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Abstract The aim of this paper is to introduce some simple and fast formulas for approx-
imating the gamma function. Some involved functions are completely monotonic. The
corresponding asymptotic series are constructed and some sharp inequalities are established.
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1 Introduction and motivation

The problem of approximating the factorial function n!, n = 1, 2, 3, . . . and its extension
gamma function � to positive real numbers x, defined by

� (x) =
∫ ∞

0
t x−1e−tdt,

is widely studied by the researchers. Only in the recent past, many formulas were pre-
sented. We refer for example to Batir and Chen (2012), Batir (2010), Burnside (1917), Chen
(2013), Chen and Lin (2012), Chen and Mortici (2012), Dubourdieu (1939), Gosper (1978),

Communicated by Jose Alberto Cuminato.

B Cristinel Mortici
cristinel.mortici@hotmail.com

Sorinel Dumitrescu
sorineldumitrescu@yahoo.com
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Kalmykov andKarp (2013), Laforgia andNatalini (2013), Lu (2014), Lu (2014), Lu andWang
(2013), Mortici (2009), Mortici (2010), Nemes (2012), where also estimates for polygamma
and other related functions were stated. Starting from the Stirling’s formula

� (x + 1) ∼ √
2πxx+

1
2 e−x (1.1)

and Burnside’s formula (Burnside 1917)

� (x + 1) ∼ √
2π

(
x + 1

2

e

)x+ 1
2

, (1.2)

Mortici (2009) considered the following approximations for every p ∈ [0, 1]:

� (x + 1) ∼ √
2πee−p

(
x + p

e

)x+ 1
2

(1.3)

and proved that the best results are obtained when

p = 3 ± √
3

6
.

The following asymptotic series is associated to Stirling’s formula (1.1)

� (x + 1) ∼ √
2πxx+

1
2 e−x × exp

{ ∞∑
m=1

B2m

2m (2m − 1) x2m−1

}
, (x ∈ R; x → ∞) ,

where Bj are the Bernoulli numbers defined by

x

ex − 1
=

∞∑
j=0

Bj

j ! x
j .

For details, see Abramowitz and Stegun (1972, Rel. 6.1.40, p. 257).
Chen and Lin (2012) gave the entire asymptotic series associated to the Gosper’s formula

Gosper (1978)

� (x + 1) ∼ √
2πx

( x
e

)x
√
1 + 1

6x

and Ramanujan’s formula (Ramanujan 1988)

� (x + 1) ∼ √
2πx

( x
e

)x 6

√
1 + 1

2x
+ 1

8x2
+ 1

240x3
.

We present in this paper the following formulas:

� (x + 1) ∼
√
2πe1+

√
2
( x
e

) 1
2+

√
2
3

⎛
⎝ x − 1√

2

e

⎞
⎠

x−
√
2
3

(1.4)

and

� (x + 1) ∼ ρ (x) :=
√
2πe1−

√
2
( x
e

) 1
2−

√
2
3

⎛
⎝ x + 1√

2

e

⎞
⎠

x+
√
2
3

, (1.5)
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Efficient approximations of the gamma function and further properties 679

which are part of the general formula

� (x + 1) ∼ k
(x + a)x+b+ 1

2

xb
e−x , (x → ∞; a, b, k ∈ R) . (1.6)

This is an extension of Stirling’s formula, as the factor xx+ 1
2 is replaced by (x + a)x+b+ 1

2 /xb.
By imposing the natural condition

lim
x→∞ � (x + 1) /

(
k
(x + a)x+b+ 1

2

xb
e−x

)
= 1,

we can easily find k = √
2πe−a, so (1.6) becomes

� (x + 1) ∼ μ (a, b, x) := √
2π

(x + a)x+b+ 1
2

xb
e−(x+a), (x → ∞) . (1.7)

Remark that the particular approximations � (x + 1) ∼ μ (0, 0, x) , � (x + 1) ∼ μ( 12 , 0, x)
and � (x + 1) ∼ μ (p, 0, x) are (1.1), (1.2) and (1.3), respectively.

Next we show that the most accurate approximations among all approximations (1.7) are

� (x + 1) ∼ μ

(
− 1√

2
,−1

2
−

√
2

3
, x

)

and

� (x + 1) ∼ μ

(
1√
2
,−1

2
+

√
2

3
, x

)
,

that are (1.4) and (1.5), respectively. Their geometric mean

� (x + 1) ∼ √
2πx

( x
e

)x
(
1 − 1

x
√
2

) x
2 −

√
2
6

(
1 + 1

x
√
2

) x
2 +

√
2
6

(1.8)

is an approximation of the same order.
We associate to (1.7), the function

Fa,b (x) = ln
� (x + 1)

√
2π (x+a)

x+b+ 1
2

xb
e−(x+a)

to establish the following sharp inequalities, for every real x ≥ 1:

α ×
√
2πe1+

√
2
( x
e

) 1
2+

√
2
3

⎛
⎝ x − 1√

2

e

⎞
⎠

x−
√
2
3

≤ � (x + 1)

≤ β ×
√
2πe1+

√
2
( x
e

) 1
2+

√
2
3

⎛
⎝ x − 1√

2

e

⎞
⎠

x−
√
2
3

, (1.9)
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α ×
√
2πe1−

√
2
( x
e

) 1
2−

√
2
3

⎛
⎝ x + 1√

2

e

⎞
⎠

x+
√
2
3

≤ � (x + 1)

≤ δ ×
√
2πe1−

√
2
( x
e

) 1
2−

√
2
3

⎛
⎝ x + 1√

2

e

⎞
⎠

x+
√
2
3

, (1.10)

and

α × √
2πx

( x
e

)x
(
1 − 1

x
√
2

) x
2 −

√
2
6

(
1 + 1

x
√
2

) x
2 +

√
2
6

≤ � (x + 1)

≤ σ × √
2πx

( x
e

)x
(
1 − 1

x
√
2

) x
2 −

√
2
6

(
1 + 1

x
√
2

) x
2 +

√
2
6

, (1.11)

with α = 1 and

β = e1−
√
2
2

√
2π

(
1 −

√
2
2

)1− √
2
3

= 1.02330953 . . . ,

δ = e1+
√
2
2

√
2π

(
1 +

√
2
2

)1+ √
2
3

= 1.001261911 . . . ,

and

σ = e

√
2π

(
1 −

√
2
2

) 1
2−

√
2
6

(
1 +

√
2
2

) 1
2+

√
2
6

= 1.012225694 . . . .

2 The best constants in a class of approximations

We concentrate in this section in the problem of finding the most accurate approximations
among all approximations (1.7). Whenever an approximation formula f (n) ∼ g (n) , as
n → ∞, is given, we define the sequence wn by the relations

f (n) = g (n) expwn , n = 1, 2, 3, . . . ,

and we consider the approximation f (n) ∼ g (n) to be better when the sequence wn con-
verges to zero faster.

The following result is a main tool for evaluating the convergence rate of the sequence
wn :

Lemma 1 Let wn be a sequence converging to zero, such that

lim
n→∞ nk (wn − wn+1) = l ∈ R,
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Efficient approximations of the gamma function and further properties 681

for some k > 1. Then

lim
n→∞ nk−1wn = l

k − 1
.

For details and several applications, see, e.g., Batir and Chen (2012), Batir (2010), Chen
(2013), Chen and Lin (2012), Chen and Mortici (2012), Lu (2014), Lu and Wang (2013), or
Mortici (2010).

For the sequence wn = wn (a, b) associated to (1.7):

� (n + 1) = √
2π

(n + a)n+b+ 1
2

nb
e−(n+a) expwn,

we have:

wn − wn+1 = t2
n2

+ t3
n3

+ t4
n4

+ O

(
1

n5

)
, (2.1)

where

t2 (a, b) = − 1

12
(6a + 12ab − 6a2 − 1);

t3 (a, b) = 1

12
(6a + 12ab − 8a3 + 12a2b − 1);

t4 (a, b) = − 1

40
(20a + 40ab + 10a2 − 20a3 − 30a4 + 60a2b + 40a3b − 3).

By (2.1), if t2 	= 0, then the speed of convergence of wn − wn+1 is n−2 and by Lemma 1,
the sequence wn converges to zero as n−1.

If t2 = 0, then by (2.1), the speed of convergence of wn − wn+1 is at least n−3, so the
speed of convergence of wn is at least n−2.

As we are interested in finding the fastest sequence wn, we should have at least t2 = 0.
Similarly, the sequence wn has the highest speed of convergence when t2 = 0 and t3 = 0,

that is
{
6a + 12ab − 6a2 − 1 = 0
6a + 12ab − 8a3 + 12a2b − 1 = 0

.

The solutions of this system,

a∗ = − 1√
2
, b∗ = −1

2
−

√
2

3

and

a# = 1√
2
, b# = −1

2
+

√
2

3
,

produce the following approximations:

� (n + 1) ∼
√
2πe1+

√
2
(n
e

) 1
2+

√
2
3

⎛
⎝n − 1√

2

e

⎞
⎠

n−
√
2
3

, (2.2)
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682 C. Mortici, S. Dumitrescu

respectively

� (n + 1) ∼
√
2πe1−

√
2
(n
e

) 1
2−

√
2
3

⎛
⎝n + 1√

2

e

⎞
⎠

n+
√
2
3

, (2.3)

In these cases,

wn (a∗, b∗) − wn+1 (a∗, b∗) = 1

80n4
+ O

(
1

n5

)

and

wn (a#, b#) − wn+1 (a#, b#) = 1

80n4
+ O

(
1

n5

)
,

so by Lemma 1, we conclude that

lim
n→∞ n3wn (a∗, b∗) = lim

n→∞ n3wn (a#, b#) = 1

240
.

For every pair (a, b) with (a, b) 	= (a∗, b∗) and (a, b) 	= (a#, b#) , the speed of convergence
of the sequence wn (a, b) is at most n−2. Other approximations (1.7) are of order at most
n−2, which is less than (2.2) and (2.3).

3 Asymptotics and truncations

In the first part of this section we construct the asymptotic series associated to (1.7). Recall
that an asymptotic series is of great interest in approximation theory, since truncations of this
series at any m -th term provide estimates of order n−(m+1), for every integer m ≥ 1.

Theorem 1 The following formula holds true, for every integer n ≥ 1:

� (x + 1) = μ (a, b, x) exp

{
n∑

m=1

sm
xm

+ O

(
1

xn+1

)}
(x → ∞) , (3.1)

where

sm = (−1)m am
[(

b + 1

2

)
1

m
− a

m + 1

]
+ Bm+1

m (m + 1)
(1 ≤ m ≤ n) .

Proof Using (1.7), we get

� (x + 1)

μ (a, b, x)
=

√
2πxx+ 1

2 e−x

√
2π (x+a)

x+b+ 1
2

xb
e−(x+a)

× � (x + 1)√
2πxx+ 1

2 e−x

∼ ea
(

x

x + a

)x (
1 + a

x

)−
(
b+ 1

2

)
exp

{ ∞∑
m=1

B2m

2m (2m − 1) x2m−1

}
. (3.2)

As

a + x ln
x

a + x
=

∞∑
m=1

(−1)m−1 am+1

(m + 1) xm
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Efficient approximations of the gamma function and further properties 683

and (
b + 1

2

)
ln

(
1 + a

x

)
=

(
b + 1

2

) ∞∑
m=1

(−1)m−1 am

mxm
,

we obtain

a + x ln
x

a + x
=

n∑
m=1

(−1)m−1 am+1

(m + 1) xm
+ O

(
1

xn+1

)
(x → ∞) ,

respectively
(
b + 1

2

)
ln

(
1 + a

x

)
=

(
b + 1

2

) n∑
m=1

(−1)m−1 am

mxm
+ O

(
1

xn+1

)
(x → ∞) .

Now the conclusion follows by replacing in (3.2). ��
Precisely, the first terms in (3.1) are the following:

� (x + 1) = μ (a, b, x)

× exp

{
−6a + 12ab − 6a2 − 1

12x
+ a2 (6b − 4a + 3)

12x2

−60a3 − 90a4 + 120a3b + 1

360x3
+ a4 (10b − 8a + 5)

40x4
+ · · ·

}
.

In particular,

� (x + 1) = μ (a∗, b∗, x)

× exp

{
1

240x3
+ 1

240x4
√
2 + 5

1008x5
+ 1

504x6
√
2 + · · ·

}
;

� (x + 1) = μ (a#, b#, x)

× exp

{
1

240x3
− 1

240x4
√
2 + 5

1008x5
− 1

504x6
√
2 + · · ·

}
. (3.3)

As usually, truncations of an asymptotic series offer increasingly accurate approximations.
Sometimes, it can be proved that these truncations are under- or over-approximations. We
are in a position to present the following result.

Theorem 2 The following inequalities hold true, for every integer n ≥ 1:

exp

{
1

240n3
− 1

240n4
√
2

}
<

� (n + 1)

μ (a#, b#, n)
< exp

{
1

240n3

}
.

Proof By taking the logarithms, we define the sequences

an = ln
� (n + 1)

μ (a#, b#, n)
−

(
1

240n3
− 1

240n4
√
2

)

and

bn = ln
� (n + 1)

μ (a#, b#, n)
− 1

240n3
.

We asserted an > 0 and bn < 0, but as an and bn converge to zero, it suffices to prove that an
is strictly decreasing and bn is strictly increasing. In this sense, we have an+1 − an = u (n)

and bn+1 − bn = v (n) , where

123



684 C. Mortici, S. Dumitrescu

u (x) = ln (x + 1)

−
⎡
⎣

(
1

2
−

√
2

3

)
ln

x + 1

e
+

(
x + 1 +

√
2

3

)
ln

x + 1 + 1√
2

e

⎤
⎦

+
⎡
⎣

(
1

2
−

√
2

3

)
ln

x

e
+

(
x +

√
2

3

)
ln

x + 1√
2

e

⎤
⎦

−
(

1

240 (x + 1)3
− 1

240 (x + 1)4
√
2

)
+

(
1

240x3
− 1

240x4
√
2

)

and

v (x) = ln (x + 1)

−
⎡
⎣

(
1

2
−

√
2

3

)
ln

x + 1

e
+

(
x + 1 +

√
2

3

)
ln

x + 1 + 1√
2

e

⎤
⎦

+
⎡
⎣

(
1

2
−

√
2

3

)
ln

x

e
+

(
x +

√
2

3

)
ln

x + 1√
2

e

⎤
⎦

− 1

240 (x + 1)3
+ 1

240x3
.

We have

u′′ (x) = − U (x)

960x6 (x + 1)6
(
x +

√
2
2

)2 (
x +

√
2
2 + 1

)2 < 0

and

v′′ (x) = V (x)

960x5 (x + 1)5
(
x +

√
2
2

)2 (
x +

√
2
2 + 1

)2 > 0,

where

U (x) = x(576
√
2 + 764) + 1000x8 + x7(1360

√
2 + 4000)

+x2(2420
√
2 + 3240) + x3(5800

√
2 + 8004) + x6(4760

√
2 + 9052)

+x4(8660
√
2 + 12632) + x5(8224

√
2 + 13156) + 80 + 60

√
2

and

V (x) = 480x7
√
2 + x(216

√
2 + 324) + x2(864

√
2 + 1272)

+x6(1680
√
2 + 920) + x3(2016

√
2 + 2816) + x5(2880

√
2 + 2760)

+x4(3000
√
2 + 3708) + 36 + 24

√
2.

Now u is strictly concave, v is strictly convex on [1,∞),with u (∞) = v (∞) = 0, so u < 0
and v > 0 on [1,∞). As we explained, the proof is now completed. ��
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Efficient approximations of the gamma function and further properties 685

Using a similar method, we also proved the following better inequalities for every integer
n ≥ 1:

exp

{
1

240n3
− 1

240n4
√
2 + 5

1008n5
− 1

504n6
√
2

}

≤ � (n + 1)

μ (a#, b#, n)

≤ exp

{
1

240n3
− 1

240n4
√
2 + 5

1008n5

}
.

Moreover, our computations proved that by truncation the series (3.3) at the first few terms,
under-approximations are obtained. As an example, the following inequality holds true for
every integer n ≥ 1:

� (n + 1) > μ (a∗, b∗, n) exp

{
1

240n3
+ 1

240n4
√
2

}
.

We can establish a similar result for an entire class of real numbers a, b.

Theorem 3 Let a, b be real numbers, a 	= 0, such that

b >
4a − 3

6
and ab >

90a4 − 60a3 − 1

120a2
.

Then there exists a real number m such that the following inequalities are valid, for every
integer n ≥ m:

μ (a, b, n) exp

{
−6a + 12ab − 6a2 − 1

12n

}

≤ � (n + 1)

≤ μ (a, b, n) exp

{
−6a + 12ab − 6a2 − 1

12n
+ a2 (6b − 4a + 3)

12n2

}
.

Proof We use the same procedure as in the proof of Theorem 2. Let

xn = ln
� (n + 1)

μ (a, b, n)
+ 6a + 12ab − 6a2 − 1

12n

and

yn = ln
� (n + 1)

μ (a, b, n)
+ 6a + 12ab − 6a2 − 1

12n
− a2 (6b − 4a + 3)

12n2
.

If f, g are the functions defined by f (n) = xn+1 − xn and g (n) = yn+1 − yn, then

f ′′ (x) = − F (x)

6x3 (x + 1)3 (x + a)2 (x + 1 + a)2
(3.4)

and

g′′ (x) = G (x)

6x4 (x + 1)4 (x + a)2 (x + 1 + a)2
, (3.5)

where F and G are polynomials of fifth and sixth degrees, respectively:

F (x) = 12a2 (6b − 4a + 3) x5 + · · ·
G (x) = (60a3 − 90a4 + 120a3b + 1)x6 + · · · .
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686 C. Mortici, S. Dumitrescu

The conditions from the hypotheses assure that the leading coefficients of F and G are
positive. As a consequence, there is a real number m0 such that F > 0 and G > 0 on
[m0,∞).By (3.4)–(3.5), f is strictly concave, g is strictly convex on [m0,∞),with f (∞) =
g (∞) = 0, so f < 0 and g > 0 on [m0,∞). Thus xn decreases to zero, while yn increases
to zero, so xn > 0 and yn < 0, for every n > m0. ��

4 Complete monotonicity arguments

Recall that a function z is completely monotonic on (0,∞) if it has derivatives of all orders
and the following inequalities are valid for every integer n ≥ 0 and x ∈ (0,∞):

(−1)n z(n) (x) ≥ 0. (4.1)

The function z is completely monotonic on (0,∞) if and only if

z (x) =
∫ ∞

0
e−xt dμ (t) ,

where μ is a non-negative measure on (0,∞) such that the integral converges for all x > 0.
See widder (1981, p. 161).

The logarithmic derivative of the gamma function

ψ (x) = d

dx
(ln� (x)) = �′ (x)

� (x)

is called the digamma function, while the derivatives ψ ′, ψ ′′, ... are known as trigamma,
tetragamma functions, and in general, polygamma functions. In what follows, we use the
following integral representations, for every real x > 0 and positive integer n,

ψ(n) (x) = (−1)n−1
∫ ∞

0

tne−xt

1 − e−t
dt (4.2)

and for every r > 0,

1

xr
= 1

� (r)

∫ ∞

0
tr−1e−xtdt. (4.3)

See, e.g., Abramowitz and Stegun (1972).
Related to (1.7), we use (4.2)–(4.3), to present the following

Lemma 2 Let

Fa,b (x) = ln
� (x + 1)

μ (a, b, x)
.

Then F ′′
a,b admits the following integral representation:

F ′′
a,b (x) =

∫ ∞

0

φa,b (t)

et − 1
e−t(x+a)dt (4.4)

where

φa,b (t) = te(a+1)t − (et − 1)

[
1 + (b + 1) teat +

(
a − b − 1

2

)
t

]
.
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Efficient approximations of the gamma function and further properties 687

In terms of power series in t, the following formula is valid:

φa,b (t) =
∞∑
n=3

φn (a, b)

(n − 1)! t
n,

where

φn (a, b) = b − a + n − 2

2n
+ (b + 1) an−1 − b (a + 1)n−1 .

Proof As

Fa,b (x) = ln� (x + 1) + b ln x −
(
x + b + 1

2

)
ln (x + a) + x + a − ln

√
2π, (4.5)

we have

F ′
a,b (x) = ψ (x) + b + 1

x
− ln (x + a) + a − b − 1

2

x + a
, (4.6)

then

F ′′
a,b (x) = ψ ′ (x) − 1

x + a
− b + 1

x2
+ b − a + 1

2

(x + a)2

(we used the recurrence formula ψ (x + 1) = ψ (x)+1/x). With the help of (4.2)–(4.3), we
deduce

F ′′
a,b (x) =

∫ ∞

0

t

1 − e−t
e−t xdt −

∫ ∞

0
e−t(x+a)dt

− (b + 1)
∫ ∞

0
te−t xdt +

(
b − a + 1

2

) ∫ ∞

0
te−t(x+a)dt.

After some standard computations, we get

F ′′
a,b (x) =

∫ ∞

0

{
te(a+1)t − (et − 1)

[
1 + (b + 1) teat +

(
a − b − 1

2

)
t

]}
e−t(x+a)

et − 1
dt,

which is the first assertion in this lemma. The expression in powers of t of φ follows easily
using the classical formula

es =
∞∑
n=0

sn

n! .

��
Now we can state the following result about the complete monotonicity of the function

Fa,b.

Theorem 4 Let a, b be real numbers such that φn (a, b) ≥ 0, for every integer n ≥ 3. Then
the function Fa,b is completely monotonic on (0,∞) .

Proof As φn (a, b) ≥ 0, for every integer n ≥ 3, we deduce that φa,b ≥ 0. By (4.4), the
function F ′′

a,b is completely monotonic. This means that (−1)n (F ′′
a,b (x))(n) ≥ 0, for every

x ∈ (0,∞) and integer n ≥ 0. Equivalently,

(−1)n (Fa,b (x))(n) ≥ 0, (4.7)

for every x ∈ (0,∞) and integer n ≥ 2.
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The function F ′
a,b is increasing (as a result of F ′′

a,b ≥ 0), with limx→∞ F ′
a,b (x) = 0 [see

(4.6)], so F ′
a,b ≤ 0.

The function Fa,b is decreasing (as a result of F ′
a,b ≤ 0), with limx→∞ Fa,b (x) = 0 [see

(4.5)], so Fa,b ≥ 0.
Now (4.7) holds also for n = 0 and n = 1, so Fa,b is completely monotonic on (0,∞) . ��
Related to the above theorem, a natural question arises. Namely we wonder whether there

exist indeed real numbers a, b satisfying φn (a, b) ≥ 0, for every integer n ≥ 3. The answer
is affirmative for an infinite class of pairs (a, b) , as we can see from the following example.

Corollary 1 Assume that a, b are real numbers satisfying one of the following conditions:

(i) −1 < a < 0 and b > 0.

(ii) 1
6

√
15 − 3

2 < a < 0 and

6a2 + 6a − 1

12 (a + 1)
< b < 0. (4.8)

Then the function Fa,b is completely monotonic on (0,∞) .

Proof In order to provide the argument of the fact that φn (a, b) > 0, we need b + 1 > 0.
This is true in case (i), since b > 0. In case (ii), we have

b + 1 >
6a2 + 6a − 1

12 (a + 1)
+ 1 = 6a2 + 18a + 11

12 (a + 1)
> 0

( 16
√
15 − 3

2 is the greatest root of the second degree polynomial 6a2 + 18a + 11).
For every integer n ≥ 3, we have

φn (a, b) (4.9)

= b − a + n − 2

2n
+ (b + 1) an−1 − b (a + 1)n−1

≥ b − a + n − 2

2n
− (b + 1) |a|n−1 − |b| (a + 1)n−1

≥ b − a + 1

6
− (b + 1) a2 − |b| (a + 1)2

≤ 0.

If b > 0 (case (i)), then the last inequality in (4.9) becomes

b − a + 1

6
− (b + 1) a2 − b (a + 1)2 > 0,

or

−2a (a + 1) b − a2 − a + 1

6
> 0.

This is true, since −a2 − a + 1
6 > 0 and −2a (a + 1) b > 0, for every −1 < a < 0 and

b > 0.
In case (ii), we have b < 0, so the last inequality in (4.9) becomes
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b − a + 1

6
− (b + 1) a2 + b (a + 1)2 > 0,

or

2 (a + 1) b − a2 − a + 1

6
> 0, (4.10)

which is true (as a + 1 > 0, the inequality (4.10) follows by multiplying the inequality (4.8)
by a + 1).

As the hypotheses of Theorem 4 are fulfilled, the function Fa,b is completely monotonic
on (0,∞) . ��

Related to our main formulas (1.4)–(1.5), obtained for privileged values a∗ = − 1√
2
,

b∗ = −
√
2
3 − 1

2 , respectively a# = 1√
2
, b# =

√
2
3 − 1

2 , we can state the following result.

Lemma 3 The following inequalities hold true, for every integer n ≥ 3:

φn (a∗, b∗) ≥ 0. (4.11)

In consequence, the function Fa∗,b∗ is completely monotonic on (0,∞) .

Proof We have

φn (a∗, b∗) =
√
2

6
+

(
1

2
−

√
2

3

) (
−

√
2

2

)n−1

+
(√

2

3
+ 1

2

) (
1 −

√
2

2

)n−1

− 1

n
.

The required inequality follows by adding the next three inequalities:

−
(√

2

3
+ 1

2

) (
1 −

√
2

2

)n−1

< 0,

−
(
1

2
−

√
2

3

) (
−

√
2

2

)n−1

<

√
2

12

and

1

n
<

√
2

12
. (4.12)

Indeed, for every integer n ≥ 3, we have:

−
(
1

2
−

√
2

3

) (
−

√
2

2

)n−1

≤
(
1

2
−

√
2

3

) (√
2

2

)n−1

≤
(
1

2
−

√
2

3

) (√
2

2

)2

<

√
2

12

Inequality (4.12) holds for every integer n ≥ 9, so (4.11) is valid for every integer n ≥ 9.
It is also true for every integer n = 3, 4, . . . , 8, which can be verified by direct (numerical)
computation. ��
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Lemma 4 The following inequalities hold true, for every integer n ≥ 3:

φn (a#, b#) ≥ 0.

In consequence, the function Fa#,b# is completely monotonic on (0,∞) .

Proof We have

φn (a#, b#) =
(
1

2
+

√
2

3

) (√
2

2

)n−1

+
(
1

2
−

√
2

3

) (
1 +

√
2

2

)n−1

− 1

n
−

√
2

6
.

The following relations are valid for every integer n ≥ 9:

φn (a#, b#) >

(
1

2
−

√
2

3

) (
1 +

√
2

2

)n−1

− 1 −
√
2

6

>

(
1

2
−

√
2

3

) (
1 +

√
2

2

)8

− 1 −
√
2

6

> 0.

Inequality φn (a#, b#) > 0 is true for every integer n ≥ 9, and cases n = 3, 4, . . . , 8 were
directly verified by us. ��
Theorem 5 The function

G (x) = ln
� (x + 1)

√
2πx

( x
e

)x (
1 − 1

x
√
2

) x
2 −

√
2
6

(
1 + 1

x
√
2

) x
2 +

√
2
6

associated to approximation formula (1.8) is completely monotonic on (0,∞) .

The proofs follow from the relation

G = 1

2
Fa∗,b∗ + 1

2
Fa#,b# .

Thus G is completely monotonic, as the sum of two completely monotonic functions.
We showed how the completely monotonic functions can help in the problem of discov-

ering sharp inequalities related to gamma function.
The function Fa∗,b∗ is completely monotonic, in particular strictly decreasing. As a con-

sequence, the following inequalities are valid for every real number x ≥ 1:

0 = Fa∗,b∗ (∞) < Fa∗,b∗ (x) ≤ Fa∗,b∗ (1) .

By exponentiating, we deduce (1.9). Similarly, the inequalities (1.10)–(1.11) follow from the
monotonicity of the functions Fa#,b# and G.

Furthermore, the monotonicity of the derivatives of higher order of the functions Fa,b can
be used to establish sharp estimates for digamma, trigamma and polygamma functions in
general.
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