Comp. Appl. Math. (2017) 36:259-279 @ CrossMark
DOI 10.1007/540314-015-0228-1

Supermemory gradient methods for monotone nonlinear
equations with convex constraints

Yigui Ou' . Yuanwen Liu!

Received: 2 February 2014 / Revised: 6 March 2015 / Accepted: 2 April 2015 /
Published online: 11 April 2015
© SBMAC - Sociedade Brasileira de Matemadtica Aplicada e Computacional 2015

Abstract This paper presents two new supermemory gradient algorithms for solving convex-
constrained nonlinear monotone equations, which combine the idea of supermemory gradient
method with the projection method. The feature of these proposed methods is that at each
iteration, they do not require the Jacobian information and solve any subproblem, even if
they do not store any matrix. Thus, they are suitable for solving large-scale equations. Under
mild conditions, the proposed methods are shown to be globally convergent. Preliminary
numerical results show that the proposed methods are efficient and can be applied to solve
large-scale nonsmooth equations.

Keywords Monotone equations - Supermemory gradient method - Projection method -
Global convergence

Mathematics Subject Classification 90C30 - 65K05 - 65H10

1 Introduction

In this paper, we consider the following problem: finding a vector x € R" such that
F(x)=0, xeX, (1.1)
where F : R" — R" is continuous and monotone mapping, i.e.,

(Fx) = FO) ' (x=y) =0, Vx,yeR", (1.2)

Communicated by Ernesto G. Birgin.

Supported by NNSF of China (No. 11261015) and NSF of Hainan Province (No. 111001).

BJ Yigui Ou
ouyigui@126.com

1 Department of Applied Mathematics, Hainan University, Haikou 570228, China

@ Springer f DMAC

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-015-0228-1&domain=pdf

260 Y. Ou, Y. Liu

X C R" is a nonempty closed convex set, and sometimes an n-dimensional box, i.e., X =
{x € R" : | <x < u}. Throughout the paper, | - || denotes the Euclidean norm on R", and
F}. denotes F(xg).

Systems of monotone equations commonly arise in many applications, for instance, they
are used as subproblems of the generalized proximal algorithms with Bregman distance
(TIusem and Solodov 1997). Some monotone variational inequality problems can be converted
into systems of nonlinear monotone equations (Zhao and Li 2001). Moreover, the equations
with convex constraints come from the problems such as the power flow equations and the
[1-norm regularized optimization problems in compressive sensing, see Refs. Wood and
Wollenberg (1996) and Figueiredo (2007) for instance.

In recent years, this special class of optimization problem (1.1) has been studied exten-
sively and there are already many numerical methods for solving it, such as Newton-based
methods, Levenberg—Marquardt method, trust region method and projection method, see
Refs. Tong and Zhou (2005), Fan (2013), Jia and Zhu (2011) and Wang (2007) for instance.
However, these methods need to solve a linear system of equations or a trust region subprob-
lem at each iteration using the Jacobian matrix or an approximation of it, thus they are only
suitable for small-scale problems. More recently, large-scale nonlinear constrained equations
have been attracting more and more attention from researchers, and some efficient methods
have been proposed, which mainly include the spectral gradient method and conjugate gra-
dient method, see Refs. Yu et al. (2009) and Xiao and Zhu (2013) for instance. The main
feature of these methods is that at each iteration, the search direction can be obtained without
using the Jacobian information and storing any matrix. The drawback of these methods is that
they use the previous one-step iterative information at best to generate the search direction
at each iteration. It is worth mentioning that the derivative-free methods for problem (1.1)
with X = R" also belong to the conjugate gradient scheme, see Refs. Yan et al. (2010), Li
and Li (2011) and Ahookhosh et al. (2013) for instance.

Similar methods to the conjugate gradient methods for unconstrained optimization [see
Ref. Hager and Zhang 2006 for details] are the memory gradient (MG) method and the
supermemory gradient (SMG) method (Shi and Shen 2005). Not only is their basic idea
simple but also they avoid the computation and the storage of some matrices so that they
are also suitable to solve large-scale optimization problems. Compared with CG methods,
however, the main difference is that MG and SMG methods can sufficiently use the previous
multi-step iterative information to generate a new iterate at each iteration, and hence it is
more helpful to design algorithms with fast convergence rate, see Refs. Shi and Shen (2005),
Narushima and Yabe (2006), Ou and Wang (2012), Ou and Liu (2014) and Sun and Ba (2011)
for instance.

Motivated by the supermemory gradient method (Ou and Liu 2014) and the projection
strategy (Wang 2007), we propose two new supermemory gradient methods for solving
the nonlinear monotone equations (1.1). The main properties of the proposed methods are
that we establish the global convergence without using any merit function and making the
differentiability assumption on F'. Furthermore, these methods do not solve any subproblem
and store any matrix. Thus, they can be applied to solve large-scale nonlinear equations.
Preliminary numerical results are reported to show that the proposed methods are efficient
and stable.

The rest of the paper is organized as follows. In Sect. 2, the detailed algorithm is outlined
and then some of its properties are given. Section 3 is devoted to analyze the global conver-
gence property of our algorithm under some mild conditions. In Sect. 4, further discussion
on the choice of search direction is given. In Sect. 5, numerical results and comparison are

@ Springer f bMA

Supermemory gradient methods for... 261

reported to show the efficiency of the proposed methods. Some conclusions are summarized
in the final section.

2 Supermemory gradient algorithm

This section is devoted to constructing a new supermemory gradient method for solving
problem (1.1), then giving some properties of the proposed method.

We first recall the iterative scheme of supermemory gradient method (Ou and Liu 2014)
for solving the unconstrained optimization problem:

min f(x), 2.1)

xeR"

where f : R" — R is a continuously differentiable function whose gradient at x; is denoted
by gk := V f(xx). Given any starting point xo € R", the algorithm in Ou and Liu (2014) is
to generate a sequence {x;} which satisfies the following recursive form

Xepl = Xk +axdr, k=0,1,2,..., 2.2)

where o is a stepsize, and dj is a descent direction of f(x) at x; defined by

—8&k» k <m,
dip = ; 2.3
g [—gk+zlm=1ﬁ;’{dk—i, k>m+1, 2.3)

where m denotes the number of the past iterations remembered, and

i _ Plekl

Bl = (2.4)
T il
with p € (0, %). For details, see Ref. Ou and Liu (2014).
Based on the above scheme (2.3)—(2.4), here we define dj as
—Fy, k<m,
dy = : 2.5
CE —Fo+ X Bl kz=mA1, 23)
where
; Pl Fill
pi= KL (2.6)
TS i

with p € (0, 3).
To describe our algorithm, we introduce the definition of projection operator Pg[-] which
is defined as a mapping from R” to a nonempty closed convex subset £2:

Po[x] = argmin{|ly — x||}, Vx € R". 2.7
yesR
A well-known property of this operator is that it is nonexpansive [see Wang (2007)], namely,

[Pelx] — Pelylll < llx —yll, Vx,y € R" 2.8)

We now formally state the steps of the supermemory gradient algorithm for solving problem
(1.1) as follows.

@ Springer f DMAC

262 Y. Ou, Y. Liu

Algorithm 2.1

Step O Given an initial point xo € X, e > 0, 0 € (0,1), p € (0, %), an
integer m > 0, and 8 € (0, 1). Setk := 0.

Step 1 Compute Fy. If || Fx|| < €, then stop.

Step 2 Construct a memory search direction dy using (2.5)—(2.6).

Step 3 Compute the trial point z; = xx + oxdk, where o = ,Blk with [being the smallest
nonnegative integer / such that

— o + B'd0) di = o' | F (o + B'di) 1 di 1. 2.9)
Step 4 Compute the new iterate x4 by

(k= z0) T Fzi)

IF o2 F(Zk)] ' @10

Xk+1 = Px [xk —
Step 5 Setk :=k + 1, and go to Step 1.

Remark 2.1 The line search scheme (2.9) is similar to that in Refs. Yan et al. (2010), Li and
Li (2011) and Ahookhosh et al. (2013). Because it does not include any matrix and gradient
information, it can be used to devise efficient methods for solving large-scale nonlinear
equations. From Lemma 3.1 below, it follows that the line search scheme (2.9) is well defined,
namely, it terminates in a finite number of steps.

It should be pointed out that there are two distinct differences between the proposed
algorithm and the algorithms in Refs. Yu et al. (2009) and Xiao and Zhu (2013), that is, the
construction of search direction dj and the line search scheme, see Refs. Yu et al. (2009) and
Xiao and Zhu (2013) for details.

Remark 2.2 Step 4 has a nice geometric interpretation as follows: suppose xy is not a solution
to problem (1.1). Then, using the line search scheme (2.9), the trial point zx is obtained to
satisfy

F(z)" (zk — xx) < 0. 2.11)

On the other hand, using the monotonicity property of F(x), for any x such that F(x) = 0,
we conclude that

F(z) (zx —) = 0, 2.12)
which, together with (2.11), implies that the hyperplane
Hi = {x € R"|F(z1)" (x —21) = 0) 2.13)

strictly separates the current iterate x; from the solution set of problem (1.1). Based on this
fact, we can see that the next iterate x4 is computed by projecting x; onto the intersection
of the feasible set X with the halfspace H,” = {x € R"|F(zi)T (x — z;) < 0}).

Obviously, the search direction dy defined by (2.5) and (2.6) satisfies the following prop-
erties:

Flde <= —p)lFell*, Vk, (2.14)
and

ldkll = (1 +)1 Fill, V. (2.15)

@ Springer f bMA

Supermemory gradient methods for... 263

3 Convergence analysis

In this section, we analyze the global convergence property of Algorithm 2.1 when it is
applied to problem (1.1). For this purpose, we first make the following assumptions.

A1l The solution set X* of problem (1.1) is nonempty.
A2 The mapping F is Lipschitz continuous on the nonempty closed convex set X, namely,
there exists a constant L > 0 such that

[F(x) = F)Il = Lllx —yll, Vx,yeX. (3.1

In what follows we assume that F; # O for all k, namely, Algorithm 2.1 generates an infinite
sequence {x;}. Otherwise, we obtain a solution of problem (1.1).
The following lemma shows that Algorithm 2.1 is well defined.

Lemma 3.1 Algorithm 2.1 is well defined, namely, there exists a nonnegative number I
satisfying the line search scheme (2.9) for all k.

Proof By contradiction, suppose that there exists ko > 0 such that (2.9) fails to hold for any
nonnegative number /, namely

— F(xr + Bldig) " diy < 0B F Cxrg + B'dig) 1y 1>, VI = 0. (32)
Taking [— +o0 on both sides of (3.2) and using the continuity of F, we have
—F(xig) " dy <0
which contracts this fact that —F dx > (1 — p)|| F||*> > 0 for all k.

Lemma 3.2 Let x* € X* and the sequences {xi} and {zy} be generated by Algorithm 2.1.
Then we have

2 2 2 4
k1 — X" < llxx — 217 = o llxe — 2l (3.3)
and

lim J|lxx —zkll = lim oglldi|| = 0. 3.4
k—+00 k—+00

Proof From the line search scheme (2.9), it follows that
F()" (o — 21) = —a F ()T di = o | F(z) || l1di |1 (3.5)
which implies that

F(z)T (e — zx)
|zl

Using the monotonicity of mapping F and F(x*) = 0, we have

> oo |dill® = ol — 2l (3.6)

F(z)" (2 =) = F(H (2 = x%) = 0. 3.7)
This together with (3.5) implies that

Fz) T (i — x*) = F(z)T (o — z1) = 0. (3.8)

@ Springer f DMAC

264 Y. Ou, Y. Liu

Combining this inequality with (2.8) and (3.6) gives

(xx — z0) T F(zk)

) *7112
- = || Px[xx — F —P
k41 — x*[1* = || Px[xx Feop Pl = Pl
o — z) T Fzi) K2
< |lxx — ———F(zx) — x
I IF oI ¢ :
F T _ 2
< g — 2% — [F(zi)" (xx 2Zk)]
IF ol
< e — 2113 = o2 {lxe — zell*. 3.9)

Thus, this inequality (3.3) holds true. Furthermore, it follows directly from (3.3) that the
sequence {|lxy — x*||} is decreasing monotonically and convergent. Taking k — 400 on
both sides of (3.3) yields (3.4). This completes the proof. [|

Corollary 3.3 Let the sequence {xy} be generated by Algorithm 2.1. If Assumptions Al and
A2 hold, then there exists a constant M > 0 such that

[Fill < M, Vk, (3.10)
and
IF O+ o™ di)l| < M, Vk. (3.11)
Proof Let x* € X*. It follows from A2 and (3.3) that
I Fiell = 1 Fe = F(eH) < Lllxg = x*|| < Lllxg—1 — x*[| < -+ < Llxo — x™||. (3.12)
By (3.4), we can deduce that there exists a constant My > 0 such that
aglldell < Mo, Vk. (3.13)
Combining (3.13) with (3.3) gives

IF (i + B~ do) | = I F ok + B di) — FO)|
< Llxg + ok~ di — x*|
< Llxx — x*| 4+ LB alldi |
< Ll|xo — x*|| + LB~ ' My, Vk. (3.14)

Let M = L|xg — x*|| + L8~ My. Then the conclusions (3.10) and (3.11) follow directly
from the above inequalities (3.12) and (3.14). This completes the proof. [|

Lemma 3.4 Suppose that Assumptions Al and A2 hold. Then there exists a constanty > 0
such that the stepsize ay involved in Step 3 of Algorithm 2.1 satisfies

||Fk||2]

RATAR 619

o Zmin[l

Proof If oy # 1,thenitfollows from the acceptance rule of stepsize o in Step 3 of Algorithm
2.1 that o, = %" does not satisfy (2.9), namely

— F(ix +apdi) die < oo | F (v + gdi) || eI (3.16)

@ Springer f bMA

Supermemory gradient methods for... 265

This together with (2.14) and (3.11) implies that

A

(1= pIFell* < —F/ di

[F (xk + apdi) — Fil" di — F (o + edi) " dy

< o} Llldi|l* + o | F (xi + apdio) ||l dell®

< (L + o M)l|di|*. (3.17)

Obviously, if [|dy | # 0, then (3.15) follows directly from (3.17), where y = £0=2).
In what follows, we verify the validity of the assertion ||di || # O for all k. In fact, it follows
from (2.14) that

ldi? = lldi + Fill* + | Fell* = 2EF (Fi + dy)
> || Fell® — 2F] (Fi + dp)
> 2(1 = p)|| Fell* — [FeI?
=(1- 2,o)||Fk||2, Vk, (3.18)

which implies that ||di|| # O for all k, due to p € (O, %) and |Fi|| # O for all k. This
completes the proof. I

Using these lemmas mentioned above, we obtain the global convergence of Algorithm
2.1 as follows.

Theorem 3.5 Suppose that Assumptions Al and A2 hold. Then we have
kEToo inf || Fx|| = 0. (3.19)
Furthermore, the sequence {xy} generated by Algorithm 2.1 converges to a solution of (1.1).
Proof Suppose on the contrary that there exists § > 0 such that
| Fill > 8, Vk. (3.20)
From Corollary 3.3 and (2.15), it follows that there exists a constant M > 0 such that
ldill = A+ p)IIFll = (1 + p)M. (3.21)
On the other hand, using (3.18) and (3.20), we have

ldill = VT =20 I Fell = V/1—2p6. (3.22)

Combining (3.15) with (3.20)—(3.22) gives

. I Fill?
ol d | zmm[l, % ldill = min }v/1—2p 8,

lldic 112

(l+p)M}

This yields a contradiction with (3.4). Thus, the assertion (3.19) holds true.

Now, we will prove the second assertion. By the continuity of F and the boundedness
of {xx} due to (3.3), it is clear that the sequence {x;} exists an accumulation point X such
that F(x) = 0 due to (3.19). Taking x* = X in (3.3), we further deduce that the sequence
{llxx — x|} is convergent, and thus the sequence {x;} converges globally to x. The proof is
completed. I

@ Springer f DMAC

266 Y. Ou, Y. Liu

At the end of this section, we must point out that the requirement (1.2) of monotonicity on
F seems to be strong for the purpose of ensuring the global convergence property. Actually,
if the mapping F has the following property:

F)l(x—x* >0, VxeR" x*eX* (3.23)

then it can be easily verified that all the preceding conclusions still hold true, provided that a
little modification is made in the proof process of Lemma 3.2. Note that the property (3.23)
is satisfied if F is monotone or pseudomonotone, but not vice versa, see Ref. Solodov and
Svaiter (1999) for instance. Therefore, our convergence results can be restated under the
assumption (3.23), which is considerably weaker than the assumption (1.2) of monotonicity
on F. We omit them here.

4 Further discussion
From Step 2 of Algorithm 2.1, we can see that the search direction dj plays a key role in

designing a method for solving problem (1.1). In fact, there are some other possible choices
of dy. For example, we may choose

R - P, itk = m :
with
o EIZ o T 5
)»(k) —1_ i |)»(k))»(k) m IFe+ FTdg i1 if Fk di_;i >0,
k k—il ki = .
i=1 l ' —L % if Fdekfi < 0,

m N F R+ F dii]
i=12,....,m)and0 < p < 1.

Remark 4.1 Based on the direction dj defined as (4.1), we can construct a new algorithm
denoted by Algorithm 4.1, which is similar to Algorithm 2.1 except that the direction di in
Step 2 is replaced by (4.1), we omit it here.

In what follows, we discuss the global convergence of Algorithm 4.1. To this end, we give
two properties as follows.

Lemma 4.1 For any k > 0, we have

Flde < —(1 = p)| Fel. 4.2)

Proof If k < m, then (4.2) is obvious. If k > m + 1, then we have

W, P Il Ficl|?
il =
m | Fel? + | Fl dii
k k .
M Bl dii) = A Rl dii, i =1.2,....m,

@ Springer f bMA

Supermemory gradient methods for... 267

which, together with (4.1), implies that

—Flde = 2P 1 F)? + ZA“‘) Fldi_i

m
(Zlk(k))nF 12 +ZA“‘> Fldy_;

k
= [|Fe])? ZM“ |(LF? = 1 F diil)

m
k
> IF? = D I AU F? + 1B dei)
i=1
= (1= p)IIFel*.

This completes this proof. I
Lemma 4.2 1. Forany k > m, we have

dill = max {lIFell. ldk—il}- (4.3)

2. Forany k > 0, we have
lldill < max | F;l. 4.4
0<i<k

Proof If k < m, then (4.3) is obvious. We now show that (4.3) holds for k > m + 1. Clearly,
A% < 1 and
k —

k k
A0 — 1 ZM()

F 2
-1 BZ 2|| kll .
m S FlP + | FL dii]

0

>1——-m
m
=1—-p>0
This implies that
ZM(") | = 1. 4.5)

Hence, it follows from (4.1) and (4.5) that

(Zlk(k))lellJrZIk(k) ld—i

i=1
max {|| Fill, llde—ill},
1<i<m

lldi

IA

IA

which implies that this inequality (4.3) holds true.
Using induction process, we can deduce directly from (4.3) and (4.1) that this inequality
(4.4) also holds true. This completes this proof. [|

@ Springer f DMAC

268 Y. Ou, Y. Liu

Using Lemmas 4.1 and 4.2, we can easily establish the global convergence of Algorithm
4.1, whose proof is the same as that of Theorem 3.5 and thus is omitted.

Theorem 4.3 Suppose that Assumptions Al and A2 hold. Then we have

lim inf || Fx|| = O.
k—+00

Furthermore, the sequence {xi} generated by Algorithm 4.1 converges to a solution of (1.1).

5 Numerical tests

In this section, we present some numerical experiments to evaluate the performance of the
proposed methods on two sets of test problems. At the same time, we give some comparisons
with the related algorithms, including the performance profiles of Dolan and More (2002).

We first present some numerical experiments for Algorithms 2.1 and 4.1 on three con-
strained monotone testing problems, which are chosen from Refs. Yu et al. (2009) and Yan
et al. (2010).

Problem 1 The elements of function F are given by
Fi(x) =exp(x;))—1, i=1,2,...,n, and X ={x e R"|x; >0, i=1,2,...,n}

Problem 2 The elements of function F' are given by

F(x) =x; —sin(|lx; — 1|), i=1,2,...,n, and

n
X:[xeR”|in§n,xi20, i:1,2,...,n}.

i=1
Obviously, this problem is nonsmooth at point (1, 1, ..., 1)T € R".

Problem 3 The elements of function F are given by

X1+ x2
F = x| — ,
1(x) = x; —exp (cos (T))

Fi(x):xi—exp(cos(w)), i=2,3,....,n—1,

n+1

Xp—1 + Xn
Fu(x) = x, — ")),
n(x) = x, —exp (cos (p))

and X ={xeR"x;>0,i=1,2,...,n}.

To validate Algorithms 2.1 and 4.1 from a computational point of view, we compare them
with the algorithm in Ref. Yu et al. (2009) (abbreviated Algorithm Yu) and the algorithm in
Ref. Xiao and Zhu (2013) (abbreviated Algorithm Xiao) for the same problems mentioned
above, where the latter two algorithms were also devised especially for the monotone case.

We implemented all the algorithms with the codes written in Matlab 7.12. The testing
is performed on a PC computer with HPdx2810SE Pentium(R) Dual-Core CPU E5300 @
2.60 GHZ 2.00 GB. Throughout the computational experiments, the parameters used in
Algorithms 2.1 and 4.1 are chosen as follows: p = 0.0001, ¢ = 0.0001, 8 =0.9, m = 5;
the parameters used in Algorithm Yu are chosen as follows: 8 = 0.5, o = 0.01, r = 0.01,

@ Springer f bMA

Supermemory gradient methods for... 269

while the parameters used in Algorithm Xiao are chosen as follows: £ =1, p = 0.5, 0 =
0.0001.
All testing examples start at six initial points listed as follows:

1 1
X1 =(0,10,...,1007, x2=,1,..., DT, x3:(1,§,...,7),

n
- 12 r 1 2 T
X4=(0.1,0.1,...,0.07, x5=(-,=,...,1) , xX6=(1--,1-=,...,0) ,
n n n n

and the stopping condition for each algorithm is
I1Fell < 107>, (5.1)

The numerical results are reported in Tables 1, 2 and 3, where the number n refers to the
dimension of variables. The numerical results are given in the formof It /N F /T /F N, where
It, NF, T and F N denote the number of iterations, the number of function evaluations, the
CPU time in seconds and the final norm of F, respectively. If a method does not find a
solution, but terminates by exceeding 300 s, or presets iteration limit k = 5000, we denote it
by the word F.

We use the performance profile proposed by Dolan and More (2002) to display the per-
formance of each implementation on the set of test problems. That is, for each method, we
plot the fraction P of problems for which the method is within a factor t of the smallest
number of iterations/function evaluations/CPU times. Clearly, the left side of the figure gives
the percentage of the test problems for which a method is the best one according to the
number of iterations/function evaluations/CPU times, while the right side of the figure gives
the percentage of the test problems that is successfully solved by these algorithms. For more
details about the performance profile, please see Ref. Dolan and More (2002). Based on the
testing results in Tables 1, 2 and 3, we give the performance profiles in Figs. 1, 2 and 3.

From Figs. 1, 2 and 3, we observe the following facts:

e In terms of the number of iterations, Algorithm 4.1 performs best, and Algorithm 2.1
performs roughly the same as Algorithm Yu, while Algorithm Xiao performs worst.

e Interms of the number of function evaluations, Algorithm 4.1 performs roughly the same
as Algorithm Yu and Algorithm 2.1, but does better than Algorithm Xiao.

e In terms of the CPU time, Algorithm 4.1 performs roughly the same as Algorithm Yu,
but both of them do better than Algorithm 2.1, while Algorithm Xiao performs worst.

e For the test problems, Algorithms 2.1 and 4.1 are competitive with the other two methods,
in terms of the accuracy of approximate solutions obtained.

Therefore, we could say that Algorithms 2.1 and 4.1 are competitive to Algorithms Yu and
Xiao, in terms of the computational effort and accuracy.

To examine Algorithm 2.1°s sensitivity to the choices of the parameters m and p, we also
do some preliminary numerical experiments with varying values of them, and then give the
performance profiles in Figs. 4 and 5. From Figs. 4 and 5, we can observe the following facts:

e The choice of p has little impact on Algorithm 2.1 if y € (0,0.001] and the other
parameters keep the same as the initial values, i.e., 0 = 0.0001, 8 =0.9,m = 5.

e The choice of m has little impact on Algorithm 2.1 if 3 < m < 6 and the other parameters
keep the same as the initial values, i.e., p = 0.0001, ¢ = 0.0001, 8 = 0.9.

Similarly, it has been observed that Algorithm 4.1 is also not very sensitive to the choices of
the parameters m and p.

@ Springer f DMAC

Y. Ou, Y. Liu

270

9—20¥S0"1/SLESES 0/16/61
9—20¥61'1/£€89CL0/9C1/9C
9—38ILI'T/TEELEE 0/9S/T1T
9—oEP9S E/0SELSS 0/V6/61
9—9LERY'1/€9€TTE 0/95/01
9—999S¥ 1/S6€L9S°0/901/91
9—9668¢"S/TLYS6T 0/T6/61
9—9CTIE9/19%P1E 0/€01/TC
9—LSES T/TLEEBT 0/9S/T1T
9—2860S'1/0¢590¢°0/001/0C
9—9C6¥0"1/7€L881°0/95/01
9—200€0°[/8¥6C0¢"0/901/91
9—960L"1/788L80°0/56/0C
9—3¢€8LY'6/Tr€160°0/901/1C
9—98L06'1/6119t0°0/CS/01
9—9LTL6'E/698160°0/76/61
9—2¥960°¢/C6CEY00/15/6
9—9CILL 1/€098L0°0/TOL/ST

900—2C18%°L/810091°0/61/8
9—98SY6'9/1109S1°0/61/8
9—2¥00"1/6091C1°0/E1/S
L—2¥9S9°1/8190¥1°0/81/L
9—916S0°C/LELO6ET 0/ST/9
9—9ICIT L/T8E8IC 0/CHIV
9—9LILLY/T106£01°0/61/8
9= 116V/ELVE600/61/8
L—9CT01°L/ 895090°0/€1/S
L—9€959°1/099180°0/81/L
9—209S¥"1/¥80180°0/S1/9
9—9L660°S/Y100LT 0/Ch/v1
L—300LY"6/L8S9C0°0/61/8
9—90€90°I/LYETCO0/61/8
L—3T9L1"¢/68EYT0'0/E1/S
L—9¢959'1/6C9LY0"0/81/L
L—o¢€11S9/LEL6TO0/ST/9
9—9L08TC/LETISO 0/TYIV 1

0T—=21¥CT L/6LO0CTY 0/69/€T
9—9C06¥"L/0TLSY1"0/69/€C
6—3CLCO"1/8%¥0CT1"0/81/L
9—3vP06°C/1CESLI 0/EE/8
6—99¢€€8'8/9165C1°0/€T/L
8—90L06 I/vL¥T8T 0/¥S/01
0T—90€9L°6/0990¢€T 0/99/CC
9—21818°L/€296TT 0/99/9C
01—°9€9T"L/SLTS900/81/L
9—299906°¢/0S1L60°0/€€/8
6—°E9YC9/v65S01°0/€C/L
8—38YE 1/280991°0/7S/01
9—9CSH8'8/6C6LS00/C9/¥C
9—9CELO'6/L66£90°0/C9/1T
01 —2¥8¥C'€/LOSOT00/81/L
9—2vPC6C/E08LED 0/EE/8
6—°YE6LC/SSTYCO0/ET/L
6—210€0°9/1550S0°0/7S/01

9—9€LS99/SL6011°0/L9/€T
9—968C99/LYT611°0/L9/€T
9—2¢081°S/€L10ET 0/61/L
9—98ES6'1/916181°0/7¢/8
9—93¢010°5/68C6€1°0/LT/8
9—9796¢°6/£5066C 0/79/€1
9—96811'6/£6¢CT 0/¥9/CT
9—2¢1Ti'6/¥9890C 0/¥9/CT
9—20€99°¢/T¥1590°0/61/L
9—3SYS6' /€1 1¥60°0/7¢€/8
9—938TYS E/89LLOT 0/LT/8
9—31¥¥9°9/89%991°0/¥9/€1
9—3vY Y 8/LE89Y00/19/1C
9—9CSEY'8/CLTSSO'0/99/1C
9—9T8EY1/1T¥1C00/61/L
9—20096'1/8959¥0°0/¥¢/8
9—2v¥8S"1/0889C0°0/LT/8
9—9CIL6'C/8ELOSO 0/Y9/€ 1

000°01
000°01
000°01
000°01
000°01
000°01
000S
0008
000$
0008
000S
0008
0001
0001
000T
0001
0001
0001

9X
SX
vX
£X
X
X
9X
SX
vX
€X
X
X
9X
SX
X
£X
X
X

OBIX WIPLIOSTY

nx WLos[y

[y WSy

' WyLos[y

u

[entg

] Wo[qoid 0] SYNsaI [edrrowiny | J[qel,

@ Springer f bMA

271

Supermemory gradient methods for...

9—20060"C/€9TI8L L1/€TI/TT
9—299L0°C/69S188°L1/€C1/CC
9—20LTY 1/06C0ELCI/LS/ST
9—9CLSY'¥/9E9CI T O1/ETT1/61
9—998CS 1/0€€L6E 8/C9/6
996967 C/6LSOCTCI/L/ST
9—9CBELV/E9EESECI/EST/IT
9—91899°1/SOCI98 T 1/L¥1/ST
9—21600"I/TSYLIT L/L8/ST
9—26801'¢/C€995¢°01/SCI/1¢C
9—296080°"1/S00LE8 ¥/C9/6
9—9CCOL /YECO60T"L/L8/ST
9—3CY6L E/ST6VCIC/9ST/LT
9—93L801"1/095091°C/6S1/LT
9—9TEYE 1/E9Y0TT 1/28/771
9—2VLT8 1/6VYECH 1/201/81
9—29Y1¥'C/8808EL0/95/8
9—9SLY V/IESTCTIT I/18/¥1

L—9T1CS L/IOTLOSS E/LT/L
L—RLIES L/BYEYON E/LT/L
8—99€91°1/29C98E E1/CLIVT
L—268EL’LI6STOVEVI/ILIST
8—9¢T88'1/LTS80S C/CL/S
L—960L9"1/S8EEY I ¥/1T/8
L=y 1€ S/168CSOC/LT/L
L—3Y6TE S/VLS8Y0T/LI/L
6—°LLTT8/96€816°L/TLIVT
L—3LILY'S/8YSOV0 8/9L/ST
8—201€L 1/OV6ILS 1/CL/S
L—oCI8I 1/86ELCY C/1T/8
L—9L19E"C/86LESE O/LT/L
L—9ES6L7C/TECOSE O/LT/L
L—26576'9/6£00ST T/0L/€T
L—2818L'6/8C1T8C 1/0L/ET
6—9CCS6°S/S8C6ST0/CL/S
8—20¥8C'S/01L6EY 0/1T/8

L—3%8E1°6/6CC0€9°01/C6/C1
L—2¥L18°9/€S6SS0 T 1/T6/C1
9—938YCO[/8LOLIB E/€E/S
9—209¢ 1" 1/¥9¢€81°91/8€1/61
L—96LLT 1/8S1968°€/VE/S
L=201vC I/EIVIEOV/1V/L
9—906¥C 6/LSTILS S/Y8/TT
L—3€L66°€/C0T1T1'9/26/C1
L—9€9Y T LIOLTOITT/EE/S
9—2681¢ 1/Y98LLY" S/T8/T1
8—9¢€0°6/LCYOLT'T /YE/S
8—96VLL8/VEVISSTU/1V/L
L—318v¥ 1/0S98v6°0/78/11
9—9L06T'9/8796£6°0/78/1 1
L—290¥T ¢/€¥E98¢E°0/EE/S
9—3LY10°C/0S¥66L°0/99/6
9—9oCE80'8/8ELYIE 0/9T/Y
9—9I8I8L/6GLEIT 0/€E/9

9—938Y09'¥/91€0T8 6/¥8/T1
9—2V6LE V/TIYOTL 6/Y8/T1
9—938YC0'1/L60¥98°¢/E/S
L—3LESO'9/86L0O0LI/CY /6]
L—96LLT 1/SS6198°E/VE/S
L—20€1 T 1/089506 v/1¥/L
9—9LLOT E/STILIS S/VS8/TT
9—3CLY0"€/69011C°9/26/C1
L—=o€9YT LILYLOTT T/EE/S
L—2€891°9/196£L6°S/06/C1
8—919¢0°6/69696C C/VE/S
8—3V0L8'L/IL166V8C/1V/L
9—998Cy 1/128996°0/78/T1
9—9CITY 1/€CSTE0 1/T6/TT
L—990¥T €/16T8LE0/EE/S
9—99965°¢/CSS8E80/YL/OT
9—C€80°8/¥6610¢°0/9¢/Y
9—9I8I8L/STLSEL0/EE/9

000°01
000°01
000°01
000°01
000°01
000°01
000s
0008
000s
000s
000s
000$
0001
0001
000T
0001
0001
0001

9X
SX
vX
£X
X
X
9X
SX
vX
€X
X
X
9X
SX
X
£X
X
X

OBIY WIPLIOS[Y

nx WLos[y

[y WyLos[y

['7 WyLos[y

u

[entg

7 WR[qOI 0] SINSAI [edrIownN ¢ d[qeL,

JBINAC

pringer

&Hs

Y. Ou, Y. Liu

272

9—389S6'V/€IT LYY O1/CT1/1C
9—2€90¥'¢/90LSE6'OT/LT1/TT
9—2690C ¥/99¢8EL V1/86/61
9—RLCIY'¥/9CSE8I S1/YO1/61
9—26¢£81°1/¢€T8S0V1/86/81
9—3¥8S6'1/6EVLST S1/66/61
9—9ESSE I/VIPSLI'8/T6/81
9—3CCLT 1/99T9TT'8/T6/8
9—20659°1/¥009C9"8/L6/61
9—3C90S 1/S1CCS9'6/601/1¢C
9—2¥9CO V/8ECLIC O/ LIV
9—21€S9'1/L96TIT T 1/STI/EC
9—9CLST1/89S619°1/€T1/1C
9—939196°1/L9L9SS T /801/CC
9—211¢8C/9%1818°1/6C1/€T
9—2EYLS I/LSLTIOY 1/96/81
9—°pT8E 1/0CCTLIS 1/911/0C
9—26801°€/¢6CCIE 1/98/L1

L—9LT9E"8/9T0T0S ¥ 1/8L/9C
L—2€19¢€°8/1CLO0V ¥1/8L/9T
L—o6SY8'S/6CILI6 T1/29/1C
L—=21€90°€1C0CLTC1/S9/TT
L—31L6S LI881656°01/65/0C
L—3C6vL 1/0C8S9L E/LT/L
9—9L¥60'6/C609¢"L/99/CT
9—96£60'6/9808%¢'L/99/CT
L—9LS81'8/6¥9¥6L 9/65/0C
L—96€60°1/S€€5€9°L/89/€T
L—RL69E 1/€evTh e LIS9ITT
L—380SY"C/96CLL6 1/V1/9
L=RLYY9 CrvOv Iy 1/8L/9C
L—9GEY97C/SOE8EY 1/8L/9C
9—9C09LV/LYS861°1/99/CC
9—9L9ST I/LEOSTE 1/TLIVT
9—98981°9/C€9811°1/€9/1¢C
L—26601"1/L81YCE 0/V1/9

L—39961°9/L8S908°C/81/L
L—9G961°9/9¢vLy8C/81/L
L—RIYEI"L/S8LSO8C/8T/L
L—3€610°9/¥LY6LLT/81/L
L—99€89'V/89CE8LT/8I/L
9—9¢€066'I/8LLYIT"E/8T/L
9—99%SLC/IYE099°1/81/L
9—3VPSLT/SESEL T/8T/L
9—9CILI'E/E0PE69 1/81/L
9—9CCLYTU/ELEEI 1/8T/L
9—9L180°2/909669°1/81/L
9—9EvP8'8/8L8EEY I/81/L
9—9L0S0"L/T9ESTE 0 /TT/8
9—99LY0"L/8E8SYE 0/TT/8
9—311ST8/9ESLYE 0/TT/8
9—9LEYS 8/0T8 1YL 0/TT/8
9—CY IV S/TILLEE 0/TT/
9—2116CC/V1656€0/ST/6

9—9690C"C/TTLOTY E/ST/6
9—9890C C/T8SEV6'E/ST/6
9—20€8S C/Y88SBLE/ST/6
9—9L089°C/1E1€08€/ST/6
9—21S69°1/8VIS18°E/ST/6
9—93GE8I'L/E6LS08 E/ST/6
9—9€09S I/LLTO8TT/ST/6
9—9C09S 1/€LY 18T T/ST/6
9—9C9C8'1/60S95¢€C/ST/6
9—2LY68'1/6V£68C C/ST/6
9—9C861°1/¥L196CC/ST/6
9—998L0"S/0¥96¢£S"S/ST/6
9—96¥86'9/65SS¥¢ 0/CT/8
9—9381869/6119¢€°0/CT/8
9—20VLI"8/VLLLYE 0/TT/8
9—938E9Y'8/6L595€°0/TT/8
9—29¢€9¢°6/0€105¢°0/CT/8
9—216STU/ELILYS 0/ST/6

000°01
000°01
000°01
000°01
000°01
000°01
000S
000S
000$
0008
0008
000S
0001
0001
000T
0001
0001
0001

9X
SX
rX
£X
X
X
9X
SX
vX
£X
X
X
9X
SX
X
£X
X
X

OBIY WIPLIOS[Y

nx wWyios[y

[WpLosy

' WyLos[y

u

[entg

€ WA[qoId IOJ SI[NSAI [eOLIOWNN € I[qRL,

@ Springer f bMA

Supermemory gradient methods for... 273

T i
I
v
%]
I 4
\
-
>
T i
=
I
Vv
(%] i
Q
[]
<
=
o —#— Algorithm2.1 T
—©6— Algorithm4.1
Algorithm Yu i
Algorithm Xiao |
L L
6 8 10

tau

o
©

o
©

o
3

o
o

o
o

I
~

o
w

—F— Algorithm2.1
—6— Algorithm4.1
Algorithm Yu

Algorithm Xiao

P(rhops<=tau:1<=s<=4)

o
(V)

0.1

tau

Fig. 2 Performance profile for the number of function evaluations

According to an anonymous referee’s suggestion, in the second set of numerical
experiments, we compare the performance of Algorithms 2.1 and 4.1 with two typi-
cal gradient-based methods for solving large-scale unconstrained optimization problems:
L-BFGS method with the Wolfe line search (see Ref. Nocedal and Wright 1999 for details)
and CG-HZ method with the Wolfe line search (Hager and Zhang 2005). The test problems
are listed as follows (Li and Li 2011):

@ Springer f DMAC

274

Y. Ou, Y. Liu

P(rhops<=tau:1<=s<=4)

tau:1<=s<=4)

P(rhops<:

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—k— Algorithm2.1
—©— Algorithm4.1
Algorithm Yu
Algorithm Xiao

—6— rho=0.001

rho=0.0001

—©6— rho=0.00001
rho=0.000001

10

tau

Fig. 4 Performance profile for CPU with varying values of p

Problem 4 The elements of function F are given by

Fi(x) = 2x; — sin(x;),

i=1,2,...,n,

Problem 5 The elements of function F' are given by

F,-(x>=1n(x,-+1>—%, i

@ Springer j br\A

1,2,...

6 8

and X = R".

.n, and X = R".

Supermemory gradient methods for... 275

1

0.9

0.8 b

0.7 b

0.6 b

051]

0.4 1

P(rhops<=tau:1<=s<=4)

m=4
—%—m=5
m=6

l
031 ’ —6—m=3 ;

o2} |

l

|

0.1

I
o 2 4 6 8 10

tau

Fig. 5 Performance profile for CPU with varying values of m

These testing problems start at six initial points listed as follows:

T T 1 1
X7=(10,10,...,100", X8=(1,1,...,1)", X9= 1,5,...,7 ,
n

11 N\’
X10 = (0.1,0.1,...,0.)7, X11 = —X10, X12:(7,7,...,7) .
n

Throughout the computational experiments, the L-BFGS method and the CG-HZ method
implement the Wolfe line search conditions (Nocedal and Wright 1999) with ¢; = 0.01 and
c2 = 0.9. In addition, the merit function f(x) = Zl'le Fl.z(x) is used in implementing the
L-BFGS method and the CG-HZ method. Each method is stopped if the condition (5.1) is
satisfied.

Tables 4 and 5 show the test results, where M is the number of limited memory corrections
stored, and the numerical results are given in the form of 7/ F N, while other meanings are
the same as those in Table 1. Based on the test results in Tables 4 and 5, we also give the
performance profiles in Fig. 6.

From Fig. 6, we can see that for the test problems, the proposed algorithms are competitive
to the L-BFGS and CG-HZ methods for large-scale problems, in terms of the CPU times and
robustness, while the latter two methods perform slightly better than the former in terms of
the accuracy of approximate solutions obtained.

While it would be unwise to draw any firm conclusions from the limited numerical results
and comparisons, they indicate some promise for the new approaches proposed in this paper,
compared with the related methods mentioned above. Further improvement is expected from
more suitable implementation.

@ Springer f DMAC

Y. Ou, Y. Liu

276

91—23L66¢"L/€60¥0°0
61—°€90¥"C/60¥60C 1
9—2LY11°6/920L00°0
6—°LI18'C/6E8ILO’]
CI—21189°S/090SL8°C
8—9ILTY8/LOVLILO
9I—9CTIL'S/TP1EC00
9—360L1'%/89CC00°0
9—260L1'¥/¥E¥C00°0
6—°L09Y'9/LEIISIT
CI—98I88°€/9¢SLIT0
8—3v0CI' I/¥06L18'1
91 —98SLI'I/10C100°0
9—3T6LY'1/8€CH00°0
9—2€C98°1/156€20°0
6—°G6LYE'9/96CLS00
CI—=26SEL T/SLLS900
6—2S010°S/080LL0"0

6—2000%"C/008€10°0
9—o€19¢"8/8L81€0°0
9—2¥9¢€6'L/0LESTTO
8—9¢ey8'1/16¢C60°0
0/6€SL10°0
6—9¢691°S/Y00ELT 0
8—99LSE 1/¥8LLOO O
9—96119°6/SI8€C0°0
9—26119°S/11SITI0
8—99¢¥8°1/L897£0°0
0/9€SLITO
6—9€SS9°¢/L9Y88T°0
L—9L68S°L/S85900°0
9—9L605"C/S65500°0
—9L£05C/085600°0
8—92068°1/98L570°0
0/1161€0°0

6—2LYE9 1/0€S0¥0°0

§—30000°1/690€90°0
6—95961'9/0€0911°0
6—°L696'1/€CCESTO
9—9¢S0L’L/ITLOSIT O
8—938YCCI/9CILST O
8—3r8IE€/9091¥1°0
9—3CY IV I/LITEYO 0
6—28C6¢£'1/026090°0
6—98C6¢'1/€8L090°0
9—9CI0L'LIVLSYIT O
6—2¢€099'8/956901°0
8—3rore C/e6v160°0
9—9¢€C91'¢/L8CIT00
0T—988CC9/8LESTO0
01—°88CC9/CEL810°0
9—210L9°L/099110°0
6—°0€L8°¢/6¥L6C0°0
8—2r6v0"I1/1S€CE0°0

$—20000°1/LL6€90°0
9—9890C"¢/£600C1°0
9—2EP08'6/L1ESYT 0
9—239L18°1/£€9680C°0
9—98890°9/01CL61°0
9—969¢9°1/99L91CT°0
93¢V ¥ /L1000
9—3LTE6'9/¥01€90°0
9—2LTE6'9/YTETN0
9—98CI8'1/SCILOT0
9—2E16T¥/1£€601°0
9—3CLST 1/60SL0T°0
9—oEToI"¢/€CSTI00
9—3¥001°€/C85910°0
9—2%001°¢/110620°0
9—2¥108°1/6¥£LC0'0
9—21616"1/¢8L8C0°0
9—9L661°6/SCSSE0'0

000°01
000°01
000°01
000°01
000°01
000°01
000s
0008
000s
000s
000s
000s
0001
0001
0001
0001
0001
0001

X
X
(119:¢
6X
8X
LX
[49.¢
11X
(119:¢
6X
8X
LX
[49.¢
11X
(119:¢
6X
8X
LX

ZH-DO

(S = W) SDAd-1

[WpLosy

7 Wpuos[y

u

[entg

 WA[qOIJ 0] SINSAI [edIIoWNN § JqE],

@ Springer f bMA

271

Supermemory gradient methods for...

L—36€66'1/0C€010°0
€1—288YS'L/¥86L00°C
OI—=2IVILT/T0ILS9C

9—3CTIL¥/€9CS86'¢E

8—9C8I6'9/119LYE €
01—20%96'1/98L66C 6
9—93C0I¥' 1/0SL810°0
9—210¥8°€/60S65¢°0
01—20659" /759590
9—2L8YL¥/S6¥166°0
8—96916'1/9206£8°0
01—°¥68¢C/I81¥CEC
9—938861°9/€9¥910°0
9—20€89°1/€66801°0
IT—=21CP0S/STLLYO0

L—21C8S¥/L6ST80°0

8—96L8C"C/€20090°0
01—°6601°6/5C6091°0

6—3L¥09°9/S90LS0"0
8—986L1'C/6€1L60°0
9—9G878'C/9658L0°0
8—2¢0L1'T/SOIO0YI0

0/299Lv0°0

8—968€L'€/TEL6SO0
8= LYy 1/9LC650°0
9—9LS8I'8/C196L0°0
8—96C0C"T/LS880°0

0/LS0T60°0

9—3¥811°¢/T88L000
6—9LLES9/LTTICTO
L—391¥¢£°8/88¥871°0
8—9L091'C/LSE6IT0

0/L90LOT°0

9—23866¥"'1/C¥8Cr0°0
L—986LL'E/6LTSOT0
L—RLEIT 1/98STLO0
9—21S9L'S/1SLO8I 0
6—21819°¢/L8€860°0
6—200%S"¢/LSOLLTO
9—391¥T¥/199€€0°0
L—3169T'9/%¥80L0°0
L—9CILI'E/TEL6E00
L—9GL68'S/SLSTELO
6—°6£9C°9/7C£090°0
6—20ESTY/SYSEOT0
8—3CIYLv/Ev6500°0
8—3rEIT I/81ECI00
L—21L91°S/08SET0°0
L—20¥6£°¢/191920°0
8—26865'¢/891C10°0
8—3¥8ELT/6YSSED0

9—9866%"1/L1L9€00
L—986LL E/TLT660°0
L—RLEIT1/€1T0L00
9—2390€0°¢/8E¥8S1°0
6—21819°¢/¥9¥801°0
9—93C611°S/¥086CC0
9—391¥C¥/819L¥0°0
L—2169T°9/6CCSLO0
L—929C8'1/¥9¢9¥0°0
9—9C110°€/790C60°0
6—26£9C°9/9v98L0°0
9—3VI0LE/9LEITT O
8—9CIYLv/¥28500°0
8—3FEIT1/069C10°0
L—a1L9T1°S/L98LO00
9—98101°S/89LLCO0
8—96865°¢/1S9110°0
6—9620¢"1/€€9120°0

000°01
000°01
000°01
000°01
000°01
000°01
0008
0008
000s
000s
000s
000s
0001
0001
000T
0001
0001
0001

X
X
(119:¢
6X
8X
LX
[49.¢
11X
(119:¢
6X
8X
LX
[49.¢
11X
(119:¢
6X
8X
LX

ZH-DD

(S = W) SOAd-T

[y WyLos[y

7 Wpuos[y

u

[entg

G WA[qOIJ IOJ SI[NSAI [edLIOWNN § I[qRL,

JBINAC

pringer

&Hs

278 Y. Ou, Y. Liu

1
091 et
08 ’

T o7t

v

1]

U oosf

5

305G

1l

v

& 04

9]

<

T 03f ~—— % Algorithm2.1

—6— Algorithm4.1
0.2 L-BFGS b
—CG-HZ
0.1 |
0 : ; : :
0 2 4 6 8 10

Fig. 6 Performance profile for the CPU time

6 Conclusion

In this paper, we propose two new supermemory gradient methods for convex-constrained
nonlinear monotone equations. The main properties of the proposed methods are that we
establish the global convergence without using any merit function and making the differ-
entiability assumption. Furthermore, these methods do not solve any subproblem and store
any matrix. Thus, they can be applied to solve large-scale nonlinear equations. Preliminary
numerical results are reported to show that the proposed methods are efficient.

Since the most computational cost of each algorithm for problem (1.1) is to determine
the search direction di and find the stepsize «y in line search, we will study some more
effective methods for constructing a descent direction dj and an inexpensive line search in
our future research. Furthermore, we should proceed to make some numerical comparisons of
the performance between our proposed methods and some popular algorithms for nonsmooth
problems in the future research work.

Acknowledgements The authors are very grateful to the anonymous referees and the associate editor for
their valuable comments and suggestions that greatly improved this paper.

References

Ahookhosh M, Amini K, Bahrami S (2013) Two derivative-free projection approaches for systems of large-
scale nonlinear monotone equations. Numer Algorithms 64:21-42

Dolan ED, More JJ (2002) Benchmarking optimization software with performance profiles. Math Program
Ser A 91:201-213

Fan JY (2013) On the Levenberg—Marquardt method for convex constrained nonlinear equations. J Ind Manag
Optim 9:227-241

Figueiredo M, Nowak R, Wright SJ (2007) Gradient projection for sparse reconstruction: application to
compressed sensing and other inverse problems. IEEE J Sel Topics Signal Process 1:586-597

@ Springer f bMA

Supermemory gradient methods for... 279

Hager WW, Zhang HC (2005) A new conjugate gradient method with guaranteed descent and an efficient line
search. SIAM J Optim 16:170-192

Hager WW, Zhang HC (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2:35-58

Tusem AN, Solodov MV (1997) Newton-type methods with generalized distance for constrained optimization.
Optimization 41:257-278

Jia CX, Zhu DT (2011) Projected gradient trust-region method for solving nonlinear systems with convex
constraints. Appl Math J Chin Univ (Ser B) 26:57-69

Li QN, Li DH (2011) A class of derivative-free methods for large-scale nonlinear monotone equations. IMA
J Numer Anal 31:1625-1635

Narushima Y, Yabe H (2006) Global convergence of a memory gradient method for unconstrained optimization.
Comput Optim Appl 35:325-346

Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

Ou YG, Wang GS (2012) A new supermemory gradient method for unconstrained optimization problems.
Optim Lett 6:975-992

Ou YG, Liu Y (2014) A nonmonotone supermemory gradient algorithm for unconstrained optimization. J
Appl Math Comput 46:215-235

Shi ZJ, Shen J (2005) A new supermemory gradient method with curve search rule. Appl Math Comput
170:1-16

Solodov MV, Svaiter BF (1999) A new projection method for variational inequality problems. STAM J Control
Optim 37:765-776

Sun M, Bai QG (2011) A new descent memory gradient method and its global convergence. J Syst Sci
Complexity 24:784-794

Tong XJ, Zhou SZ (2005) A smoothing projected Newton-type method for semismooth equations with bound
constraints. J Ind Manag Optim 1:235-250

Wang CW, Wang YJ, Xu CL (2007) A projection method for a system of nonlinear monotone equations with
convex constraints. Math Methods Oper Res 66:33-46

Wood AJ, Wollenberg BF (1996) Power generations, operations, and control. Wiley, New York

Xiao YH, Zhu H (2013) A conjugate gradient method to solve convex constrained monotone equations with
applications in compressive sensing. J Math Anal Appl 405:310-319

Yan QR, Peng XZ, Li DH (2010) A globally convergent derivative-free method for solving large scale nonlinear
monotone equations. J] Comput Appl Math 234:649-657

Yu ZS, Lin J, Sun J et al (2009) Spectral gradient projection method for monotone nonlinear equations with
convex constraints. Appl Numer Math 59:2416-2423

Zhao YB, Li D (2001) Monotonicity of fixed point and normal mapping associated with variational inequality
and is applications. SIAM J Optim 11:962-973

@ Springer f DMAC

	Supermemory gradient methods for monotone nonlinear equations with convex constraints
	Abstract
	1 Introduction
	2 Supermemory gradient algorithm
	3 Convergence analysis
	4 Further discussion
	5 Numerical tests
	6 Conclusion
	Acknowledgements
	References

