system and Fig. 6 for the α–β system. The differ-
ences in the variations of energy decreases with the increase of the velocity of approach. The
difference in the variations of energy is about 4 % in the first velocity range, decreasing after
that.

Some aspects that can be noted from the results are shown below.

1. �Em (mean variation between the models) range is very different, depending on the
initial conditions. This fact indicates that more detailed studies must be done for each
specific system of primaries to know the regions of initial conditions where it is more
adequate to use the “Patched Conics” model;

2. �Em values decreases with the evolution of the periapsis distance, because when the
spacecraft passes far from the secondary body the details of the better dynamics (restricted
three-body problem) have little effects in the results;

3. �Em values are larger for maneuvers close to the maximum variation of energy (� =
270◦), in particular when compared to the case of zero variation of energy (� = 180◦).
This is expected, because the difference in the variation of energy is nearly proportional
to the effects of the maneuver.

4. �Em values are low when there are increases in the approach velocity. This information
is important when a spacecraft needs to approach a planet, but do not want to modify its
energy.

A summary of the results are shown in Table 5, which displays the absolute numbers in
canonical units. In general, it is possible to say that the “Patched-Conics” is a good approxi-
mation for a first study, but for some initial conditions, �Em can increase and the use of the
“Restricted Three-Body Problem” can be important.
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Fig. 5 Variation of energy as a function of the velocity of approach for the α–γ system considering a periapsis
distance of twice the radius of γ

Fig. 6 Variation of energy as a function of the velocity of approach for the α–β system considering a periapsis
distance of twice the radius of β

Table 4 Velocity range (x-axis)

Velocity range 1 2 3 4 5 6 7 8 9 10

Initial velocity
(canonical units)

0.59 0.97 1.24 1.47 1.66 1.83 1.99 2.13 2.27 2.35

Final velocity
(canonical units)

0.97 1.24 1.47 1.66 1.83 1.99 2.13 2.27 2.35 2.48

Table 5 Overall average
differences of �Em (canonical
units)

rap (radius of M2) Triple system 2001 SN263

α–γ α–β

1.2 0.000846 0.005452

1.5 0.000709 0.004656

2.0 0.001042 0.004838
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8 Conclusions

In the present paper, a numerical procedure was developed to measure the energy gains of
a close approach between a spacecraft and both smaller bodies of the triple asteroid system
2001SN263. The average difference is measured between two models: the “Patched Con-
ics” approximated model and the more realistic “Restricted Three-Body Problem”. Several
simulations were performed to evaluate those effects, in order to estimate the accuracy of
the “Patched Conics” model. Several velocities and angles of approach ranges were used.
The results have shown the possible energy gains and that the accuracy of the approxi-
mated method improves when the periapsis distance increases, since the effects of the close
approaches are smaller. In the regions closer to the body,where practical applications aremore
interesting, with the periapsis distance less than four times the radius of the secondary body,
the overall average differences of�Em does not exceed 1 %. It means that the approximated
method is good enough for a first estimate and the methodology presented here to evaluate
those effects is useful. The results have also shown that the “Patched-Conics” approach gives
better estimates in regions of low energy variations, as when higher velocities of approach
and/or large periapsis distances are involved. The research performed here indicates where
numerical integrations are required for a better accuracy.
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