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Abstract An exoplanet, or extrasolar planet, is a planet that does not orbit the Sun, but is
around a different star, stellar remnant, or brown dwarf. Up to now, about 1900 exoplanets
were discovered. To better understand the dynamics of these exoplanets, a study with respect
to possible collisions of the planet with the central star is shown here.We present an expanded
model in a small parameter that takes into account up to the fifth order to analyze the effect of
this potential in the orbital elements of the extrasolar planet. Numerical simulations were also
performed using the N-body simulations, using the software Mercury, to compare the results
with the ones obtained by the analytical model. The numerical simulations are presented in
two stages: one considering the celestial bodies as point masses and the other one taking into
account their dimensions. This analysis showed that the planet collided with the central star
in the moment of the first inversion for orbits with high inclinations in various situations.
The results of the simulations of the equations developed in this study are consistent with the
N-body numerical simulations. We analyze also the flip of the inclination taking into account
the coupling of the perturbations of the third body, effect due to the precession of periastron
and the tide effect. In general, we find that such perturbations combined delay the time of
first inversion, but do not keep the planet in a prograde or retrograde orbit.
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1 Introduction

The number of exoplanets discovered (planets orbiting around other stars, not the Sun)
is officially already near 1900. From this number, 12 could be habitable planets, since the
distances of their orbits around theirmother stars is suitable for the existence of liquidwater on
the surface. This point has attracted the attention of researchers from several fields, including
celestial mechanics. In particular, to analyze the dynamic characteristics of the exoplanets,
which are typically found in retrograde orbits, several theories have been proposed to explain,
for example, the behavior of the orbital inclination. This fact may be caused by an inversion
of the inclination from prograde to retrograde trajectories. A study with respect to possible
collisions of the extrasolar planet with the central star is presented in the present paper.

Several papers (Naoz et al. 2013; Lithwick and Naoz 2011; Beaugé et al. 2012; Laskar
and Boué 2010) have analyzed the behavior of the inclination of extrasolar planets, but the
case of possible collisions during this evolution is not much studied. In the present work we
study the secular dynamics of hierarchical triple systems (when there is a clearly defined
binary and a third body, which stays separated from the binary, see Valtonen and Karttunen
2006) composed by a Sun-like central star and a Jupiter-like planet, which are under the
gravitational influence of a further perturbing star (brown dwarf).

In the present paper, for the first time, the gravitational potential is developed in closed form
up to the fifth order [R2 (quadrupole), R3 (octupole), R4 (hexadecapole) and R5 (hexapole)]
in a small parameter (α = a1/a2), where a1 is the semi-major axis of the planet and a2 is
the semi-major axes of the disturbing body, to analyze the behavior of the inclination and
eccentricity of the inner planet. The choice of the small parameter (α) is made because, in
general, the hierarchical systems have highly eccentric orbits which makes it difficult the
expansion of the perturbation in series of the eccentricity. It is more convenient to use the
ratio of the semi-major axis of the planet (a1) and the disturbing star (a2), because exact
expressions can be computed for the secular system (see Correia et al. 2013). The orbit of the
disturbing star is considered to be elliptical, planar and fixed in space. In order to develop the
long-period disturbing potential, the double-averaged method is applied (Szebehely 1989).
The average is applied with respect to the eccentric anomaly of the planet and the true
anomaly of the perturbing star. In the present research, the longitude of the ascending node
(h1) of the planet has not been eliminated, as done, for example, in the research presented in
Kozai (1962). Note that the perturbation caused by the second-order R2 term was extensively
analyzed in Kozai (1962) and Lidov (1962), using the restricted three-body problem and by
several other authors in diverse applications in celestial mechanics.

As the behavior of the inclination is strongly influenced when by the consideration of the
term R3 (see Naoz et al. 2011), this paper analyzes the behavior of the inclination for higher
orders of the potential to see what happens with the dynamics. Note that the choice of using
up to the fifth order is arbitrary, and it is motivated by the fact that the computational of high
orders are difficult. When considering in the octupole term in the disturbing potential, the
inclination of the inner planet can flip from prograde to retrograde trajectories (Naoz et al.
2011; Carvalho et al. 2013). The results showed that the inclusion of the R4C term gives
results that are worst than the ones given by the R3C term, but the inclusion of the R5C term
corrects the problem. Correia et al. (2013) shows that the effects of the tides combined with
gravitational interactions helped to reduce the initial mutual inclination to small values on
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time scales. This effect is not a direct consequence of the tides on the orbits, but results from
a secular forcing of the inner planet’s flattening.

We call the period of the first inversion of the inclination (prograde–retrograde) by “inver-
sion time”. We calculate the value of the eccentricity of the planet exactly at the inversion
time and we show the results in diagrams. The main goal is to analyze the behavior of the
inclination of the planet and the possible collision of the planet with the central star. Lidov
and Ziglin (1976) found a set of initial conditions such that a collision between the bodies
m0 and m1 occurs. The authors show a region of the parameters of the problem for which
the planar retrograde motion is unstable. The collision between the bodiesm0 andm1 occurs
when the orbits are almost orthogonal. Correia et al. (2012) considers the tidal effect, due
to the non-spherical shape of the planet (J2), coupled with the gravitational force due to the
disturbing star.

We also performed full numerical integrations using the Burlish–Stoer method from the
Mercury package (Chambers 1999), to compare the results with the ones obtained by the
analytical model. In this work we adapt the Mercury package to the binary problem.

2 Equations of motion

The triple system under study is characterized by a planet m1 in an elliptical orbit around
the center of mass of the system m0–m1, where m0 is a central star, also moving around the
center of mass of the systemm0–m1. There is also a further perturbing star (brown dwarf-m2)
moving in an outer elliptical orbit around the center of mass of the system. Let us consider
that the orbit of the disturbing body is planar and fixed in space. The vector r1 represents
the position of m1 with respect to the center of mass of the system and the vector r2 is the
position of the body m2 with respect to the center of mass of the inner orbit. � is the angle
between r1 and r2.

The Hamiltonian of the triple system can be written as follows (Harrington 1969; Ford
et al. 2000, 2004):

F = Gm0m1
2a1

+ G(m0+m1)m2
2a2

+ G
a2

∑∞
j=2 α j M j

(
r1
a1

) j (
a2
r2

) j+1
Pj (cos�), (1)

where G is the gravitational constant, Pj are the Legendre polynomials and

Mj = m0m1m2
m j−1
0 −(−m1)

j−1

(m0+m1) j
(2)

For the first time, we shall deal with the expansion up to the fifth order in α. We developed
the disturbing potential taking into account the expression for cos� written in the following
form (Yokoyama et al. 2003):

cos(�) = 1/4 (−1 + c2)(−1 + c1) cos( f1 + g1 − h1 − f2 − g2 + h2)

+ 1/4 (1 + c1)(1 + c2) cos( f1 + g1 + h1 − f2 − g2 − h2)

− 1/4 (1 + c2)(−1 + c1) cos( f1 + g1 − h1 + f2 + g2 + h2)

− 1/4 (−1 + c2)(1 + c1) cos( f1 + g1 + h1 + f2 + g2 − h2)

+ 1/2 s1 s2 (cos( f1 + g1 − f2 − g2) − cos( f1 + g1 + f2 + g2)), (3)

where we use the shortcut s1 = sin i1, c1 = cos i1, s2 = sin i2, and c2 = cos i2. Here i j ,
g j , h j and f j (for j = 1, 2) are the inclination, argument of the periastron, longitude of the
ascending node and true anomaly of the inner and outer orbit, respectively. Let us consider
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the orbit of the disturbing body as planar and fixed in space. Then, the orbital elements of
the disturbing star are i2 = 0, g2 = 0 and h2 = 0. Replacing these values in Eq. (3), the
following equation is obtained:

cos(�) = 1

2
(1 + cos(i1)) cos( f1 + g1 + h1 − f2)

+1

2
(1 − cos(i1)) cos( f1 + g1 − h1 + f2) (4)

Those equations are written in a inertial reference system that has the equator of the main
body in the x–y plane.

The algebraic manipulation and the average method used to eliminate short-period terms
of the potential are presented in Carvalho et al. (2015). The details of the development of
the equations presented here can be found in Carvalho et al. (2015). Thus, we obtain the
disturbing potential expanded up to the fifth order in a small parameter. The long-period
disturbing potential can be written as (see Carvalho et al. 2015)

R2C = 15β3L1
4 (e12(s21 ) cos(2 g1) + 3/5 (e12 + 2/3)(c21 − 1/3))(−e22 + 1)−3/2L2

−6

(5)

R3C = −675

128
L1

6e2 β4 e1
(7

9
e1

2(c1 + 1)(c1 − 1)2 cos(−h1 + 3 g1)

−(c1
2 + 2/3 c1 − 1/15)(c1 − 1) (e1

2 + 4/3) cos(g1 − h1)

+(c1 + 1)
((

− 7

9
e1

2c1
2 + 7

9
e1

2
)
cos(h1 + 3 g1) + (c1

2 − 2/3 c1 − 1/15)

× cos(g1 + h1) × (e1
2 + 4/3)

))
(−e2

2 + 1)−5/2L2
−8 (6)

R4C = 19845

1024
β5 L1

8
(

4/9 (e1
2 + 2)(c1

2 + c1 + 1/7)e2
2(c1 − 1)2e1

2

× cos(2 g1 − 2 h1) + 4/9 (e1
2 + 2)(c1 + 1)2e2

2(c1
2 − c1 + 1/7)e1

2 cos(2 g1
+ 2 h1) − 1/3 e1

4e2
2(c1 + 1)(c1 − 1)3 cos(4 g1 − 2 h1)

−1/3 e1
4e2

2(c1 − 1)(c1 + 1)3 cos(4 g1 + 2 h1)

− 4/3 (e1
2 + 2)(c1 + 1)(c1

2 − 1/7)(e2
2 + 2/3)(c1 − 1)e1

2 cos(2 g1)

−10

21
(c1 + 1)e2

2
(

e1
4 + 8/3 e1

2 + 8

15

)

(c1
2 − 1/7)(c1 − 1) cos(2 h1)

+ (e2
2 + 2/3)(e1

4(c1 − 1)2(c1 + 1)2 cos(4 g1)

+ 5/7

(

e1
4 + 8/3 e1

2 + 8

15

) (

c1
4 − 6/7 c1

2 + 3

35

) ))

× (−e2
2 + 1)−7/2L2

−10 (7)

R5C = 165375

4096
β6L1

10e1

(

− 9

10
(c1 − 1)2e1

2(e1
2 + 8/3)(c1 + 1)(e2

2 + 4/3)

× (c1
2 + 2/5c1 − 1/15) cos(−h1 + 3g1) + 3

20
(c1 − 1)3

(

c1 + 13

15

)

e1
2
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× (e1
2 + 8/3)(c1 + 1/3)e2

2 cos(3g1 − 3h1) − 3

20
(c1 − 1/3)e1

2

× (e1
2 + 8/3)(c1 + 1)3e2

2
(

c1 − 13

15

)

cos(3g1 + 3h1) + 33

50
(c1 − 1)3e1

4

× (c1 + 1)2(e2
2 + 4/3) cos(5g1 − h1) − 11

100
e1

4e2
2(c1 + 1)

× (c1 − 1)4 cos(5g1 − 3h1) + 11

100
e1

4e2
2(c1 − 1)(c1 + 1)4 cos(5g1 + 3h1)

+ (c1 − 1)

(

c1
4 + 4/5c1

3 − 2/5c1
2 − 4

15
c1 + 1

105

)

(e2
2 + 4/3)

× (e1
4 + 4e1

2 + 8/5) cos(g1 − h1) −
(

− 9

10
(c1 − 1)e1

2(e1
2 + 8/3)

× (c1 + 1)(c1
2 − 2/5c1 − 1/15)(e2

2 + 4/3) cos(h1 + 3g1)

+ 1/6(c1 − 1)2e2
2(e1

4 + 4e1
2 + 8/5)(c1

2 + 2/5c1 − 1/15) cos(g1 − 3h1)

− 1/6(c1 − 1)(c1 + 1)(c1
2 − 2/5c1 − 1/15)e2

2(e1
4 + 4e1

2 + 8/5)

× cos(g1 + 3h1) +
(
33

50
e1

4(c1 − 1)2(c1 + 1)2 cos(5g1 + h1)

+ cos(g1 + h1)

(

c1
4 − 4/5c1

3 − 2/5c1
2 + 4

15
c1 + 1

105

)

(e1
4 + 4e1

2 + 8/5)

)

× (e2
2 + 4/3)

)
(c1 + 1)

)
e2)(−e2

2 + 1)−9/2L2
−12 (8)

where we use the shortcut s1 = sin i1, c1 = cos i1.
Where

L1 = m0 m1
√
G(m0+m1)a1

m0+m1
(9)

L2 = m2 (m0+m1)
√
G(m0+m1+m2)a2

m0+m1+m2
(10)

β3 = 1
16

G2(m0+m1)
7m2

7

(m0+m1+m2)
3m0

3m1
3 (11)

β4 = 1
4

G2(m0+m1)
9m2

9(m0−m1)

(m0+m1+m2)
4m0

5m1
5 (12)

β5 = 1
8

G2(m0+m1)
10m2

11(m0
3+m1

3)

(m0+m1+m2)
5m0

7m1
7 (13)

β6 = 1
8
G2(m0+m1)

12m2
13(m0

4−m1
4)

(m0+m1+m2)
6m0

9m1
9 (14)

Therefore, the long-period disturbing potential is written as

〈F〉 = R0 + R2C + R3C + R4C + R5C , (15)

where

R0 = Gm0m1
2a1

+ G(m0+m1)m2
2a2

(16)

It is possible to replace Eq. (15) in the Lagrange planetary equations (Kovalevsky 1967)
to analyze the orbital elements of the planet, in particular the inclination and eccentricity.
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Evolutions of those elements can be obtained from numerical simulations that are performed
using the software Maple.

3 Results

Now the results, divided into two parts, is presented. The first part takes into account the
disturbing potential up to the fourth order, and it showsmaps with respect to the eccentricities
of the planet and of the disturbing star. The second part takes into account the disturbing
potential up to the fifth order. A comparison of different orders of the disturbing potential is
shown. It should be mentioned that the longitude of the ascending node of the planet appears
in the equations of motion. Since we are considering the disturbing body in a planar orbit,
the orbital elements of the disturbing star are i2 = 0, g2 = 0 and h2 = 0, which are the
inclination, argument of the periastron and longitude of the ascending node of the outer orbit,
respectively.

3.1 Planet collision analysis with the central star

The methodology consists in replacing Eq. (15) in the Lagrange planetary equations
(Kovalevsky 1967) and numerically integrate the set of nonlinear differential equations using
the software maple, to obtain the variations of the orbital elements of the planet as a func-
tion of time. The initial conditions were obtained from Naoz et al. (2011) and then they
were modified to generalize the study, as described in the text in the appropriate location.
The numerical integrations of the Lagrange equations were made using software maple.
The numerical integration used the routine “dsolve” of the software Maple with the options
“numeric” and “method=rkf45”. It finds a numerical solution using a Fehlberg fourth–fifth
order Runge–Kutta method with degree four. The default values for rkf45 are absolute error
of 1e−7 and relative error of 1e−6. The value for initial step, if not specified, is determined
by the method, taking into account the local behavior of the ODE system.

In this section an approach is presented to investigate possible collisions of the planet
with the central star. In the results shown in Figs. 1 and 2, the argument of the periastron
of the planet is equal to g1 = 250◦ and in Figs. 3 and 4 it is given by g1 = 0◦. In all
captions in Figs. 1, 2, 3 and 4 the orbital elements are a1 = 6AU, a2 = 100AU, i1 = 65◦,
h1 = 180◦ (Naoz et al. 2013, 2011). The star has mass 1M⊙, the planet has mass 1MJ

and the perturbing brown dwarf has mass 40MJ . Comparison of these figures are made by
looking at different values of the argument of peristron, eccentricity and different orders
of the disturbing potential due to the third body (star or another planet). The color scale
represents the value of the eccentricity of the planet at the moment of the first inversion of
the inclination, i.e., when the inclination changes its value from prograde to retrograde. For
the first time, when the terms R2C + R3C (see Fig. 1) are taken into account, the eccentricity
of the planet increases to high values at the first inversion, which may cause a collision with
the central star. In particular, note that the values for e2 = 0.6 and e2 = 0.7 in the map shown
in Fig. 1 present yellow points, indicating that the eccentricity reaches high values, close to
unity. This fact characterizes that the planet may collide with the central star. Note also that
the highest values of e1 are obtained for small values of the initial eccentricity of the body
m1 (e1(0)) and large values of the initial eccentricity of the body m2 (e2(0)). For values of
e2(0) smaller than 0.5 there is no inversion of the inclination of the planet in the simulation
period. In Correia et al. (2013), the authors show that, when the dimensions of the bodies
(two-planet systems) are taken into account, the planet is most likely to collide with the star.
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Fig. 1 Diagram e1(0)× e2(0)× e1(tinv). Perturbations: R2C+R3C . Initial conditions g1 = 250◦,h1 = 180◦.
The colors indicate the value of the eccentricity of the planet exactly at the time of the first inversion (tinv in
multiples of 107 years), and the gray color indicates that no flip occurred along the integration
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Fig. 2 Diagram e1(0) × e2(0) × e1(tinv). Perturbations: R2C + R3C + R4C . Initial conditions: g1 = 250◦,
h1 = 180◦. The colors indicate the value of the eccentricity of the planet exactly at the time of the first inversion
(tinv in multiples of 107 years), and the gray color indicates that no flip occurred along the integration

Looking at Fig. 2, that considers the disturbing potential with the R2C +R3C +R4C terms,
it is possible to see that the highest values of e1 at the first inversion occurs when e2(0) = 0.6.
Note that the concentration of yellow points indicates a range of values e1 whichmay result in
a possible collision with the central star. Several authors (see Naoz et al. 2011, 2012, 2013;
Li et al. 2014) have analyzed the three-body problem considering a triple system where
the disturbing star has, in general, high eccentricity (e2(0) = 0.6, e2(0) = 0.7). This fact
characterizes this orbit as a very important one and it must be analyzed very carefully, because
most of the orbits of the planet around this star may collide, as shown in Fig. 2. The difference
between Figs. 1 and 2 is basically the concentration of orbits with high eccentricities, caused
by the expansion of the potential up to the fourth order.

Now, considering the value of the argument of the periastron equal to 0◦ (g1 = 0◦), we
obtain Figs. 3 and 4. Note that, in this case, both models have similar characteristics but still
larger values are noticed of the eccentricity for the model that takes into account the terms
R2C + R3C + R4C . In various simulations we note that the initial choice of the argument
of the periastron of the inner planet is extremely important to characterize the behavior of
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Fig. 3 Diagram e1(0) × e2(0) × e1(tinv). Perturbations: R2C +R3C . Initial conditions: g1 = 0◦, h1 = 180◦.
The colors indicate the value of the eccentricity of the planet exactly at the time of the first inversion (tinv in
multiples of 107 years), and the gray color indicates that no flip occurred along the integration

e1(tinv)

 0  0.05  0.1  0.15  0.2  0.25
e1 (0)

 0.5

 0.6

 0.7

 0.8

e2
 (0

)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Fig. 4 Diagram e1(0) × e2(0) × e1(tinv). Perturbations: R2C + R3C + R4C . Initial conditions: g1 = 0◦,
h1 = 180◦.The colors indicate the value of the eccentricity of the planet exactly at the time of the first inversion
(tinv in multiples of 107 years), and the gray color indicates that no flip occurred along the integration

how the eccentricity is changing. Comparing Figs. 1 and 2 with Figs. 3 and 4 we noticed
that, in the simulation where g1 = 250◦ (Figs. 1, 2), there was no inversion of the inclination
for various values of e1. Especially for values of e1 larger than 0.18 there was no inversion
in the simulated period (3.5 × 107 years). In the case where g1 = 0◦ (Figs. 3, 4) there was
inversion of the inclination for values for e1 up to 0.25 during the simulated period. This
behavior presented by the periastron argument can also be seen in Fig. 5, where orbits in the
range 150 ≤ g ≤ 300 take longer to have the first inversion of the inclination.

3.2 Analysis of the behavior of the inclination of the planet

In this section a comparison of the effects of different orders of the disturbing potential is
presented. Figure 5 shows the inversion time for different values of the argument of the planet
periastron. In this figure the inversion time for different orders of the disturbing potential is
considered. Note that for orbits in the range 150 ≤ g1 ≤ 300 the inversion time diverges
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Fig. 5 g1 × tinv, i1 = 65◦. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01, e2 = 0.6, h1 = 180◦.
The star has mass 1M⊙, the planet has mass 1MJ and the outer brown dwarf has mass 40MJ

Fig. 6 tinv × i1, g1 = 0◦. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01, e2 = 0.6, h1 = 180◦.
The star has mass 1M⊙, the planet has mass 1MJ and the outer brown dwarf has mass 40MJ

when comparing the three models, while for other values of the periastron the inversion time
is the same for all three models.

Figure 6 shows the results of a simulation where the inclination of the orbit of the planet
starts with 5◦, varying in steps of 5◦ up to 85◦ (time simulation of 3.5 × 107 years). It is
worth noting that only the orbits with inclination i1 ≥ 50◦ presented inversion, i.e., the
inclination flip in its orientation (prograde to retrograde). For higher values of the initial
inclination the inversion time is smaller. Note that taking into account the perturbation due
to the R2C + R3C + R4C terms, the first inversion time is larger than the other two models to
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Fig. 7 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, i1 = 65◦,
e1 = 0.01, e2 = 0.6, g1 = 0, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer
brown dwarf has mass 40MJ

Fig. 8 Temporal evolution of the
inclination. Initial conditions:
a1 = 6 AU, a2 = 100 AU,
e1 = 0.01, e2 = 0.6, g1 = 0,
h1 = 180◦. The star has mass
1M⊙, the planet has mass 1MJ
and the outer brown dwarf has
mass 40MJ . Direct numerical
integration of the problem of
three bodies (considering their
dimensions), i1 = 65◦

 30

 40
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 0  0.5  1  1.5  2

i 1
 (d

eg
re

es
)

time (107 years)

65◦. For values of the initial inclination between 65◦ and 70◦, the time of the first inversion
coincide for all three models. For values of the initial inclination between 70◦ and 85◦, the
first inversion time is larger for the model taking into account the terms R2C + R3C and the
other two models agree. Note that the larger the initial value of the inclination, the smaller
the time of the first flip.

The graphics of the inclination versus time are shown in Figs. 7, 8, 9 and 10. Figures
7 (except the red line) and Fig. 10 were obtained from numerical simulation (using the
software Maple) of equations developed, namely Eqs. (5)–(8), considering different orders
of the disturbing potential. Figures 7 (line red), 8, 9a and b were obtained using the N-body
numerical simulations with the Mercury code (Chambers 1999). As we can observe in Figs.
1, 2, 3 and 4, the eccentricity of the inner orbit can occasionally reach extremely high values
and its inclination can become higher than 90◦. Looking at Fig. 7 it is clear that, at the
first inversion of the inclination, the three models show similar results. But, for the second
inversion and the next ones, there are different characteristics for the models R2C + R3C and
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Fig. 9 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01,
e2 = 0.6, g1 = 0, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown dwarf
has mass 40MJ . a Direct numerical integration of the problem of three bodies (considering the dimensions of
the body), i1 = 50◦, b direct numerical integration of the problem of three bodies (considering the dimensions
of the body), i1 = 80◦

Fig. 10 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, i1 = 50◦,
e1 = 0.01, e2 = 0.6, g1 = 0, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer
brown dwarf has mass 40MJ

R2C + R3C + R4C present different results from direct numerical integration of the problem
of three bodies, while the model R2C + R3C + R4C + R5C is in agreement with the direct
simulation, as shown in Fig. 7.

Looking at Figs. 5 and 6 we get a range of values of the argument of the periastron
(150 ≤ g1 ≤ 300◦) and inclination, where the models can show different inversion times in
the first flip. Figures 7 and 8 show the behavior of the inclination of the planet considering the
three body problem in two stages, one considering the celestial body as a point mass and the
other taking into account a body with physical dimensions. When the existence of the radius
of the planet is taken into account, i.e., the celestial body is not considered as a mass point,
the orbit may collide for higher values of the inclination, as shown in Figs. 8 (65◦), 9a (50◦)
and b (80◦). This result is in agreement with Lidov and Ziglin (1976), where it is found that
a set of initial conditions (higher values of the inclination), such that a collision between the
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Fig. 11 e2 × e1 × tinv. Disturbing potential R2C + R3C + R4C + R5C . Initial conditions: a1 = 6 AU,
a2 = 100 AU, i1 = 65◦, g1 = 0◦, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the

outer brown dwarf has mass 40MJ . The colors indicate the time in multiples of 107 years, and the gray color
indicates that no flip occurred along the integration

bodies m0 and m1 may occur. Note that for values of the inclination near 90◦, the inversion
time is lower than that for other values of the inclination (see, for example, Fig. 9b). Thus,
the orbit migrates from prograde to retrograde in lower inversion times, but considering the
radius of the planet the collision may occur at the first inversion. As a result, the growth of
the inclination and eccentricity of the planet reached high values, as we can see in Figs. 1, 2,
3, 4, 5, 6 and 7, which may cause the planet to collide with the central star.

Now, analyzing Fig. 10 (initial inclination of 50◦), we find that the model developed up
to the third order (octupole) shows the same behavior of the one presented by the model
developed up to the fifth order. The model that considers development up to the fourth order
already has a time delay in the first inversion. Note that comparing the results with the direct
simulation of the three body problem (considering the dimensions of the body), shown in
Fig. 9a, the models represented by R2C + R3C and R2C + R3C + R4C + R5C show very
well the behavior of the dynamics of the problem. Analyzing other cases we noticed that the
main effect related to the inversion of the inclination between prograde and retrograde orbits
is caused by the odd terms of the development with respect to the Legendre polynomials,
especially due to the R3C and R5C terms.

Figures 11 and 12 show the time of the first inversion of the planet’s inclination for different
values of the eccentricity of the planet and disturbing star. Figure 11 is made taking into
account the disturbing potential expanded to the fifth order, and Fig. 12 shows the behavior
of the inversion of the inclination, considering the direct numerical integration. Note that for
the highly eccentric orbits of the disturbing star, the flip occurs in a short period of time.
For orbits with small eccentricity of the disturbing star the flip almost does not occur in the
simulation time used. When there is an inversion of the inclination, the time to experience
this phenomenon is much higher than in the case of highly eccentric orbits. As shown in
Figs. 11 and 12, the analytical model (up to the fifth order) is in accordance with the direct
numerical integration with minor differences. Figure 13 shows exactly the modulus of the
difference between the analytical and numerical models.

3.3 Force due to the effect of general relativity (GR) and tide

In this section an approach is presented with respect to the secular problem in first order
in a post-Newtonian expansion of general relativity (GR) and tide effects. It is known that
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Fig. 12 e2 × e1 × tinv. Direct
numerical integration. Initial
conditions: a1 = 6 AU, a2 = 100
AU, i1 = 65◦, g1 = 0◦,
h1 = 180◦. The star has mass
1M⊙, the planet has mass 1MJ
and the outer brown dwarf has
mass 40MJ . The colors indicate
the time in multiples of 107

years, and the gray color
indicates that no flip occurred
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Fig. 13 e2 × e1 × tinv. The difference between direct numerical integration and the disturbing potential
expanded to the fifth order. Initial conditions: a1 = 6 AU, a2 = 100 AU, i1 = 65◦, g1 = 0◦, h1 = 180◦. The
star has mass 1M⊙, the planet has mass 1MJ and the outer brown dwarf has mass 40MJ . The colors indicate

the time in multiples of 107 years, and the gray color indicates that no flip occurred along the integration

the Kozai–Lidov (1962, 1962) mechanism can produce highly eccentric orbits for a highly
inclined perturbed orbit. However, this effect may be reduced or modified if the inner binary
separation at pericenter is sufficiently small for additional forces to overcome the tidal torque
exerted by the outer binary (see Liu et al. 2014). If the energy associated with these additional
forces exceeds the interaction potential given by Eq. (1) (see Liu et al. 2014), the Kozai–
Lidov mechanism is said to be arrested. These forces are represented in Eqs. (17) and (18).
The post-Newtonian potential associated with periastron advance is (e.g., Liu et al. 2014;
Eggleton and Kiseleva-Eggleton 2001).

〈RGR〉 = − 3G2m0m1 (m0+m1)

a12c2
√

1−e12
, (17)

where c is the speed of light. The perturbation considered in Eq. (17) gives rise to the
precession of the argument of periastron of the inner orbit.

The potential due to the non-dissipative tidal bulge onm1 is given by (e.g., Liu et al. 2014;
Eggleton and Kiseleva-Eggleton 2001)

〈RTIDE〉 = −G(1+3e12+3/8e14)m0
2k2,1RJ

5

a16(1−e12)9/2
, (18)

where k2,1, R1 are the tidal Love number and the radius of m1, respectively. For the other
constants, we have k2,1 = 0.37 and RJ = 142984/2 (Liu et al. 2014).
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Fig. 14 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01,
e2 = 0.6, g1 = 45◦, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown
dwarf has mass 40MJ

Fig. 15 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01,
e2 = 0.6, g1 = 45◦, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown
dwarf has mass 40MJ

The long-period disturbing potential can be written as

R = ∑5
j=2 R jC + RGR + RTIDE (19)

This potential is replaced in the Lagrange planetary equations (Kovalevsky 1967) and
integrated numerically to compare the different orders of the disturbing potential.

Figure 14 shows the planet inclination behavior considering different orders of the dis-
turbing potential. For the considered initial conditions (g1 = 45◦), the potential considering
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Fig. 16 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01,
e2 = 0.6, g1 = 45◦, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown
dwarf has mass 40MJ

the terms R2C + R3C + R4C and R2C + R3C + R4C + R5C have similar results. Taking into
account the R2C + R3C potential the behavior of the inclination is different. In this case,
after the second inversion, the planet remains for a long time in prograde orbits, while in the
other two models the planet remains 50 % of the time in prograde and retrograde orbits. Note
that, when it is taken into account, the perturbations due to the precession of the periastron
(GR) and the tide effect, the flip of the inclination does not occur in the simulated period.
The inclination is controlled by the coupling of the forces considered in the dynamics and,
therefore, does not present the effect of the flip in the inclination of the inner planet (see Fig.
15). But, increasing the simulation time, we can see that there are still inclination inversions
even considering the additional forces in the system, as shown in Fig. 16. Considering the
coupling of the perturbations used, that are the perturbations of the third body, effects due
to the precession of periastron and the tide effect, in general, we find that such perturbations
combined delay the time of first inversion, but not exactly keeps the planet in a prograde or
retrograde orbit (see Fig. 16). Note that, when it is taken into account up to the fifth order of
the disturbing potential combined with the relativistic effects and the tide effect, we found
that the inclination migrates from prograde to retrograde and then remains in a retrograde
orbit until the end of the simulation. This inclination behavior is shown in Fig. 17. As shown
in Figs. 15 and 17, the relativistic and tide effects completely change the dynamics of the
inclination behavior.

4 Conclusions

The present paper investigated the problem of the inversion of the inclination of the planet
disturbed by a distant brown dwarf. The mathematical model considered the R5C term of
the potential of the disturbing body, which was not done by previous researches. The results
showed that the inclusion of this term changes the times of the inversion of the inclination
of the orbit. To develop the equations of motion, the double-averaged method is applied to
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Fig. 17 Temporal evolution of the inclination. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.01,
e2 = 0.6, g1 = 45◦, h1 = 180◦. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown
dwarf has mass 40MJ

eliminate the short-period terms of the disturbing potential. The disturbing potential was
explicitly presented up to the fifth order considering the disturbing star in a planar orbit. A
comparison of different orders of the disturbing potential is presented. The results show that
the odd terms of the development of the disturbing function in terms of Legendre polynomials
represents better the dynamic behavior of the system when compared with the numerical
simulation of the problem of three bodies. In particular, the terms R3C (octupole) and R5C
(hexapole).We note that the initial choice of the argument of the periastron of the inner planet
is extremely important to describe the behavior of how the eccentricity is changing.

We show maps with respect to the eccentricities of the planet and of the disturbing star.
These maps represent the value of the eccentricity of the planet at the moment of the first
inversion of the inclination, i.e., when the inclination changes its value from prograde to
retrograde. We showed that the eccentricity can reach very high values and their inclination
can become higher than 90◦.

Another point investigated is related to the collision of the planet with the mother star.
Including this verification, several results were found. Regions that had oscillations in inclina-
tion in fact resulted in possible collisions before the inversion. Some examples are as follows:
for i = 50◦ (see Fig. 9a) the collision happened after 1×107 years; for i = 80◦ (see Fig. 9b)
the collision happened after 0.2×107 years. We observed that, taking into account the radius
of the planet (considering the dimensions of the body) in the direct numerical integrations,
the planet may collide with the star for high values of the inclination. Note that the collision
occurs exactly at the first inversion.

Here we also presented an approach with respect to the secular problem of first order in a
post-Newtonian expansion of the general relativity (GR) and tide effect. We showed the third
body perturbation effect in different orders of the disturbing potential and also inserted extra
forces in the dynamics to evaluate the characteristic of the inclination due to these forces. In
general, we find that such perturbations combined delay the time of first inversion, but do
not keep the planet in a prograde or retrograde orbit.
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We present a model for the disturbing potential that takes into account the perturbation of
the third body expanded up to the fifth-order, the effects of tides and the general relativity,
which is a more realistic model. Besides that, this fact generates results, which are in closer
agreement with the direct numerical integration. So, in general, the present paper showed a
more realistic study of this interesting problem in planetary celestial mechanics.
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