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Abstract This paper presents three schemes of 2D meshless finite volume (MFV) method,
referred to as MFV with overlapping control volumes (MFV1), MFV with irregular non-
overlapping control volumes (MFV2) and MFV with regular non-overlapping control
volumes (MFV3). The methods utilize the local symmetric weak form of system equa-
tion and the interpolation functions constructed using the weighted multi-triangles method
(WMTM) which is recently developed by the present authors. The proposed formulation
involves only integrals over the boundaries of control volumes. The performance of the
proposed schemes is studied in three benchmark problems. A comparative study between
the predictions of the above MFV schemes and finite element method (FEM) shows the
superiority of WMTM-based MFV1 and MFV2 over FEM.

Keywords Finite volume method ·Meshless methods · Control volume (CV) · Interpolation
function

Mathematics Subject Classification Primary 74S10 · Secondary 74-02

1 Introduction

Meshless methods have become very popular numerical tools for solving mechanical prob-
lems. These methods rely on a set of scattered nodes to discretize the problem domain and
no element or connectivity of the nodes is needed. Therefore, they have certain advantages
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compared with the conventional mesh-based finite element method (FEM). The main objec-
tive of the meshless methods is to eliminate or reduce the difficulties associated with FEM
such as the meshing and re-meshing difficulties, locking, discontinuities in crack modeling
and element distortions in problems with large deformations.

In the last two decades, considerable research has been performed to develop the meshless
methods such as element-free Galerkin (EFG) (Belytschko et al. 1994), smoothed particle
hydrodynamics (SPH) (Liu and Liu 2003), finite point method (FPM) (Oñate et al. 1996),
reproducing kernel particle method (RKPM) (Liu et al. 1995; Khoei et al. 2007) , meshless
local Petrov–Galerkin (MLPG) (Atluri and Zhu 1998) method and meshless methods based
on Peridynamics formulation (Silling et al. 2007; Ganzenmüller et al. 2015). Some of these
methods, despite their advantages, involve some undermining issues such as the high com-
putational cost, singularity of moment matrix, imposition of essential boundary conditions
and selection of effective parameters such as the size of nodal influence domain and local
quadrature domain.

In recent years, the MFV method has been applied for analyzing a wide variety of prob-
lems including elasto-static (Atluri and Shen 2002; Atluri et al. 2004; Han and Atluri 2004a;
Moosavi et al. 2011), elasto-dynamic (Han andAtluri 2004b), beam (Raju and Phillips 2003),
thick plate (Qian et al. 2003), shell (Moosavi et al. 2012a) and crack problems (Moosavi et al.
2012b) . In the above-mentioned studies, the overlapping circular or rectangular quadrature
domains are used which can produce some difficulties and inaccuracy, especially in problems
with complex shapes and irregular nodal distributions. One way to avoid this problem is ben-
efiting from the patterns used in the conventional finite volume (FV) method to construct the
control volumes (CVs). In fact, the main motivation for developing the new MFV schemes
in this paper is to unify the advantages of meshless methods and FV technique. Meshless
methods are flexible, because there is no need for any mesh. Furthermore, these methods
rectify some of the disadvantages of mesh-based methods such as discontinuous secondary
variables across the inter-element boundaries and the need for re-meshing in large deforma-
tion problems. Moreover, the conventional FV method, which has been used for analyzing
the stresses in elasticity problems (Bailey and Cross 1995; Wheel 1996), beams (Fallah and
Hatami 2006), plates (Wheel 1997; Fallah 2004, 2006), large deformations (Maneeratana
2000; Fallah et al. 2000), elasto-plasticity (Demirdzic andMartinovic 1993;Taylor et al. 2003;
Fallah and Paryandeh-Shahrestany 2014), dynamic fracture problems (Ivankovic et al. 1994;
Stylianou and Ivankovic 2002), shallow water flow (Sabbagh-Yazdi and Mohammadzadeh-
Qomi 2004) and dynamics (Slone et al. 2003; Fallah and Ebrahimnejad 2014), is able to
compete with FEM in terms of numerical accuracy and computational efficiency.

In this paper, threeMFV schemes are introduced. InMFVwith overlapping CVs (MFV1),
the FV cell centered scheme (Fallah 2004) is adopted in which the rectangular CVs are
formed around the field nodes. In MFV with irregular non-overlapping CVs (MFV2), CVs
are constructed according to the FV cell vertex scheme (Fallah 2004). By doing so, the choice
of control volumes, particularly in complex geometries, becomes straightforward. In MFV
with regular non-overlapping CVs (MFV3), the regular background cells are used as the
CVs. In fact, there is no correspondence between node locations and CVs construction in
this scheme; therefore, nodes can be placed at any positions according to the analyst desires.

In the above proposed MFV schemes, a new interpolation method referred to as weighted
multi-trianglesmethod (WMTM)developedby the present authors (Ebrahimnejad et al. 2014)
is used.WMTMcan enhance the performance ofMFV schemes by resolving the problematic
issues such as ill conditioning, enforcing the essential boundary conditions, computational
cost, selection of some effective parameters such as weighting function and average nodal
distance especially in problemswith irregular nodal distribution,which are the common issues
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in methods like the well-known moving least squares (MLS) approximation. To demonstrate
the performance of the presented WMTM-based MFV schemes, some benchmark problems
are investigated.

The organization of the rest of this paper is as follows: In Sect. 2, a brief discussion of
WMTM for construction of approximation functions is presented. Discretization of the gov-
erning equations using MFV is presented in Sect. 3, by introducing three different schemes.
Section 4 demonstrates the effectiveness of the proposed schemes by analyzing the numerical
results of some benchmark problems. Finally, conclusions are presented in Sect. 5.

2 Weighted multi-triangles method (WMTM)

In this work, the approximating functions and their derivatives corresponding to a point of
interest are obtained using the weighted multi-triangles method (WMTM) (Ebrahimnejad
et al. 2014). In this technique, first of all, the first layer of neighbor nodes for a point of
interest, p, is determined locally using the Delaunay triangulation, where the desired point
is the common vertex of the patch of triangles. These neighbor nodes are the vertices of the
surrounding region that houses the desired point, p, see Fig. 1a. Then, a series of triangles
housing the point, p, are made using the vertices of the polygon (i.e. neighbor field nodes),
Fig. 1b. In the WMTM, contribution of each vertex of the surrounding triangles in the con-
struction of interpolation function ismodified according to its distance from the desired point,
p, by applying the weighting parameter 1/rλ. In each triangle, the field variable on p, i.e. ū p ,
can be approximated as follows

ū p = R1ū1 + R2ū2 + R3ū3 (1)

where

R1 = ψ1
∑

i ψi
, R2 = ψ2

∑
i ψi

, R3 = ψ3
∑

i ψi

ψ1 = δ1

(
1

rλ
1

)

, ψ2 = δ2

(
1

rλ
2

)

, ψ3 = δ3

(
1

rλ
3

)

δ1 = A1

A
, δ2 = A2

A
, δ3 = A3

A
; |λ| ≤ 0.05

A = A1 + A2 + A3

(2)

Fig. 1 Surrounding nodes and multi-triangles corresponding to the desired point, p
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where λ is a constant that controls the smoothness of the interpolation function, ri represents
the distance from the desired point p to the i th vertex of the surrounding triangle, δ1, δ2, δ3
are the local interpolation functions for each surrounding triangle and A1, A2, A3 are shown
in Fig. 1c.

According to Fig. 1a, for a surrounding polygon with n nodes, (1) can be rewritten for a
typical triangle l consisting of nodes i, j,m in the form of

ū p,l =
n∑

k=1

μk,l ūk (3)

whereμk,l is the interpolation function of node k of the triangle l with the following properties

μi,l = R1, μ j,l = R2, μm,l = R3 (4a)

and

μk,l = 0 for k �= i, j, m (4b)

Finally, the field variable in the desired point p, u p , is approximated in terms of the field
variables associated with the surrounding field nodes by averaging the local approximations
ū p,l corresponding to n surrounding triangles as follows

u p = 1

n

n∑

l=1

ū p,l = 1

n

n∑

l=1

n∑

k=1

μk,l ūk =
n∑

k=1

(
1

n

n∑

l=1

μk,l

)

ūk =
n∑

k=1

φk ūk (5)

where φk represents the approximating function corresponding to the field node k as

φk = 1

n

n∑

l=1

μk,l , k = 1, 2, . . . , n (6)

Accordingly, the first derivatives of approximating function φk can be obtained as follows

(φk),x = 1

n

n∑

l=1

(μk,l),x ; (φk),y = 1

n

n∑

l=1

(μk,l),y (7)

It should be noted that theWMTM interpolation functions possess the characteristics such as
partition of unity, Kronecker delta function, linear reproducing and continuity at all orders,
as shown by Ebrahimnejad et al. (2014). Furthermore, there is no need for the additional
parameters such as weight functions and dimension of support domain for constructing
the interpolation functions, those to be selected in MLS method based on the numerical
experiments. Moreover, the scheme introduced in this technique for selecting the field nodes
reduces the number of influencing nodes for the points of interest and consequently reduces
the numerical efforts. This is highly desirable especially for problems with high-density node
distribution.

3 Discretization of governing equations using MFV

In the meshless finite volume (MFV) technique, the weighted residual method is used for
deriving the weak form of equilibrium equations for each CV corresponding to the field
nodes. The equilibrium equations for a CV in a 2D elastic solid are written as

123



Three types of meshless finite volume method for the. . . 975

LTσ + b = 0 (8)

where σ and b represent stress and body force vectors, respectively, and differential operator
L is defined as follows

L =

⎡

⎢
⎢
⎣

∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤

⎥
⎥
⎦ (9)

The boundary conditions are given as

u = ū on the essential boundariesΓu

t = nσ = t̄ on the natural boundariesΓt
(10)

where u represents the displacement vector, ū and t̄ are the prescribed displacements and trac-
tions, respectively, and n contains the components of unit outward normal to the boundaries
of CV as

n =
[
nx 0 ny
0 ny nx

]

(11)

For a considered CV, the weighted residual method can be written in the following form
∫

Ωcv

Ŵ(LTσ + b)dΩ − α

∫

Γu

Ŵ(u − u)dΓ = 0 (12)

whereΩcv represents the area of control volume,Γu is the part of the global essential boundary
that intersects the Ωcv, Ŵ is the weighting function and α is the penalty factor.

Using the divergence theorem, (12) can be rewritten as
∫

Γ

Ŵ(nσ )dΓ −
∫

Ωcv

(LŴ)TσdΩ +
∫

Ωcv

ŴbdΩ − α

∫

Γu

Ŵ(u − ū)dΓ = 0 (13)

To achieve theMFV discretized equations, the Heaviside function is used as the weighting
function, i.e. {

Ŵ = I overΩcv

Ŵ = 0 elsewhere
(14)

Consequently
LŴ = 0 (15)

Equation (15) leads to simplicity in formulation by removing a domain integral over Ωcv

in (13). It is expected that the reduction of computational cost is achieved due to use of only
line integrations in deriving the stiffness matrix.

The first line integral of (13) can be divided into integrals on internal boundaryΓ0, local
essential boundaryΓu and local natural boundaryΓt , sinceΓ is the union of above-mentioned
three parts (i.e. Γ = Γ0 ∪Γu ∪ Γt ). Therefore, using (15), Eq. (13) can be written as

−
∫

Γ0

nσdΓ −
∫

Γu

nσdΓ −
∫

Γt

nσdΓ =
∫

Ωcv

bdΩ − α

∫

Γu

(u − ū)dΓ (16)

Using the constitutive equation, the stress components can be stated in terms of the strain
components in the following form

σ = Dε (17)
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where D is the elasticity matrix. The strain field consists of the strain-displacement relation
and is presented as follows

ε = Lu (18)

Substituting (10), (17) and (18) into (16) gives

−
∫

Γ0

nDLu dΓ −
∫

Γu

nDLu dΓ =
∫

Ωcv

b dΩ +
∫

Γt

t̄dΓ − α

∫

Γu

(u − ū)dΓ (19)

In the proposed MFV formulation, the unknown displacement u can be approximated
by using the WMTM interpolation functions in terms of the nodal parameter û as
follows

u = φû (20)

where the entries of φ are WMTM interpolation functions. Substituting (20) into (19) results
in

−
∫

Γ0

nDLφû dΓ −
∫

Γu

nDLφû dΓ + α

∫

Γu

φû dΓ =
∫

Ωcv

b dΩ +
∫

Γt

t̄dΓ + α

∫

Γu

ū dΓ (21)

Equation (21) presents two linear equilibrium equations of forces acting on a CV which can
be written as

kû = f (22a)

where

k = −
∫

Γ0

nDLφ dΓ −
∫

Γu

nDLφ dΓ + α

∫

Γu

φ dΓ

f =
∫

Ωcv

b dΩ +
∫

Γt

t̄ dΓ + α

∫

Γu

ū dΓ
(22b)

Equation (22a) can be written for all the CVs of the model, providing a set of simultaneous
linear equations which can be stated in the compact form as

KU = F (23)

whereK, F andU are the global stiffness matrix, global force vector and global displacement
vector, respectively.

3.1 MFV with overlapping CVs (MFV1)

The above-mentioned formulation canbe extended for anynode-based interpolation functions
and also for CVs with arbitrary sizes and shapes, including overlapping/non-overlapping
CVs. This is the main advantage of MFV technique in comparison with the conventional FV
method.

In MFV1 scheme, first, the filed nodes are distributed in the problem domain and then,
the regular CVs (rectangular or circular CVs in 2D problems) are formed around them; see
Fig. 2. The sizes of CVs are controlled with an additional parameter called dimensionless size
of CV, which is problem-dependent and selected using the numerical experiments. The CVs
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Fig. 2 Schematics of MFV1
scheme

produced by this scheme will be overlapped ones, especially in the cases with the irregular
node distribution.

It has been shown that the computational cost in MFV1 applications is lower than or at
least comparable to FEM. Therefore, MFV1 can provide a simple and efficient alternative to
the finite element and boundary element methods for engineering analysis (Atluri and Shen
2002).

3.2 MFV with irregular non-overlapping CVs (MFV2)

In problems with complex geometries or with irregular distributed nodes, trial and error is
required for constructing the appropriate regular non-overlapping CVs. One way to avoid
this issue is the use of MFV2 scheme; a method similar to the cell vertex scheme of the
conventional FV (Fallah 2004). In this scheme, the non-overlapping polygonal CVs are
formed around the distributed field nodes. In doing so, first, using the Delaunay triangulation
scheme, a mesh of triangles is made in which, the field nodes are used as the vertices of
the triangles. Then, CVs are constructed corresponding to each field node by connecting the
centers of surrounding triangles to the middle of their sides passing the field nodes; see Fig. 3.
Unlike the conventional FVmethod in which the construction of the interpolation functions is
based on the consideredmesh, the triangularmeshmade by theDelaunay triangulation is only
for the CVs construction purposes and it is dumped thereafter. In other words, construction
of the interpolation functions on any desired point is only based on the location of neighbor
nodes.

3.3 MFV with regular non-overlapping CVs (MFV3)

In MFV1 and MFV2 schemes presented in the previous sections, field nodes are located at
the center of the CVs. In the third scheme of MFV referred as MFV3, a background mesh
covering the field problem can be used as the non-overlapping CVs regardless of field nodes
distribution. In other words, since in MFV formulation the equilibrium equations are written
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Fig. 3 Schematics of MFV2 scheme

Fig. 4 Schematics of MFV3
scheme

for the CVs, there is no need to place field nodes at the center of CVs and they can be at
any position, whether inside or outside the CVs; see Fig. 4. These CVs are somehow similar
to the background mesh in the EFG method (Belytschko et al. 1994), except that in MFV3
the equilibrium is satisfied in an average sense locally and also the number of CVs must
be equal to the number of field nodes. It should be noted that, in MFV3 scheme some field
nodes should be placed on the natural and essential boundaries to ensure that the boundary
conditions are properly considered in the formulation.

It is noticeable that inMFV3 scheme the CVs are consistent with the geometry of problem
domain. Since the interpolation functions depend only on the location of field nodes and are
independent of the geometry of CVs, therefore, MFV3 scheme is considered as a meshless
method.
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4 Numerical examples

In this section, three benchmark plane stress problems are considered to evaluate the accuracy
and effectiveness of the proposed MFV schemes. The linear elastic analysis under small
deformation is implemented in the MATLAB software environment. For the comparison
purposes, in addition to the exact results, an in-house MATLAB code for FE analysis is
developed and the results of FEM using the four-node quadrilateral elements (Q4) and full
integration are presented.

In MFV1 scheme, the rectangular CVs with dimensions of Lx = 1.1dx and Ly = 1.1dy
are used, where dx and dy are the average nodal distance in x and y directions, respectively.
In the following examples, 2-points Gaussian quadrature rule is adopted to calculate the
integrals. Also, the direct method is used to solve the linear system of algebraic equations.

The comparison of the results is accomplished based on the relative displacement and
energy error norms, which are defined as

ed = ||uexact − uMFV||
||uexact||

ee = ||εexact − εMFV||
||εexact||

(24)

where

||u|| =
⎛

⎝
∫

Ω

uT · udΩ
⎞

⎠

1
2

||ε|| =
⎛

⎝
∫

Ω

εT · c · εdΩ

⎞

⎠

1
2

.

(25)

4.1 Cantilever beam

In this example, the convergence of MFV schemes is investigated for a cantilever beam
problem shown in Fig. 5. The analytical solution has been given by Timoshenko and Goodier
(1970) for the plane stress problem as follows

Fig. 5 Cantilever beam of unit width under the transverse distributed end load with the total of P
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Fig. 6 Regular nodal distribution for modeling the cantilever beam, AR=1

Fig. 7 Background mesh with random nodal distribution for modeling the cantilever beam using MFV3

ux = − P

6E I

[

(6L − 3x)x + (2 + ν)

[

y2 − D2

4

]]

uy = P

6E I

[

3νy2(L − x) + (4 + 5ν)
D2x

4
+ (3L − x)x2

]

σx = − P(L − x)

I
σy = 0

τxy = P

2I

[
D2

4
− y2

]

(26)

In the numerical model, the analytical displacement solution is prescribed at x = 0 and the
exact shear traction is applied at x = L . The values for the geometry, material properties and
loading are taken as L = 3m, D = 1m, E = 1.0 × 1010 N/m 2, ν = 0.3 and P = 1000N.

Five discretization levels with regular nodal positions are investigated for two aspect ratios
(AR); see Fig. 6. Note that, AR is defined as the ratio of nodal space in x direction to the nodal
space in y direction. It should be noted that the regular background mesh with random nodal
distribution is used for MFV3 scheme. Two typical background meshes are shown in Fig. 7.

The vertical displacement along the neutral axis of the beam and the distribution of normal
stress (σx ) on a cross section at the left end of the beam obtained from MFV schemes with
WMTM interpolation functions are plotted in Fig. 8. It can be observed that the displacements
and stresses’ results converge appropriately to the analytical solutions. For example, the
displacement predictions converge to the analytical results when only 21 nodes are used.

Figures 9 and 10 show the convergence behavior of the presented MFV schemes in terms
of the relative displacement and relative energy error norms corresponding to the different
node numbers. A comparison between different MFV schemes and FEM shows that MFV2
scheme provides more accurate results in the prediction of relative displacement error norm
for different aspect ratios. Also, according to Fig. 10, almost similar behaviors of MFV2 and
FEMcan be observed in predicting the relative energy error norm, corresponding to both cases
of AR=1 andAR=10. As can be seen in Figs. 9 and 10, the convergence rate of the solutions
obtained is also comparable with the first-order and second-order behaviors. It should be
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Fig. 8 The vertical displacement along the neutral axis of the beam and the normal stress (σx ) at the left end
of the beam obtained from WMTM-based MFV schemes (AR=1), a MFV1, bMFV2 and c MFV3
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Fig. 9 Convergence of relative displacement norm obtained from WMTM-based MFV schemes with two
aspect ratios for the cantilever beam problem

Fig. 10 Convergence of relative energy norm obtained from WMTM-based MFV schemes with two aspect
ratios for the cantilever beam problem

mentioned that inMFV3 scheme, there is no dependence between the node locations andCVs
construction, which can be the main reason for the poor performance of the MFV3 scheme.

According to these figures, the comparable capability of MFV1 and MFV2 schemes is
demonstrated.

4.2 Infinite plate with a circular hole

In this benchmark problem, an infinite plate with a central circular hole of radius a = 1m is
investigated under the tension loading. Due to the symmetry, only one quarter with the edge
length of 5m is analyzed; see Fig. 11. The analytical solution for the plane stress condition
is given as (Timoshenko and Goodier 1970)
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Fig. 11 Infinite plate with a circular hole

Fig. 12 Two nodal distributions for modeling of the infinite plate with a hole

Fig. 13 Background mesh with random nodal distribution for modeling the infinite plate with a hole using
MFV3
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984 M. Ebrahimnejad et al.

Fig. 14 The circumferential displacement along the hole and the normal stress (σx ) at the left end obtained
from WMTM-based MFV schemes, a MFV1, bMFV2 and c MFV3
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Fig. 15 Convergence of relative displacement and energy norms obtained from MFV schemes and FEM for
the infinite plate with a circular hole

σx = P

{

1 − a2

r2

[
3

2
cos(2θ) + cos(4θ)

]

+ 3a4

2r4
cos(4θ)

}

σy = −P

{
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]

+ 3a4

2r4
cos(4θ)

}

τxy = −P

{
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]

− 3a4

2r4
sin(4θ)

}

ur = P

4G

{

r

[
κ − 1

2
+ cos(2θ)

]

+ a2

r
[1 + (1 + κ) cos(2θ)] − a4

r3
cos(2θ)

}

uθ = P

4G

{

(1 − κ)
a2

r
− r − a4

r3

}

sin(2θ) (27)

where G is the shear modulus, ν represents the Poisson’s ratio and κ = 3 − ν/1 + ν.
In the numericalmodel, the analytical displacement solutions are prescribed on the left and

lower boundaries and the analytical tractions are applied on the upper and right boundaries
of the solution domain.

The numerical analysis is carried out by investigating six different discretization levels
with 45, 91, 153, 325, 561 and 945 nodes. Two typical nodal arrangements are shown in
Fig. 12. For MFV3 scheme, the regular background meshes with random nodal distribu-
tions are used; see Fig. 13. In this problem, the uniform uniaxial traction, Young’s modulus
and Poisson’s ratio are considered as, P = 1010 N/m2, E = 1010 N/m2 and v = 0.3,
respectively.

Figure 14 shows the comparison between the exact and MFV values of normal stress
(σx ) predictions at the left end (x = 0) and also the tangential displacement along the
hole. The solutions for all MFV schemes are in good agreement with the analytical solu-
tions.

123



986 M. Ebrahimnejad et al.

Fig. 16 Curved beam under
bending

Fig. 17 Two sample nodal distributions for curved beam problem

Finally, the relative displacement and energy error norms obtained by MFV schemes and
FEM are compared in Fig. 15. It can be found that MFV2 scheme has better accuracy than
MFV1, MFV3 and FEM in prediction of relative energy error norm. However, FEM shows
better accuracy in prediction of relative displacement error norm.

4.3 Curved beam under bending

In the final example, the capability of different MFV schemes for the analysis of a curved
beam under the bending loading (Fig. 16) is investigated. The curved beam is modeled with
the unit thickness and a = 13m, b = 17m, the end load of P = 1N, the Young’s modulus
of E = 1N/m2 and the Poisson ratio of ν = 0.25. Different nodal distributions consist
of 14, 39, 125, 259, 441, 671 and 949 nodes and are used in the numerical analysis. Two
nodal arrangements which are used in MFV1 and MFV2 are shown in Fig. 17. For analyzing
the curved beam using MFV3 scheme, the regular background mesh with random nodal
distribution is used, as shown in Fig. 18.

The analytical solution for this problem has been given by Timoshenko and Goodier
(1970) as
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Fig. 18 Background mesh with random nodal distribution for modeling the curved beam using MFV3

σr = P

(

2Ar − 2B

r3
+ D

r

)

sin θ

σθ = P

(

6Ar + 2B

r3
+ D

r

)

sin θ

σrθ = −P

(

2Ar − 2B

r3
+ D

r

)

cos θ

ur = P

E

[

−2Dθ cos θ + sin θ

(

D(1 − ν) log r + A(1 − 3ν)r2 + B(1 + ν)

r2

)

+K sin θ + L cos θ

]

uθ = P

E

[

2Dθ sin θ − cos θ

(

−D(1 − ν) log r + A(5 + ν)r2 + B(1 + ν)

r2

)

+D(1 + ν) cos θ + K cos θ − L sin θ

]

N = a2 − b2 + (a2 + b2) log
b

a

A = 1

2N
, B = −a2b2

2N
, D = −a2 + b2

N
, L = Dπ

K = −
(

D(1 − ν) log r0 + A(1 − 3ν)r20 + B(1 + ν)

r20

)

, r0 = a + b

2
(28)

For the comparison purposes, the tangential displacement, uθ , along the line θ = 0 and the
distribution of hoop stress σθ along the line θ = π/4 are obtained from MFV schemes and
compared with the exact solutions in Fig. 19. It can be observed that the proposed methods
are able to predict results that converge to the analytical solutions.

Finally, the convergence and the accuracy of different MFV schemes are shown in Fig. 20
and compared with the FEM results corresponding to the different discretization levels. This
figure shows that the proposed MFV schemes lead to the much more accurate results than
FEM.Moreover, it reveals that the proposedMFV schemes are in the same order of accuracy
for this example.
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Fig. 19 The tangential displacement along the free end and the hoop stress σθ at θ = π
4 for the curved beam

obtained from WMTM-based MFV schemes, a MFV1, b MFV2 and c MFV3
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Fig. 20 Convergence of relative displacement and energy norms obtained fromWMTM-basedMFV schemes
for the curved beam problem

5 Conclusions

In this paper, a class of different two-dimensional MFV methods based on the WMTM
interpolation functions has been presented. WMTM-based MFV schemes show significant
advantages over the other meshless methods, where the domain integrals for the stiffness
matrix calculations are eliminated and the integration is only implemented over the CVs
boundaries using Gaussian quadrature rule. Moreover, the domain of influence of a field
node depends only on the positions of the neighbor nodes determined through a Delaunay
triangulation of the domain. The proposed MFV1 and MFV2 schemes utilize the node-
dependent CVs, while MFV3 scheme eliminates dependency of the field node positions and
CVs construction.

Analysis of two-dimensional elasticity problems by MFV schemes with WMTM inter-
polation functions leads to high accuracy results. In most of the considered problems, it can
be observed that the results obtained by MFV1 and MFV2 schemes are more accurate than
MFV3 and FEM. Although MFV3 is not as accurate as MFV1 and MFV2, however, its spe-
cial feature to construct the simple geometry CVs regardless of the position of field nodes
makes it attractive for the analysis of problems with complex geometries.
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