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Abstract We propose a model for the dynamics of an heterogeneous tumor, which consists
of sensitive and resistant cells. Themodel is analyzed and validated using a cellular automaton
whose local rules are classic and widely accepted in Biology. We then extend the model to a
tumor under therapy. We consider Shannon’s entropy for the tumor and analyze the problem
of minimizing this entropy. From this minimization problem, we find viable therapies that
maintain at low level the entropy of the tumor. These therapies could provide a valuable tool
for designing protocols for disease control, maintaining a very low growth level, while the
tumor remains composed mainly of sensitive cells.

Keywords Cancer · Chemotheraphy · Entropy · Optimization

Mathematics Subject Classification 97M60 Biology, Chemistry, Medicine

1 Introduction

Cancer is one of the leading causes of death worldwide. At present, around 9 million people
die from cancer each year and experts expect that number to rise to 11.4 million by the year
2030. Cancer is not just one disease but rather a generic term for a large class of diseases.
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These diseases are distinguished by an abnormal and autonomous cellular growth. Such cells
grow to form a conglomerate called tumor. The main purpose of traditional therapies, such as
chemotherapy, is the elimination of the largest possible number of malignant cells, with the
implicit intention of the eradicating (curing) the tumor, even when such an outcome, based
on extensive clinical experience, is highly improbable. This approach has serious side effects
on patients and also it stimulates the development of resistant subpopulations (Boondirex
et al. 2006; Gatenby and Gillies 2009; Norton and Simon 1977).

Mathematical modeling of cancer dynamics can contribute not only to the rational design
of optimal treatment protocols involving combinations of surgery, chemotherapy and radio-
therapy, but also to the development of new therapies, to better prognoses for patients and to
more effective treatment plans.

Since 1954,manymathematical and computationalmodels have been developed for study-
ing the growth of tumors and other models pay tribute to the importance of leukemia research
(leukemia is a type of cancer of the blood or bone marrow which does not form solid tumors)
(Afenya and Calderón 1995; Clarkson 1972; Djulbegovic and Svetina 1985; Franziska et al.
2005; Moore and Li 2004; Noble et al. 2010; Todorov et al. 2012). Different models are
used for boarding different questions such as modeling avascular and vascular tumor growth
(Barrea and Hernández 2012a, b; Bonate and Howard 2011; Clarkson 1972; D’Onofrio et al.
2009; Gatenby and Gillies 2009) (either free or under the effect of a therapy), mechanical
iterations between cells (D’Antonio et al. 2012; Kansal et al. 2000; Qi et al. 1993), dynamics
and morphology of tissue invasion by cancer cells (Andasari et al. 2011; D’Antonio et al.
2012; Jiao and Torquato 2012; Tracqui 1995), angiogenesis dynamics (Barrea andHernández
2013; D’Onofrio et al. 2009; Roose et al. 2007), competition between the immune system
and tumor cells (Djulbegovic and Svetina 1985; Patanarapeelert et al. 2000), reaction and
intra-cellular diffusion phenomena (Tracqui 1995). There are models which use either cellu-
lar automaton or agent-based modeling (Boondirex et al. 2006; D’Antonio et al. 2012; Jiao
and Torquato 2012; Kansal et al. 2000; Patanarapeelert et al. 2000; Qi et al. 1993; Reis et al.
2009; Smolle 1998; Tracqui 1995; Wolfram 1984). Other models use ordinary or partial dif-
ferential equations to study the tumor dynamics (Andasari et al. 2011; Byrne 2012; Cornelis
et al. 2013; Liu et al. 2013; O’Neill et al. 2010; Roose et al. 2007; Wise et al. 2008). Some
discrete models also exist (Gatenby and Gillies 2009).

At the present, a widely accepted model is the so-called Gompertz model, which was
proposed by the English mathematician Benjamin Gompertz in 1825 (Mueller et al. 1995).
Gompertz worked on modeling the dynamics of certain growth processes and his model was
found to be a valuable tool for scientists inmanydisciplines. In 1964,Laird (1965) showed that
unperturbed tumor growth in a test tube followed a Gompertzian kinetics, very similar to the
profiles produced by the sigmoid Emax model which is quite familiar tomost pharmacokineti-
cists (Bonate andHoward 2011). Since then,many interdisciplinary studies have validated the
Gompertzian models and were used to optimize chemotherapy and limit the development of
resistance cells (Barrea and Hernández 2012a, b, 2013; Bonate and Howard 2011; D’Onofrio
et al. 2009; Gatenby and Gillies 2009; Gonzalez and Rondón 2006; Gonzales et al. 2003;
McCall and Petrovski 1999; Martin and Teo 1994; Norton 1988; Yamano 2009). Needless to
say, since more than one hundred different diseases fall under the label of “cancer”, it would
not be reasonable to expect that a singlemathematicalmodel could simulatewell the dynamics
of all the tumors that can beset different parts of the human body.Nevertheless, clinical studies
have proved that eight out of ten tumors have a Gompertzian growth (Martin and Teo 1994).

Current therapies are mainly aimed at eradicating the tumor, but they all have severe neg-
ative consequences. For instance, therapy frequently fails due to the emergence of resistant
populations. This occurs because the tumor is formed by sensitive and resistant cells and the
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sensitive cells proliferate at the expense of the resistant ones. Then, even if therapy is able
to remove all of the sensitive cells, the resistant population can freely proliferate due to the
lack of competition. We are interested in finding therapies that maintain under control the
population of sensitive cells.

The organization of this article is as follows: in Sect. 2, the Gompertz model is generalized
to model the interaction of two populations, sensitive and resistant, in a competitive setting.
In Sect. 2.1, we present the competition model and analyze the attractors and equilibrium
points. In Sect. 2.2, this model is validated by comparing simulations generated by a universal
cellular automaton with clinical results. As a result, the Gompertzian growth is interpreted as
a normally distributed stochastic process. Finally, in Sect. 2.3, a model for the dynamics of
a tumor subject to multi-drug chemotherapy is presented. Section 3 is devoted to formulate
the chemotherapy optimization problem. In Sect. 4, an optimization problem is proposed
by assigning Shannon’s entropy to the tumor. The solution of this optimization problem
provides protocols which maintain tumor entropy under control. These protocols, which
assure that the disease does not progress, are subject to certain clinical restrictions such as
maximum instantaneous dose, maximum cumulative dose, maximum size of the tumor, toxic
side effects. Finally, Sect. 5 is devoted to the conclusions and possible further research.

2 The model

In the sequel, we shall consider tumors constituted by heterogeneous lineages of cancer
cells, having different sensitivities to therapy. Next, we formulate a competitive model for
the dynamics of an heterogeneous tumor.

2.1 Competitive Gompertzian model

As noted in the introduction, Gompertz’s equation can be used to model the dynamics of a
large variety of tumors (see Fig. 1). This model has the following form:
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Fig. 1 Typical graph of a Gompertz’s function
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{
dN
dt = λN ln

(
N∞
N

)
,

N (0) = N0,
(1)

where N (t) ≥ 0 is the average quantity of tumor cells at time t, N∞ denotes the carrying
capacity of the tumor and λ is a growth parameter. Note that limt→∞ N (t) = N∞ (in fact
the analytic solution of (1) is N (t) = N∞e−de−λt

, where d = − ln(N0/N∞)).

However, as a result of the large microenvironment’s heterogeneity in space and time,
the tumor is usually composed of two main subpopulations of cells (Gatenby and Gillies
2009; Norton and Simon 1977): a population Ns, sensitive to the therapy and a resistant one,
Nr. Resistant cells are typically present in small numbers because they are less fit than the
sensitive cells. Sensitive cells have a higher rate of replication, which results in competitive
effects that cannot be accounted by model (1). As traditional therapies have as their main
purpose the elimination of the largest possible quantity of malignant cells (which are mainly
sensitive), the resistant population can proliferate freely because it does not have to compete
with any fitter population, and therefore the therapies fail. Hence, if we wish to find therapies
that are sustainable over time, competition between the populations Ns and Nr must be taken
into account.

We assume that there is no Lotka–Volterra competition between sensitive and resistant
populations (Simmons and Krantz 1972), and assume instead, interference competition. This
means that the mere presence of one population affects the other one. Thus, for instance, the
presence of one population makes it less likely for the other to access the available resources.
We propose the following competition model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dNs
dt = L1Ns ln

(
N∞

Ns+αNr

)
,

dNr
dt = L2Nr ln

(
N∞

βNs+Nr

)
,

Ns(0) = Ns0 ,

Nr(0) = Nr0,

(2)

where N∞ is the carrying capacity of the tumor, L1 and L2 are positive growth parameters
and the parameters α > 0 and β > 0 quantify the competition between Ns and Nr . The
remainder of the subsection is devoted to find the equilibrium points of system (2).

2.1.1 Equilibrium points of system (2)

We begin by defining the set E0
.= {(0, 0), (0, N∞), (N∞, 0)} whose elements are clearly

equilibrium points for all parameters α, β > 0. It is easy to prove that these points are
attractors.

Now, we will consider two cases: (A) αβ = 1 and (B) αβ �= 1.
(A) Suppose αβ = 1. In this case, there are no other equilibrium points than those in
E0, except when α = β = 1, in which case all elements in the set E2

.= {(x∗, y∗) ∈
R
2≥0 : x∗ + y∗ = N∞} are also equilibrium points. We shall prove that all points of E2

are also attractors. For that, let x
.= Ns, y

.= Nr and define F(x, y)
.= L1x ln

(
N∞
x+y

)
,

G(x, y)
.= L2y ln

(
N∞
x+y

)
. Then, the Jacobian matrix of system (2) is

J (x, y) =
[
Fx (x, y) Fy(x, y)
Gx (x, y) Gy(x, y)

]
,
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where Fx = L1 ln
(

N∞
x+y

)
− L1x

(x+y) , Fy = −L1x
x+y ,Gx = −L2 y

x+y andGy = L2 ln
(

N∞
x+y

)
− L2 y

(x+y) .

Thus, for any (x∗, y∗) ∈ E2, it follows that

det(J (x∗, y∗) − λI ) =
(−L1x∗

N∞
− λ

) (−L2(N∞ − x∗)
N∞

− λ

)

− L1L2x∗

N 2∞
(N∞ − x∗)

=
[(

L1x∗

N∞
+ L2(N∞ − x∗)

N∞

)
+ λ

]
λ.

Hence, the eigenvalues of J are λ1 = 0 and λ2 = −1
N∞ [L1x∗ + L2(N∞ − x∗)]. Since

|λ2| > |λ1| and Re(λ2) < 0, the equilibrium points are in fact attractors.
(B) Suppose now αβ �= 1. Then, it is easy to prove that:

• If α = 1 or β = 1, the set of equilibrium points is E0.

• If α �= 1 and β �= 1, the set of equilibrium point is E0
⋃ {

N∞
(

α−1
αβ−1 ,

β−1
αβ−1

)}
with

(α, β) ∈ (0, 1)2
⋃

(1,∞)2 and all equilibrium points are also attractors.

2.2 Validation of models (1) and (2)

This subsection is devoted to validate models (1) and (2). There is a large number of cellular
automaton for studying different aspects of tumoral growth (Patanarapeelert et al. 2000; Qi
et al. 1993; Reis et al. 2009; Smolle 1998; Tracqui 1995). Although some of the local rules
used by those cellular automaton do not have solid biological support, if one is interested in
modeling tumoral growth, a few widely known characteristics and rules of the tumoral cells
can be used. Among those rules, we mention:

• Tumor growth is restricted by the tissue carrying capacity. This restriction may arise
from limitations of nutrients that are available for the proliferation of cancer cells, from
increasing accumulation of waste products which causes a decrease in the cancer cell
proliferation rate or from the effects of mechanical confinement pressure. There is strong
experimental evidence that the proportion of resting cells increases as the growth of
the tumor progresses (Gonzalez and Rondón 2006). Resting cells are those which never
undergo division.

• Since tumor cells evade the normal chemical signals producing apoptosis, they do not
kill themselves and therefore we shall think of them as living indefinitely. Although these
cells may die due to necrosis, our automaton does not include necrosis dynamics. This
is so because the dynamics of the necrotic core is extremely complex and yet to be well
understood.

• Tumor cells do not obey chemical signals and under suitable conditions they divide
indefinitely.

In our model, tumor cells move on the (x, y) plane over an n × n lattice L. Also, each cell
will be in one and only one of the following states: (i) AS: Active-Sensitive, (ii) AR: Active-
Resistant, (iii) RS: Resting-Sensitive and (iv) RR: Resting-Resistant. We shall use a Moore
neighborhood with radius equal to one.

The local rules are:

LR1: Active cells, of AS or AR type are checked for division attempt. Division happens
with probabilities:
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Fig. 2 Three simulations of the cellular automaton (solid). Experimental data (circle) for mouse El4 tumor
at high dose (Laird 1965)

PS(t) = rS

(
1 − W (t)

N∞

)
(3)

and

PR(t) = rR

(
1 − W (t)

N∞

)
, (4)

whereW (t) is the number of tumor cells at time t according to the cellular automaton,
N∞ is as in models (1) and (2) and rS and rR are parameters quantifying the prolifer-
ative activity of the sensitive and resistant populations, respectively. If a cell divides,
the new cell occupies any of the empty sites in its neighborhood with identical prob-
ability. If a cell divides but it cannot find an empty space, then it turns into a resting
cell.

LR2: An AS-type cell can mutate into an AR-type cell with a given probability pm.
LR3: If an active cell is surrounded by eight cells, then it is transformed into a resting cell.
LR4: A resting cell is transformed into an active cell if it is surrounded by Nmax < 8 cells.

Figure 2 depicts a simulated tumor growth and experimental data taken fromLaird (1965).
The parameters used here were rS = 0.28, rR = 0.12 and N∞ = 1275 × 106.

2.2.1 Validating model (1)

In this case, we suppose that the tumor is homogeneous, therefore pm = 0 and the number
of resistant cells,WR(t), is zero for all t. Then, the number of sensitive cells,WS(t), is equal
to W (t) for all t . From (1), it follows that

ln(ln N (t) − ln N (t − 1)) = ln(d(eλ − 1)) − λt, (5)

where d = − ln
(

N0
N∞

)
. In light of Eq. (5), it is reasonable to think that Gompertz’s model

provides a good fitting if the graph of ln(ln〈W (t)〉 − ln〈W (t − 1)〉) obtained from the data
appears to follow a straight line. If this is the case, then knowing 〈W (0)〉 one can estimate
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Fig. 4 Plots of the distributions of W (t) with 104 realizations (red) and Gaussian densities
N (N∞ pt , 4N∞ pt (1 − pt )) (blue) at times t = 10 (a); t = 17 (b); t = 22 (c) and t = 34 (d) (color
figure online)

λ and d (and therefore N∞) form (5). A simulation of the cellular automaton was run with
〈W (0)〉 = 1 and parameters rS = 0.85, rR = 0.3, pm = 10−3 and N∞ = 600. Then, only the
first 54 observations were considered for estimating d and λ via least squares (see Fig. 3). We
obtained d = 6.4026 (and therefore N∞ = N0ed = 603.4119). Figure 3b shows the cellular
automaton simulations (circle) and the resulting Gompertz’s model solution (solid line).

Remark 1 It is quite interesting to note that in the context of cellular automaton realizations,
for any time t, the variableW (t) has approximately a normal distributionwithmean 〈W (t)〉 =
N∞ pt and standard deviation σ(t) = 2

√
N∞ pt (1 − pt ), where pt = e−de−λt

(see Fig. 4).
Consequently, we interpret model (1) in the following way: tumoral growth is a stochastic
process W (t) which at time t has approximately a normal distribution with mean 〈W (t)〉 =
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N∞ pt = N (t) and standard deviation σ(t) = 2
√
N∞ pt (1 − pt ). Since limt→∞ pt = 1 it

follows that limt→∞ σ(t) = 0 and limt→∞〈W (t)〉 = N∞.

2.2.2 Validating model (2)

Consider now an heterogeneous tumor, composed of two different cell lineages: one subpop-
ulation is sensitive and the other is resistant to therapy. We assume that sensitive cells are
transformed into resistant cells via random mutations. These mutations are quantified by the
probability pm mentioned in the local rule LR2 of the cellular automaton.

Next, we present a general procedure for estimating the parameters used in model (2)
from data provided by the cellular automaton.

Parameter estimation Let N : [0,∞) × R
7+ −→ R

2 be defined by N(t; x1, . . . , x7) =
(Ns(t; x1, . . . , x7), Nr(t; x1, . . . , x7)), where Ns(·) and Nr(·) are the solutions of (2) with
x1

.= Nr(0), x2
.= Ns(0), x3

.= L1, x4
.= L2, x5

.= α, x6
.= β and x7

.= N∞. Let Ñ(�x) :
R
7+ −→ R

180 be defined by [Ñ(�x)]i .= Ns(i − 1; �x) + Nr(i − 1; �x), i = 1, . . . , 180, where
�x .= (x1, . . . , x7). The parameters used in model (2) are then estimated by the components
of the vector �x∗ ∈ R

7 solving

�x∗ = argmin
�x∈R7+

‖Ñ(�x) − W̃‖2, (6)

where W̃
.= (W (0), . . . ,W (T )), with W (t) being the number of cells at time t obtained by

the cellular automaton realization and ‖ · ‖ is the Euclidean norm in R
T = R

180.
In our case, solving problem (6) resulted in x∗

1 = 42.8367, x∗
2 = 110.4854 and the

parameters x∗
3 = 0.0834, x∗

4 = 0.0345, x∗
5 = 1.000, x∗

6 = 0.9881 and x∗
7 = 601.2633.

Figure 5 shows the total number of tumor cells which are obtained both with the cellular
automaton and the continuous model (2) with parameters estimated from the automaton real-
izations, as above. For the cellular automaton realizations, we used N∞ = 600, rS = 0.85,
rR = 0.45, pm = 10−3 and PS(t) and PR(t) as given in (3) and (4). Also we took
W (0) = 130, Wr(0) = 10 and terminal time T = 180. From the continuous models,
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we have N (T ) = 603.3473, Ns(T ) = 575.5221 and Nr(T ) = 27.8252, while for cellular
automaton W (T ) = 601,Ws(T ) = 575 and Wr(T ) = 26. Summing up, we have consid-
ered Gompertz’s model (1) to describe the growth of an homogeneous tumor. Model (2) was
formulated for modeling the competition between two subpopulations of an heterogeneous
tumor, one subpopulation being sensitive to therapy whereas the other one is resistant. A cel-
lular automaton was then built for validating models (1) and (2). Numerical results show that
by appropriately estimating the parameters, a Gompertzian model can adequately describe
the growth of an homogeneous tumor while the modified Gompertzian model (2) can suc-
cessfully describe the dynamics of a tumor with two competing subpopulation of cells. We
also showed that the Gompertzian tumor growth can be seen as a stochastic process, W (t)
with mean N∞ pt and standard deviation 2

√
N∞ pt (1 − pt ), where N∞ is carrying capacity

of the tumor and pt = e−deλt
.

In the next subsection, we shall build an appropriate mathematical framework for the
dynamics of an heterogeneous tumor under multi-drug therapy. The model takes into account
the exponential decay of drug concentrations in the body, a phenomenon that is well docu-
mented by Pharmacokinetic and Pharmacodynamic studies (Bonate and Howard 2011).

2.3 Modeling the dynamics of an heterogeneous tumor under chemotherapy

Chemotherapy is a cancer treatment based on the administration of drugs. A chemotherapy
treatment is given in cycles and the length of the treatment (i.e. the number of cycles) depends
on a variety of factors. A cycle consists of a chemotherapy treatment period in which the
patient is supplied with n doses of drugs at prescribed times t1, . . . , tn (called the protocol)
followed by a rest period for allowing the body and blood counts to recover before the next
cycle. Drugs may be administered all on a single day, during several consecutive days or con-
tinuously.A treatment period could lastminutes, hours, or days, depending on the specific pro-
tocol. The rest period may be of a week, two weeks or a month. Finally, the number of cycles
is mainly determined by the evolution of the disease, which in turn depends on several factors.

In the case of multi-drug treatments, each dose is a cocktail of d drugs with concentrations
levels Ci j , i = 1, 2, . . . , n, j = 1, 2, . . . , d , in the plasma blood. Let us denote by C the
matrix (Ci j ).

There are several models to describe the tumor’s response to treatment, but one of themost
widely used is the Gompertz growthmodel with linear cell-loss effect (Barrea and Hernández
2012a, b; Boondirex et al. 2006; Patanarapeelert et al. 2000), given by{

dN
dt = N

[
λ ln

(
N∞
N

)
− α(C, t)

]
,

N (0) = N0,
(7)

where the time t is measured in days, α(C, t) = ∑d
j=1

∑c
i=1 κ jCi je−μ j�i t , κ j is a parameter

measuring the effectiveness of drug j , μ j represents the decay of drug j in the body (μ j =
− ln(1/2)/τ j , where τ j is the half-life of the drug j in the plasma), c = c(t) is the only
non-negative integer such that t ∈ [tc, tc+1) if t < tn and c = n if t ≥ tn , and �i t = t − ti .

For an heterogeneous tumor under therapy, we propose the following model:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dNs
dt = L1Ns

[
ln

(
N∞

Ns+αNr

)
− αs(C, t)

]
,

dNr
dt = L2Nr

[
ln

(
N∞

βNs+Nr

)
− αr(C, t)

]
,

Ns(0) = Ns0 ,

Nr(0) = Nr0.

(8)
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The functions αs and αr are defined similarly as the function α above. These functions involve
different parameters corresponding to each one of both subpopulations.

In what follows N = N (t,C) shall always denote the total number of tumor cells. i.e.
either the solution of (7) or N (·) = Ns(·) + Nr(·), when referring to model (8).

Although restrictions for chemotherapy treatment vary from drug to drug as well as with
the type of cancer, they all have the following general form:
(R1) Maximum instantaneous dose: there is a non- negative number Cmax

j , 1 ≤ j ≤ d , such
that

Cmax
j − Ci j ≥ 0, ∀i = 1, 2, . . . , n, ∀ j = 1, 2, . . . , d.

(R2)Maximum cumulative dose: there is a non-negative numberCcum
j , 1 ≤ j ≤ d , such that

Ccum
j −

n∑
i=1

Ci j ≥ 0, ∀ j = 1, 2, . . . , d.

(R3) Maximum tumor size: there is a non-negative number Nmax such that

Nmax − N (ti ,C) ≥ 0, ∀i = 1, 2, . . . , n.

(R4) Toxic side effects: there exist K ∈ N and non-negative numbers Csc
k and ηk j , for

k = 1, . . . , K and j = 1, . . . , d , such that

Csc
k −

d∑
j=1

ηk jCi j ≥ 0, ∀ i = 1, 2, . . . , n, ∀ k = 1, 2, . . . , K .

Here, the factors ηk j quantify the risk of damage on the organ or tissue k by the drug j .
We denote by 
 the set of all real n × d matrices C satisfying restrictions R1–R4. In the

sequel, for simplicity of notation, we will suppress the dependency on C and denote N (t,C)

simply by N (t).

3 Chemotherapy optimization problem

As previously mentioned, since traditional cancer chemotherapies seek to eradicate the dis-
ease, the therapies often fail because they remove most of the sensitive cells, leaving a
tumor composed mainly of resistant cells. The current paradigm is radically different and
researchers now seek therapies suitable for controlling the disease, which does not mean to
eradicate the tumor but rather to avoid its growth. In light of this paradigm, we start building
a theoretical framework that will lead us to the formulation of a new optimization problem.
To begin with, once the disease is detected, it is desirable that the tumor does not increase
its size. Therefore, if at time t0 (the beginning of a cycle) the initial number of cancer cells
is N (t0) = N0, controlling the disease means complying with the restriction

N (t) ≤ N0, ∀t ∈ [t0, T ], (9)

where T − t0 is the length of the cycle plus the respective rest period, when chemotherapy
is not administered.

Consider now an heterogeneous tumor constituted by L different subpopulations with
different sensitivities to the drugs. We denote N�(t), � = 1, . . . , L , the number of cells
in each subpopulation at time t . Thus, if N (t) is the total number of tumoral cells at time
t , then N (t) = ∑L

�=1 N�(t). The Shannon’s entropy of the tumor is defined as: S(t)
.=
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Fig. 6 Entropy dynamics with high dose of chemotherapy

−∑L
�=1 p�(t) ln(p�(t)), where p�(t)

.= N�(t)
N (t) . Clearly, the entropy is a function of time and

therapy, i.e., S = S(t,C), since N = N (t,C).
Before applying chemotherapy, the entropy is low because the tumor is composed mainly

by sensitive cells. As the tumor grows freely, its entropy decreases because the growth rate
of the sensitive cells is smaller than the growth rate of the resistant cells. On the other hand,
when drugs are administered to the patient, the sensitive subpopulation tends to lose a higher
proportion of cells and therefore the entropy of the tumor increases. This analysis could lead
us to think that to control a tumor it is perhaps reasonable to look for therapiesC that maintain
the functional J (C)

.= |S(T ) − S(t0)| as low as possible. But that is not the case. In fact,
assuming that the tumor is composed only by two subpopulations (a sensitive subpopulation
Ns and second one, Nr , resistant to chemotherapy), it is possible that S(T ) = S(t0) while
Ns(T )
N (T )

= Nr(t0)
N (t0)

which in turn implies Nr(T )
N (T )

= Ns(t0)
N (t0)

(see Fig. 6). Thus, it is not only important
to maintain |S(T ) − S(t0)| low but also the difference between both proportions of cells at
the initial and final times. The following proposition will lead us to the formulation of an
adequate cost functional.

Proposition 1 If S(t) is Shannon’ entropy, then for all T and t0 it follows that

|S(T ) − S(t0)| ≤
L∑

�=1

∣∣∣∣ln
(
p�(t0)

p�(T )

)∣∣∣∣ . (10)

Proof Observe that

|S(T ) − S(t0)| =
∣∣∣∣∣−

L∑
�=1

p�(T ) ln(p�(T )) +
L∑

�=1

pg(t0) ln(p�(t0))

∣∣∣∣∣
≤

L∑
�=1

| − p�(T ) ln(p�(T )) + p�(t0) ln(p�(t0))|.

Thus, inequality (10) follows by showing that |− x ln(x)+ y ln(y)| ≤ |− ln(x)+ ln(y)| ∀x,
y ∈ (0, 1). To prove that, we use the following result, which is very easy to check: if f and g

123



1002 A. A. Barrea et al.

are continuous real-valued functions defined on an interval (a, b) and |g′(x)| ≥ | f ′(x)| ∀x ∈
(a, b), then |g(y)− g(x)| ≥ | f (y)− f (x)| ∀x, y ∈ (a, b). Take (a, b) = (0, 1), g(x)

.= ln x
and f (x)

.= x ln x . Then, g′(x) = 1
x and f ′(x) = ln x + 1. Therefore, |g′(x)| − | f ′(x)| =∣∣ 1

x

∣∣−|1+ ln x | ∀x ∈ (0, 1). Now, we consider two cases: (i) x ≥ e−1 and (ii) x < e−1. (i) In

this case, f ′(x) ≥ 0 and therefore |g′(x)|−| f ′(x)| = 1

x
− 1︸ ︷︷ ︸
≥0

+ (− ln x)︸ ︷︷ ︸
≥0

≥ 0. (ii) In this case,

f ′(x) ≤ 0 and therefore |g′(x)| − | f ′(x)| = 1
x + 1 + ln x ≥ 1

x + 1 + x−1
x = 2 ≥ 0 (where

we used the fact that x−1
x ≤ ln x for all x > 0). This completes the proof of the proposition.

��

Proposition 1 inspires us to define the functional

J (C, T )
.= d(S(T ), S(t0)),

where

d(S(T ), S(t0))
.=

L∑
�=1

∣∣∣∣ln
(
p�(t0)

p�(T )

)∣∣∣∣ .
In this metric, it follows that d(S(T ), S(t0)) = 0 if and only if p�(T ) = p�(t0), ∀� =
1, . . . , L . Hence, if T is fixed, we formulate the problem:

C∗ = argmin
C∈


J (C, T ). (11)

In case the optimal rest period is also to be found, then we formulate the following optimal
problem:

(C∗, T ∗) = argmin
(C,T )∈
×R+

J (C, T ). (12)

In the following section, several numerical results are presented. We shall assume that the
tumor is constituted by two subpopulations: a subpopulation Ns sensitive to chemotherapy
and a resistant one, Nr . Generalizations to an arbitrary number of subpopulations are quite
straight forward.

4 Numerical results

A common chemotherapy treatment used in bladder cancer is known as MVAC [by the
initials of the drugs used: Methotrexate, Vinblastine, Doxorubicin (also called adriamycin)
and Cisplatin]. In what follows, we shall use the information contained in the following
tables about the parameters characterizing a bladder cancer under MVAC chemotherapy.
These values were taken from references (Martin and Teo 1994; McCall and Petrovski 1999;
Petrovski and McCall 2001; Von der Maase et al. 2000). In the framework of problem (11),
we assume a rest period of 30 days. In problem (12), on the other hand, the rest period is free
(Table 1).

Figure 7a shows the evolution of the tumor and the entropy over a period of 100 days.
Note that Shannon’s entropy grows as the size of the tumor decreases. Figure 7b depicts the
dynamics of Ns/N cycle by cycle when the standard chemotherapy is implemented. Note
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Table 1 Tumor’s parameters

Symbol Description Units Value used

Ns Number of sensitive cells c: unit of cell

Nr Number of resistant cells c: unit of cell

θ Carrying capacity [c]−1 1012

κ1 Efficiency of drug 1 on Ns and Nr , respectively [mg day]−1 0.01–0.00021

κ2 Efficiency of drug 2 on Ns and Nr , respectively [mg day]−1 0.0086–0.000046

κ3 Efficiency of drug 3 on Ns and Nr , respectively [mg day]−1 0.014–0.000024

κ4 Efficiency of drug 4 on Ns and Nr , respectively [mg day]−1 0.014–0.00014

τ1 Half-life of drug 1 [day] 1.1090

τ2 Half-life of drug 2 [day] 0.8992

τ3 Half-life of drug 3 [day] 0.6931

τ4 Half-life of drug 4 [day] 0.1664

Cmax
1 Maximum instantaneous dose for drug 1 [mg] 40

Cmax
2 Maximum instantaneous dose for drug 2 [mg] 10

Cmax
3 Maximum instantaneous dose for drug 3 [mg] 40

Cmax
4 Maximum instantaneous dose for drug 4 [mg] 100

Ccum
1 Maximum cumulative dose for drug 1 [mg] 100

Ccum
2 Maximum cumulative dose for drug 2 [mg] 30

Ccum
3 Maximum cumulative dose for drug 3 [mg] 70

Ccum
4 Maximum cumulative dose for drug 4 [mg] 100

Nmax Maximum number of tumor cells c: unit of cell 109

η11 Effect of drug 1 on organ 1 0.1

η12 Effect of drugs 2 on organ 1 0.9

η13 Effect of drugs 3 on organ 1 0.1

η14 Effect of drugs 4 on organ 1 0.1

that already at the beginning of the fourth cycle one already has Ns/N ≈ 0. Finally, in
Fig. 7c, d, we observe that the resistant population prevails over the sensitive population and
thus standard chemotherapy fails. Computational techniques for solving optimal problems
(11) and (12) typically require combining a discretization technique with an optimization
method. We assumed t0 = 0 and T = 52, so that the patient received 30 rest days at the end
of each cycle. Also, we assumed N0 = 109, Ns0 = 0.9999 N0 and Nr0 = 0.0001 N0. For
discretization purposes, we divided the interval [0, T ] into r = 104 equal subintervals and
approximated system (8) by finite differences.

In both optimization problems, (11) and (12), we proceeded in the sameway.We begun by
solving the optimization problem, which lead to an optimal protocol C1. Next, we repeated
the process 11 times and generated a sequence of optimal protocols C1, . . . ,C11. Protocol
C2 was obtained by solving the optimization problem with initial conditions Ns0 = Ns(T )

and Nr0 = Nr(T ). These conditions were obtained using the protocol C = C1. The other
protocols were obtained in a similar fashion.

Next, we solved problems (11) and (12). In each problem, we considered two cases: (i)
L1 = 0.0011, L2 = 0.00055 and α = β = 1 and (ii) L1 = L2 = 0.11, α = 10 and β = 0.1.
The obtained results are depicted in Figs. 8 and 9.
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Fig. 7 a Growth of the tumor and entropy after a cycle has been applied. b Dynamics of Ns/N cycle by cycle.
c Dynamics of Ns and Nr cycle by cycle. d Dynamics of N cycle by cycle

Solving problem (11): We proceeded as described above to obtain the optimal therapies
C1, . . . ,C11. In Fig. 8a, b, it can be observed that after 11 cycles (≈1.5 years) one has
Ns/N > 0.9990. On the other hand, Fig. 7b shows that using a standard protocol, the ratio
Ns/N is approximately equal to 0 at cycle 5 and it remains so afterwards.

Solving problem (12): In regard to problem (12),we also found optimal therapies C̃1, . . . , C̃11.
All the optimal therapies obtained have break time periods greater than 80 days. Thus, for
instance, in the first optimal therapy one has that T = 81.6739 for case (i) and T = 88.8593
for case (ii) (see Fig. 9c, d). However, the ratio Ns/N remains as good as the ratios obtained
for problem (11) (see Fig. 8a, b). In both problems, we observe that the optimal thera-
pies indicate that the drugs should be supplied in decreasing quantities (see Fig. 9). It is
interesting to note that although these results are in accordance with some clinical expe-
rience, the optimal protocols obtained from problems (11) and (12) require much lower
doses than standard protocols. For example, if Ca

i j
.= C1, Cb

i j
.= C6, Cc

i j
.= C̃1 and

Cd
i j

.= C̃6 are the optimal protocols corresponding to Fig. 9a–d, respectively, then we

have
∑

i
∑

j C
a
i j = 72.8738 mg,

∑
i
∑

j C
b
i j = 72.8212 mg,

∑
i
∑

j C
c
i j = 72.8670 mg

and
∑

i
∑

j C
d
i j = 72.7912 mg, while with a standard schedule, Ci j , it is necessary to

deliver a total of 199 mg (see Table 2), i.e. standard protocol requires a much larger
quantity of drugs than the optimal protocols and yet, it may fail). Solutions of prob-
lems (11) and (12) provide similar therapies but break time periods are significantly
larger.
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Fig. 8 Dynamic of Ns/N with different parameter values: a L1 = 0.0011, L2 = 0.00055 and α = β = 1. b
L1 = L2 = 0.11, α = 10 and β = 0.1. c Same parameters as in a and T free. d Same parameters as in b and
T free

5 Conclusions

In this work, we proposed a model (2) to describe the competition between two subpopula-
tions of tumor cells: a subpopulation sensitive to chemotherapy and a resistant subpopulation.
The model was validated by a cellular automaton defined with the rules LR1–LR4. Next, we
extended the model to include the effects of chemotherapy (8). Standard chemotherapy fails
when the tumor is heterogeneous. This is so because resistant cells survive after chemother-
apy treatment and the tumor continues to grow. Current research is focusing on alternative
therapies that are able tomaintain under control the size of the tumor over time. In light of this
new paradigm, we formulated optimization problems (11) and (12) subject to the constraints
C ∈ 
 and (C, T ) ∈ 
×R

+, respectively. In problem (11), we sought therapies minimizing
the distance d between S(T ) and S(t0), where S is the Shannon’s entropy of the tumor. This
approach ensured that the tumor continues to be treatable for a considerable longer period
of time. This is so because Ns remains greater than Nr and the disease does not grow over a
significantly longer period of time. In fact, as it can be seen in Fig. 9, using optimal protocols
we obtained that Ns/N > 0.9984 even after eleven cycles, while with the standard protocol
Ns/N is very close to 0 already in the fifth cycle. An appropriate analysis can also be made
in terms of the entropy. If the tumor grows freely, its entropy decreases. Initially, the tumor
has a low entropy (since most of the tumoral cells are sensitive). Then, if the objectives are to
avoid the growth of the tumor and to maintain the entropy low, higher doses must be supplied
at the beginning of the therapy whereas much lower doses are to be supplied at the end of
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Fig. 9 a ProtocolC1 obtained from problem (11) with L1 = 0.0011, L2 = 0.00055, α = β = 1 and T = 52.
b Protocol C6 obtained from problem (11) with L1 = L2 = 0.11, α = 10, β = 0.1 and T = 52. c Protocol
C̃1 obtained from problem (12) with the same values as in part a; here, T = 81.6739. d Protocol C̃1 obtained
from problem (12) with the same values as in b; here, now T = 88.8593

Table 2 Standard schedule (drug
concentrations are measured in
mg)

t Methotrexate Vinblastine Doxorubicin Cisplatin

0 30 0 0 0

1 0 3 30 70

14 30 3 0 0

21 30 3 0 0

it. Finally, these optimal therapies could provide a valuable tool for designing protocols for
disease control, maintaining a very low growth level, while the tumor remains composed
mainly of sensitive cells.
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