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Abstract By utilizing the preconditioned Hermitian and skew-Hermitian splitting (PHSS)
iteration technique, we establish a non-alternating PHSS (NPHSS) iteration method for solv-
ing large sparse non-Hermitian positive definite linear systems. The convergence analysis
demonstrates that the iterative series produced by the NPHSS method converge to the unique
solution of the linear systemwhen the parameters satisfy somemoderate conditions.We also
give a possible optimal upper bound for the iterative spectral radius. Moreover, to reduce the
computational cost, we establish an inexact variant of the NPHSS (INPHSS) iterationmethod
whose convergence property is studied. Both theoretical and numerical results validate that
the NPHSSmethod outperforms the PHSSmethod when the Hermitian part of the coefficient
matrix is dominant.
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1 Introduction

We consider the system of linear equations

Ax = b, A ∈ C
n×n, x, b ∈ C

n, (1)

where A ∈ C
n×n is a large sparse non-Hermitian and positive definite matrix. Such linear

systems arise in many problems in scientific computing and engineering applications.
Since thematrix A ∈ C

n×n naturally possesses theHermitian and skew-Hermitian splitting
(HSS)

A = H + S,

where

H = 1

2
(A + A∗) and S = 1

2
(A − A∗),

HSS (Bai et al. 2003) and preconditioned HSS (PHSS) (Bai et al. 2004, 2007a) iteration
methods were proposed to compute the approximate solution of the linear system (1). In fact,
the PHSS method was defined as follows.

Algorithm 1 (The PHSS iteration method) Let x (0) ∈ C
n be an arbitrary initial guess. For

k = 0, 1, 2, . . . until the sequence of iterates {x (k)}∞k=0 ⊂ C
n converges, compute the next

iterate x (k+1) according to the following procedure:{
(αP + H)x (k+ 1

2 ) = (αP − S)x (k) + b,

(αP + S)x (k+1) = (αP − H)x (k+ 1
2 ) + b,

(2)

where α is a given positive constant and P ∈ C
n×n is a prescribed Hermitian positive definite

matrix.

We can see that each iterate of the PHSS iteration alternates between H and S, analogously
to the classical alternating direction implicit (ADI) iteration for solving partial differential
equations; see Peaceman and Rachford (1955), Douglas (1962). The choice of preconditioner
P ismostly dependent on the structure of the coefficientmatrix A. For example,we can choose
a preconditioner based on incomplete Cholesky factorization, incomplete LU factorization
(Saad 2003), and incremental unknowns (Chen and Temam 1993; Yang and Wu 2014; Yang
et al. 2013, 2015); see Benzi (2002), Chen (2005) for a detailed discussion.

In particular, if we choose P = I , the identity matrix, the PHSS iteration method is
reduced to the HSS iteration method (Bai et al. 2003). When P �= I , we can suitably choose
P and α such that the induced PHSS iteration method achieves fast convergence and high
computing efficiency. Theoretical analysis shows that bothmethods converge unconditionally
to the unique solution of the linear system (1). Due to its promising performance and elegant
mathematical properties, theHSS iteration has attractedmany researchers’ attention, resulting
in numerous papers devoted to various aspects of this algorithm; see Bai et al. (2005, 2006,
2007b, 2008, 2010, 2011), Bai (2007, 2009, 2010), Benzi (2009), Bai and Golub (2007), Li
et al. (2007a, b), Li et al. (2014a, b), Salkuyeh and Behnejad (2012), Yang et al. (2010), Yin
and Dou (2012), Cao et al. (2012), Huang (2014).
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However, the challenges of the HSS and PHSS iteration methods lie in solving the shifted
skew-Hermitian sub-system of linear equations at each iteration step, which is as difficult
as that of the original problem. In this work, we present a non-alternating PHSS (NPHSS)
iteration method for solving non-Hermitian positive definite linear systems (1). The NPHSS
iteration method can be described as follows:

Algorithm 2 (The NPHSS iteration method) Let x (0) ∈ C
n be an arbitrary initial guess. For

� = 0, 1, 2, . . . until the sequence of iterates {x (�)}∞�=0 ⊂ C
n converges, compute the next

iterate x (�+1) according to the following procedure:

(αP + H)x (�+1) = (αP − S)x (�) + b, (3)

where α is a given positive constant and P ∈ C
n×n is a prescribed Hermitian positive definite

matrix.

Due to Hermitian positive definiteness of the matrix αP + H , every sub-system in (3) can
be effectively solved either exactly by a sparse Cholesky factorization, or inexactly by a pre-
conditioned conjugate gradient (PCG) scheme (Saad 2003). Theoretical analysis shows that
the iterative sequence produced by NPHSS iteration method converges to the unique solution
of the linear system (1),with a loose restriction on the choice ofα. The contraction factor of the
NPHSS iteration can be bounded by a function that depends only on the choice ofα, the small-
est eigenvalue of matrix P−1H , and the maximum modulus of eigenvalue of matrix P−1S.

In particular, if we choose P = I , the NPHSS iteration method is reduced to the non-
alternating HSS (NHSS) iteration method, which was originally proposed in Axelsson et al.
(2004) and recently discussed in Li andWu (2015). Therefore, ourmethod is a preconditioned
generalization of themethod inAxelsson et al. (2004) and Li andWu (2015).Moreover, based
on the results in Axelsson et al. (2004) a more general framework of the splitting iteration
method is established and its inexact variant using the preconditioned conjugate gradient
method as the inner solver is discussed in our paper. The comparison of the convergence
speeds of PHSS and NPHSS iteration methods is also discussed. A recent work related to
this is Axelsson et al. (2014).

This paper is organized as follows. In Sect. 2, we analyze the convergence properties of the
NPHSS iteration for linear system (1), including convergence condition, spectral radius of the
iterative matrix, the choices of iterative parameter, etc. The comparison of the convergence
speeds of PHSS and NPHSS iteration methods is discussed in Sect. 3. In Sect. 4, an inexact
variant of the NPHSS (INPHSS) iteration method is presented and its convergence property
is discussed. Numerical results are presented in Sect. 5 to illustrate the effectiveness of our
methods. Finally, in Sect. 6, we end this work with a brief conclusion.

2 Convergence analysis of the NPHSS iteration method

In this section, we first consider the convergence properties of the NPHSS iteration method.
We can reformulate the NPHSS iteration scheme (3) as

x (�+1) = M(P;α)x (�) + N (P;α)b, � = 0, 1, 2 . . . ,

where

M(P;α) = (αP + H)−1(αP − S) and N (P;α) = (αP + H)−1. (4)

Here, M(P;α) is the iteration matrix of the NPHSS iteration method.
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Note that M(P;α) can be reformulated as

M(P;α) = I − (αP + H)−1A,

then thematrixαP+H can be viewed as a preconditioner for the coefficientmatrix A ∈ C
n×n .

Since H is Hermitian and S is skew-Hermitian, we easily know that all eigenvalues of
P−1H are real and positive, and all eigenvalues of P−1S are imaginary. Here and in the
sequel, denote

λmax = max
λ j∈sp(P−1H)

{λ j }, λmin = min
λ j∈sp(P−1H)

{λ j } and ξmax = max
iξ j∈sp(P−1S)

{|ξ j |},

where sp(X) denotes the spectrum of the matrix X and i = √−1.
The following theorem gives the convergence result of the NPHSS iteration method.

Theorem 1 Let A ∈ C
n×n be a positive definite matrix, let H = 1

2 (A + A∗) and S =
1
2 (A − A∗) be its Hermitian and skew-Hermitian parts, respectively, and let α be a positive
constant. Let P ∈ C

n×n be a Hermitian positive definite matrix. Then, the spectral radius
ρ(M(P;α)) of the NPHSS iteration matrix (4) satisfies ρ(M(P;α)) ≤ σ(α), where

σ(α) =
√

α2 + ξ2max

α + λmin
. (5)

Moreover, it holds that

(i) If λmin ≥ ξmax, then σ(α) < 1 for any α > 0, which means that the NPHSS iteration
method is unconditionally convergent;

(ii) if λmin < ξmax, then σ(α) < 1 if and only if

α >
ξ2max − λ2min

2λmin
, (6)

which means that the NPHSS iteration method is convergent under the condition (6).

Proof By direct computations, we have

ρ(M(P;α)) = ρ
(
(αP + H)−1(αP − S)

)
= ρ

((
α I + P−1H

)−1 (
α I − P−1S

))
≤

∥∥∥(
α I + P−1H

)−1 (
α I − P−1S

)∥∥∥
2

≤
∥∥∥(

α I + P−1H
)−1

∥∥∥
2

∥∥(
α I − P−1S

)∥∥
2

= max
λ j∈sp(P−1H)

∣∣∣∣ 1

α + λ j

∣∣∣∣ · max
iξ j∈sp(P−1S)

∣∣α − iξ j
∣∣

= max
λ j∈sp(P−1H)

1

α + λ j
· max
iξ j∈sp(P−1S)

√
α2 + ξ2j

=
√

α2 + ξ2max

α + λmin
.

Thus the upper bound of ρ(M(P;α)) given in (5) is obtained.
By simple derivations, σ(α) < 1 is equivalent to

2λminα > ξ2max − λ2min. (7)
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If λmin ≥ ξmax, then (7) holds true for any α > 0, i.e., the NPHSS iteration converges to the
unique solution of the system of linear equations (1); if λmin < ξmax, then (7) or σ(α) < 1
follows if and only if α satisfies (6). Therefore, in case (ii), the sufficient and necessary
condition for the convergence of the NPHSS iteration method is inequality (6). 
�

Theorem 1 gives the convergence conditions of the NPHSS iteration method by analyzing
the upper bound σ(α) of the spectral radius of the iterationmatrixM(P;α). Since the optimal
parameter α minimizing the spectral radius ρ(M(P;α)) is hardly obtained, we instead give
the parameter α�, which minimizes the upper bound σ(α) of the spectral radius ρ(M(P;α)),
in the following corollary.

Corollary 1 Let the conditions of Theorem 1 be satisfied. Then, the parameter α� minimizing
the upper bound σ(α) of the spectral radius ρ(M(P;α)) is

α� ≡ argmin
α

{σ(α)} = argmin
α

{√
α2 + ξ2max

α + λmin

}
= ξ2max

λmin

and

σ(α�) = ξmax√
λ2min + ξ2max

. (8)

Proof Simple calculation gives

σ ′(α) = αλmin − ξ2max

(α + λmin)2
√

α2 + ξ2max

.

It is obviously that σ ′(α) > 0 for α > ξ2max/λmin and σ ′(α) < 0 for α < ξ2max/λmin.
Hence, the upper bound σ(α) of the spectral radius ρ(M(P;α)) achieves its minimum at
α� = ξ2max/λmin. Taking α� into σ(α), the minimum value of σ(α) given in (8) is obtained.


�
Remark 1 For case (ii) of Theorem1, i.e.,λmin < ξmax,we see that theα� given inCorollary 1
satisfies condition (6) since

α� = ξ2max

λmin
>

ξ2max − λ2min

λmin
>

ξ2max − λ2min

2λmin
.

Remark 2 The parameter α� in Corollary 1 minimizes only the upper bound σ(α) of the
spectral radius of the iteration matrix. However, it is still helpful to us to choose an effec-
tive parameter α for the NPHSS iteration method. We call α� the theoretical quasi-optimal
parameter of the NPHSS iteration method.

3 Comparison of the NPHSS and PHSS methods

We first introduce a lemma briefly reviewing the convergence analysis of the PHSS method
established in Bai et al. (2007a).

Lemma 1 Let the conditions of Theorem 1 be satisfied. Then, the spectral radius ρ(L(P;α))

of the PHSS iterationmatrix L(P;α) = (αP+S)−1(αP−H)(αP+H)−1(αP−S) satisfies
ρ(L(P;α)) ≤ γ (α), where

γ (α) = max
λ j∈sp(P−1H)

∣∣∣∣α − λ j

α + λ j

∣∣∣∣ .
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Thus, it holds that

ρ(L(P;α)) ≤ γ (α) < 1, ∀ α > 0.

Moreover, the minimum point α� and the minimum value γ (α�) of the upper bound γ (α) are,
respectively, as

α� ≡ argmin
α

{γ (α)} = argmin
α

{
max

λ j∈sp(P−1H)

∣∣∣∣α − λ j

α + λ j

∣∣∣∣
}

= √
λminλmax

and

γ (α�) =
√

λmax − √
λmin√

λmax + √
λmin

.

Note that PHSSmethod is a two-step iteration. For a fair comparison, the NPHSS iteration
scheme (3) can be equivalently rewritten as the following two-step iteration{

(αP + H)x (k+ 1
2 ) = (αP − S)x (k) + b,

(αP + H)x (k+1) = (αP − S)x (k+ 1
2 ) + b,

(9)

and the iteration matrix of (9) is M(P;α)2. Then we just need to compare the NPHSS and
PHSS methods by analyzing the optimal upper bounds of the spectral radius ρ(M(P;α)2)

andρ(L(P;α)). UsingCorollary 1 andLemma1,we give the following comparison theorem.

Theorem 2 The respective optimal upper bounds of the spectral radii of NPHSS and PHSS
iteration matrices satisfy

σ 2(α�) ≤ γ (α�)

if and only if

ξmax ≤
√√

λmax − √
λmin

2
√

λmin
· λmin. (10)

Proof From Corollary 1 and Lemma 1, inequality σ 2(α�) ≤ γ (α�) becomes

ξ2max

λ2min + ξ2max
≤

√
λmax − √

λmin√
λmax + √

λmin
,

which is equivalent to

ξ2max

λ2min

≤
√

λmax − √
λmin

2
√

λmin
. (11)

Thus, the condition (10) follows by noticing that λmax ≥ λmin > 0. 
�

Remark 3 When inequality (10) holds, i.e., the Hermitian part of the coefficient matrix A
comparing with its skew-Hermitian part is dominant, we tend to choose NPHSS method
rather than PHSS method to solve the linear system (1), and vice verse.
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4 Inexact NPHSS iteration method

To further improve computational efficiency of the NPHSS iteration, we develop an inexact
NPHSS (INPHSS) iteration, which solves (3) by PCG iterativemethod.Wewrite the INPHSS
iteration scheme in the following algorithm for solving the linear system (1).

Algorithm 3 (The INPHSS iteration method) Given an initial guess x (0) ∈ C
n , then this

algorithm leads to the solution of the linear system (1):
� = 0;
while (not convergent)
r (�) = b − Ax (�);
approximately solve (αP + H)z(�) = r (�) by employing PCG method, such that the

residual p(�) = r (�) − (αP + H)z(�) of the iteration satisfies ‖p(�)‖ ≤ η�‖r (�)‖;
x (�+1) = x (�) + z(�);
� = � + 1;
end

Here, {η�} is prescribed tolerances used to control the accuracies of the inner iterations.
We remark that when P = I , the INPHSS method reduces to the inexact NHSS (INHSS)

method.
The convergenceproperties for the inexactHSS (IHSS)methodhavebeen carefully studied

in Bai et al. (2003, 2008). Analogously, we can demonstrate the following convergence result
about the above INPHSS iteration method.

Theorem 3 Let the conditions of Theorem 1 be satisfied. If {x (�)}∞�=0 ⊆ C
n is an iteration

sequence generated by the INPHSS iteration method and if x� ∈ C
n is the exact solution of

the linear system (1), then it holds that

‖x (�+1) − x�‖2 ≤ (σ (α) + μθη�)‖x (�) − x�‖2, � = 0, 1, 2, . . . (12)

where the constants μ and θ are given by

μ = ‖(αP + H)−1‖2, θ = ‖A‖2.
In particular, when

σ(α) + μθηmax < 1, (13)

then the iteration sequence {x (�)}∞�=0 ⊆ C
n converges to x� ∈ C

n, where ηmax = max�{η�}.
Proof From Algorithm 3, we have

x (�+1) = x (�) + (αP + H)−1(r (�) + p(�))

= x (�) + (αP + H)−1
(
b − Ax (�) + p(�)

)
= (

I − (αP + H)−1A
)
x (�) + (αP + H)−1b + (αP + H)−1 p(�)

= (αP + H)−1(αP − S)x (�) + (αP + H)−1b + (αP + H)−1 p(�). (14)

Because x� ∈ C
n is the exact solution of the linear system (1), it must satisfy

x� = (αP + H)−1(αP − S)x� + (αP + H)−1b. (15)

By subtracting (15) from (14), we have

x (�+1) − x� = (αP + H)−1(αP − S)(x (�) − x�) + (αP + H)−1 p(�). (16)
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Taking norms on both sides of the identity (16), we can obtain

‖x (�+1) − x�‖2
≤ ‖(αP + H)−1(αP − S)‖2‖x (�) − x�‖2 + ‖(αP + H)−1‖2‖p(�)‖2
≤ σ(α)‖x (�) − x�‖2 + μη�‖r (�)‖2.

(17)

Noticing that

‖r (�)‖2 = ‖b − Ax (�)‖2 = ‖A(x� − x (�))‖2 ≤ θ‖x (�) − x�‖2,
by (17) we can obtain (12) and (13). 
�

We remark that Theorem 3 gives the choice of the tolerance {η�} for convergence. In
general, to guarantee the convergence of the INPHSS iteration, the tolerance {η�} only needs
to satisfy the condition (13).

5 Numerical examples

In this section, we are going to examine the efficiency of NHSS andNPHSS iterationmethods
and their inexact variants for solving linear system (1) by comparing the spectral radii,
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Fig. 1 Centered difference scheme. The spectral radii of the iteration matrices of NHSS and HSS methods
versus α
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iteration numbers (denoted as IT) and CPU time (in seconds, denoted as CPU) of these two
algorithms.

We consider the three-dimensional convection–diffusion equation

− (uxx + uyy + uzz) + q(ux + uy + uz) = f (x, y, z) (18)

on the unit cube � = [0, 1] × [0, 1] × [0, 1], with constant coefficient q and subjected to
Dirichlet-type boundary conditions. Discretizing this equation with seven-point finite differ-
ence, and assuming the numbers (m) of grid points in all three directions are the same, we
obtain a positive definite system (1) with the coefficient matrix

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz, (19)

where ⊗ denotes the Kronecker product, and Tx , Ty , and Tz are tridiagonal matrices given
by

Tx = tridiag(t2, t1, t3), Ty = tridiag(t2, 0, t3), and Tz = tridiag(t2, 0, t3),

with

t1 = 6, t2 = −1 − r, t3 = −1 + r
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Fig. 2 Upwind difference scheme. The spectral radii of the iteration matrices of NHSS and HSS methods
versus α
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if the first-order derivatives are approximated by the centered difference scheme, and

t1 = 6 + 6r, t2 = −1 − 2r, t3 = −1

if the first-order derivatives are approximated by the upwind difference scheme. Here r =
qh/2 is the mesh Reynolds number with h = 1/(m + 1) being the step size. For details, we
refer to Bai et al. (2003).

In our implementation, the initial guess is chosen to be x (0) = 0 and the iteration is
terminated once the current iterate x (�) satisfies ‖b− Ax (�)‖2/‖b‖2 ≤ 10−6. In addition, we
set n = m3 = 103, and the right-hand side vector b = A1, with 1 being the vector of all
entries equal to 1. For convenience, the preconditioner P used in NPHSS and PHSSmethods
are chosen to be P = diag(a11, a22, . . . , ann), where a11, a22, . . . , ann are main diagonal
elements of the matrix A.

In IHSS, INHSS, IPHSS and INPHSS iteration methods, we set all the tolerances {η�} =
0.01. We solve the linear systems with coefficient matrices αP + H iteratively by the CG
method, and solve the linear systems with the coefficient matrix αP + S iteratively by the
GMRESmethod.We denote the average inner iteration numbers of CG and GMRES as ITCG

and ITGMRES, respectively.
The comparisons of spectral radii of different iteration matrices derived by HSS, NHSS,

PHSS and NPHSS iteration methods with different damping coefficients q are performed in
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Fig. 3 Centered difference scheme. The spectral radii of the iteration matrices of NPHSS and PHSS methods
versus α
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Fig. 4 Upwind difference scheme. The spectral radii of the iteration matrices of NPHSS and PHSS methods
versus α

Figs. 1, 2, 3 and 4. From Figs. 1, 2, 3 and 4, we find that when q is small (the Hermitian part
of the coefficient matrix is dominant), the spectral radius of the iteration matrix of NHSS
method is much smaller than that of HSS method, and the spectral radius of the iteration
matrix of NPHSS method is much smaller than that of PHSS method. As q becomes large
(the skew-Hermitian part is dominant), HSS and PHSS methods perform better and better.

In Tables 1, 2, 3 and 4, we present iteration numbers and CPU time for HSS, NHSS,
PHSS and NPHSS iteration methods with different damping coefficients q . From the results
in Tables 1, 2, 3 and 4, we see that when q is small, NHSS and NPHSS methods, no matter
compared with the experimental optimal parameter αexp or compared with the theoretical
quasi-optimal parameter α�, perform much better than HSS and PHSS methods both in
iteration numbers and in CPU time. As q becomes large, the superiorities of NHSS and
NPHSS methods disappear.

In Tables 5 and 6, numerical results for IHSS, INHSS, IPHSS and INPHSS iteration
methods are listed; here we adopt the iteration parameters in Tables 1 and 2 for convenience
and not the experimental optimal parameters. From Tables 5 and 6, we can obtain the same
conclusions as above Tables.

In addition, if Theorem 2 is applied to this numerical example, then we known that when
q < 1.606 in the centered difference scheme or q < 1.725 in the upwind difference scheme,
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Table 1 Numerical results for HSS and NHSS with the experimental optimal iteration parameters

Method q HSS NHSS

Difference scheme αexp IT CPU αexp IT CPU

Centered 0.1 1.254 35 0.2650 0.003 2 0.0160

1 1.458 39 0.2970 0.003 3 0.0470

10 2.186 23 0.1880 1.170 19 0.2030

100 3.945 22 0.2810 100 202 2.1570

Upwind 0.1 1.260 35 0.2660 0.003 2 0.0310

1 1.515 39 0.3130 0.003 3 0.0310

10 2.601 28 0.2190 1.010 14 0.1560

100 16.010 18 0.1410 25 31 0.3280

Table 2 Numerical results for PHSS and NPHSS with the experimental optimal iteration parameters

Method q PHSS NPHSS

Difference scheme αexp IT CPU αexp IT CPU

Centered 0.1 0.209 35 0.2810 0.003 2 0.0310

1 0.243 39 0.2970 0.003 3 0.0310

10 0.365 23 0.1720 0.201 19 0.2030

100 0.658 22 0.2650 16.600 202 2.0780

Upwind 0.1 0.211 35 0.2650 0.003 2 0.0310

1 0.242 39 0.2810 0.003 3 0.0310

10 0.301 28 0.2190 0.091 14 0.1410

100 0.451 18 0.1250 0.701 31 0.3120

Table 3 Numerical results for HSS and NHSS with the theoretical quasi-optimal iteration parameters

Method q HSS NHSS

Difference scheme α� IT CPU α� IT CPU

Centered 0.1 1.690 43 0.3280 0.003 2 0.0160

1 1.690 42 0.3130 0.282 10 0.1090

10 1.690 28 0.2190 28.175 283 2.9850

100 1.690 33 0.6400 0.003 3528 41.0000

Upwind 0.1 1.698 43 0.3280 0.003 2 0.0320

1 1.767 42 0.3280 0.270 9 0.0940

10 2.459 29 0.2190 19.370 187 2.0460

100 9.374 30 0.2350 508.068 494 5.2500

the NPHSS is faster than PHSS and theNHSS is faster thanHSS. The above numerical results
have also examined this fact.

Therefore, we tend to use NHSS or NPHSS iteration methods to solve the linear system
(1) when the Hermitian part H is dominant and employ HSS or PHSS if the skew-Hermitian
part S is dominant.
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Table 4 Numerical results for PHSS and NPHSS with the theoretical quasi-optimal iteration parameters

Method q PHSS NPHSS

Difference scheme α� IT CPU α� IT CPU

Centered 0.1 0.282 43 0.3280 0.001 2 0.0160

1 0.282 42 0.3290 0.047 10 0.1250

10 0.282 28 0.2180 4.696 283 3.1720

100 0.282 33 0.6400 469.578 3528 39.2340

Upwind 0.1 0.282 43 0.3280 0.001 2 0.0160

1 0.282 42 0.3280 0.043 9 0.0940

10 0.282 29 0.2340 1.011 84 0.8750

100 0.282 30 0.2340 15.270 494 5.8590

Table 5 Numerical results for IHSS and INHSS

Method q IHSS INHSS

Difference scheme ITCG ITGMRES IT CPU ITCG IT CPU

Centered 0.1 17.7 4.2 35 0.4690 20.0 2 0.0310

1 18.0 6.7 39 0.5940 20.0 3 0.0620

10 17.7 10.0 23 0.4220 19.1 19 0.3750

100 15.4 10.0 22 0.3750 5.4 202 1.3280

Upwind 0.1 17.7 4.1 35 0.4690 20.0 2 0.0310

1 18.2 6.7 39 0.6090 20.0 3 0.0620

10 18.1 10.0 28 0.5310 19.4 14 0.2650

100 15.3 10.0 18 0.3120 15.0 31 0.4840

Table 6 Numerical results for IPHSS and INPHSS

Method q IPHSS INPHSS

Difference scheme ITCG ITGMRES IT CPU ITCG IT CPU

Centered 0.1 17.7 4.2 35 0.4530 20.0 3 0.0470

1 18.0 6.7 39 0.5940 20.0 4 0.0620

10 17.7 10.0 23 0.4060 18.9 19 0.3900

100 15.5 10.0 22 0.3590 5.4 202 1.2810

Upwind 0.1 17.5 3.9 35 0.4680 20.0 3 0.0470

1 18.3 6.7 39 0.5940 20.0 3 0.0630

10 18.3 10.0 28 0.5150 19.6 14 0.2970

100 16.3 10.0 18 0.3120 15.3 31 0.5150
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6 Conclusions

In this paper, we have developed a non-alternating PHSS (NPHSS) method and its inex-
act variant for solving non-Hermitian positive definite linear systems. Theoretical analysis
demonstrates that for any initial guess and a wide range of parameter α, NPHSSmethod con-
verges to the unique solution of the linear system (1).We also derive an upper bound σ(α) for
the spectral radius of NPHSS iteration matrix and give the quasi-optimal parameter α� which
minimizes the upper bound σ(α). In addition, both theoretical and numerical results verify
that when the Hermitian part of the coefficient matrix is dominant, NPHSS method performs
better than HSS and PHSS methods. Hence, our work gives a better choice for solving the
linear system (1) when the Hermitian part H of coefficient matrix A is dominant.

At last, we should mention that the choice of the optimal iteration parameters for the
NPHSS method is an interesting but difficult topic. Some related discussions for the HSS
method can be seen in Bai et al. (2006); Huang (2014). The investigation of this point may
be considered in future study.

Comments: The result of recent paper (Li and Wu 2015) is the special case for P = I of
our results here.
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