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Abstract In this paper, we propose a primal–dual interior-point method for semidefinite
optimization problems. The algorithm is based on a new class of search directions and the Ai-
Zhang’s wide neighborhood for monotone linear complementarity problems. The theoretical
complexity of the new algorithm is calculated. It is investigated that the proposed algorithm
has polynomial iteration complexity O(

√
nL) and coincides with the best known iteration

bound for semidefinite optimization problems.

Keywords Semidefinite optimization · Interior-point methods · Wide neighborhood ·
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1 Introduction

Semidefinite optimization (SDO) problems are a special class of convex programming, which
have been recently intensively studied because of their applicability to various areas, such as
combinatorial optimization (Alizadeh 1995), system and control theory (Boyd et al. 1994)
or mechanical and electrical engineering. Due to importance of this class of optimization
problems, various algorithms have been proposed for solving and finding their optimal solu-
tions. Among these algorithms, interior-point methods (IPMs) are one of the most efficient
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and applicable class of iterative algorithms which solve SDO problems in polynomial time
complexity.

The first IPMs for SDO problems were developed by Alizadeh (1991) and Nesterov and
Nemirovskii (1994). Primal–dual IPMs for SDO problems have been widely studied by
Wolkowicz et al. (1999) and Klerk (2002). Several authors such as Helmberg et al. (1996),
Vandenberghe and Boyd (1995), Wang and Bai (2009), Mansouri and Roos (2009) andMan-
souri (2012) have proposed some interior-point algorithms for solving SDO problems. Wang
et al. (2014) proposed an interior-point algorithm and improved the complexity analysis
of IPMs for SDO problems using the Nesterov–Todd (NT) direction as the search direc-
tions. However, among iterative algorithms,Mehrotra’s predictor–corrector (MPC) algorithm
(Mehrotra 1992) is the most computationally successful iterative algorithm for SDO prob-
lems and because of its practical efficiency, it is the base of the most IPMs software package
such as SeDuMi (Sturm 1999).

Ai (2004), introducing a new wide neighborhood of the central path, proposed an interior-
point algorithm for linear complementarity problems (LCPs) and show that their algorithm
enjoys the low iteration bound O

(√
nL

)
where n is the number of variables and L is the

input data length. Later, several authors, based on this wide neighborhood, proposed some
interior-point algorithms for various class of optimization problems. For instance, Li and
Terlaky (2010) generalized the Ai et al.’s (2005) idea for LCP to SDO problems and proved
that the iteration complexity of their algorithm is the same as that of Ai and Zhang (2005).
Liu and Liu (2012) proposed the first wide neighborhood second-order corrector algorithm
with the same complexity as small neighborhood IPMs for SDO problems.

Yang et al. (2013) suggested a second-orderMPC algorithm for SDOproblems and proved
the convergence and polynomial complexity of their algorithm based on using an important
inequality. Liu et al. (2013) presented a new wide neighborhood infeasible interior-point
algorithm for symmetric cone optimization and proved that their algorithm has the same
theoretical complexity bound as the best short step path-following algorithms. Feng and
Fang (2014) proposed a predictor–corrector path-following interior-point algorithm for SDO
problems. Their algorithm enjoys the low iteration bound O(

√
nL) which is better than

that of usual wide neighborhood algorithm O(nL). Some wide neighborhood interior-point
algorithms for sufficient LCPs have been proposed by Potra (2014) in which the proposed
algorithms produce a sequence of iterates in the wide neighborhood of the central path given
by Ai and Zhang (2005).

Recently, Feng et al. (2014) proposed a new primal–dual path-following interior-point
algorithm for second-order cone programming using the Ai and Zhang (2005) wide neigh-
borhood instead of classical wide neighborhood. Motivated by Feng et al. (2014), the main
aim of this paper is to present a wide neighborhood feasible interior-point algorithm for SDO
problems. The algorithm uses a new class of search directions and the wide neighborhood
given by Ai and Zhang (2005). Furthermore, replacing the right-hand side of the complemen-
tarity equation in the system of KKT condition for SDO problems by a new term leads to a
new class of search directions in our algorithm.We prove that by starting from an initial feasi-
ble point

(
X0, y0, S0

)
in wide neighborhood of the central path, all generated iterations also

belong to this wide neighborhood. Although, the algorithm belongs to the class of large-step
algorithms we prove that the proposed algorithm enjoys the low complexity bound O(

√
nL)

and it coincides with the best complexity bound in the context of wide neighborhood IPMs
for SDO problems.

The rest of the paper is organized as follows. In Sect. 2, we introduce the SDOproblem and
review some basic concepts of IPMs such as central path and NT-search direction. We also
introduce awide neighborhood of the central path for SDOproblemwhich plays an important
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role in convergence analysis of the algorithm. In Sect. 3, we present a new class of search
directions and describe a general description of the proposed algorithm for SDO problem.
Some technical lemmas and important results will be stated in Sect. 3.1. The convergence
analysis and the proof of the polynomial complexity of the proposed algorithm are established
in Sect. 4. Finally, the paper ends with some concluding remarks in Sect. 5.

We will use the following notations in the paper. Rn denotes the space of vectors with
n components. Moreover, Sn denotes the set of n × n real symmetric matrices. Sn++

(
Sn+

)

denotes the set of all matrices in Sn which are positive definite (positive semidefinite). For
Q ∈ Sn , we write Q � 0 (Q � 0) if Q is positive definite (positive semidefinite). The
Frobenius and the spectral norms are denoted respectively by ‖·‖F and ‖·‖. For any matrix
A, λi (A) denotes the i th eigenvalue of A, λmin(A) the smallest eigenvalue of A and det(A)

its determinant whereas Tr(A) = ∑n
i=1 λi (A) denotes its trace.

The symmetric positive definite square root matrix of any symmetric positive definite

matrix X is denoted by X
1
2 . The notation A ∼ B ⇐⇒ A = SBS−1 for some invertible

matrix S means the similarity between A and B, and the identity matrix is denoted by I . For
a given matrix Q ∈ Sn, we show its eigenvalue decomposition as Q = U�UT . For any
p × q matrix A, vecA denotes the pq-vector obtained by stacking the columns of A one
by one from the first to the last column. The Kronecker product of two matrices A and B is
denoted by A⊗ B (see Helmberg et al. 1996 for the more details of the Kronecker product).
Finally, assuming the matrix Q ∈ Sn , λ(Q) indicates the vector of eigenvalues of the matrix
Q while Q+ and Q− denote the positive and negative parts of Q as follows

Q+ := UDiag
(
(λ1)

+, . . . , (λn)
+)

UT, Q− := UDiag
(
(λ1)

−, . . . , (λn)
−)

UT,

where (λi )
+ = max{λi , 0} and (λi )

− = min{λi , 0}.

2 Interior-point methods for SDO problems

We consider the standard form of the SDO problem:

min
{
Tr (CX) s.t. Tr (Ai X) = bi , i = 1, 2, . . . ,m, X � 0

}
, (1)

and its dual

max
{
bTy s.t.

m∑

i=1

yi Ai + S = C, S � 0
}
, (2)

where C, X, Ai ∈ Sn for i = 1, 2, . . . ,m and y ∈ R
m . We assume that the relative interior

set

F0 =
{

(X, y, S) ∈ Sn++ × R
m × Sn++ : Tr (Ai X) = bi ,

m∑

i=1

yi Ai + S = C, i = 1, 2, . . . ,m

}
,
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is nonempty. Under this assumption, both problems (1) and (2) are solvable and the optimality
conditions for them can be written as follows:

〈Ai , X〉 = bi , i = 1, 2, . . . ,m,
m∑

i=1

yi Ai + S = C,

XS = 0, X, S � 0, (3)

where the last equality is called the complementarity equation. The basic idea of primal–dual
IPMs is to replace the complementarity equation XS = 0 by the parameterized perturbed
equation XS = τμI with μ > 0 and τ ∈ (0, 1). By this substitution, we have the following
parameterized system

〈Ai , X〉 = bi , i = 1, 2, . . . ,m,
m∑

i=1

yi Ai + S = C,

XS = τμI, X, S � 0, (4)

If F0 
= ∅, system (4) has a unique solution denoted by (X (μ), y(μ), S(μ)) for any positive
parameter μ. The set of all such solutions constructs a guide curve, so called the central path,
which converges to optimal solution pair of problems (1) and (2) asμ reduces to zero (Kojima
et al. 1997; Halicka et al. 2002). Since the left-hand side of (4) is a map from Sn ×R

m × Sn to
R
n×n ×R

m × Sn , it follows that system (4) is not a square systemwhen X and S are restricted
to Sn . To remedy, assuming P ∈ R

n×n as a nonsingular matrix and using the symmetrization
scheme

HP (XS) = 1

2

(
PXSP−1 + P−TSX PT)

,

proposed byZhang (1998),we replace the perturbed equation XS = τμI by HP (XS) = τμI
where the matrix P belongs to the specific class

C(X, S) := {P ∈ Sn++|PXSP−1 ∈ Sn}. (5)

Thus, system (4) can be rewritten in equivalent form as follows:

〈Ai , X〉 = bi , i = 1, 2, . . . ,m,
m∑

i=1

yi Ai + S = C,

HP (XS) = τμI, X, S � 0. (6)

As it is well known, Newton’s method is a perfect procedure to solve a system of nonlinear
equations. Replacing (X, y, S) by (X+�X, y+�y, S+�S) in (6) and deleting the nonlinear
term HP (�X�S) from the third equation of (6), we can derive a new linearized Newton
search direction system as follows

〈Ai ,�X〉 = 0, i = 1, 2, . . . ,m,
m∑

i=1

�yi Ai + �S = 0,

HP (X�S + �XS) = τμI − HP (XS). (7)
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Different choices have been proposed for the nonsingular matrix P . However, in our analysis,

we use the matrix P = W
1
2 proposed by Nesterov and Todd (1998) where

W = X− 1
2

(
X

1
2 SX

1
2

) 1
2
X− 1

2 = S
1
2

(
S

1
2 XS

1
2

)− 1
2
S

1
2 . (8)

Let us further define

X̂ = PX P, Ŝ = P−1SP−1, �X̂ = P�X P, �Ŝ = P−1�SP−1. (9)

Then, the third equation in system (7) can be rewritten as

H(X̂�Ŝ + �X̂ Ŝ) = τμI − H(X̂ Ŝ), (10)

or equivalently as in Monteiro and Zhang (1998), in terms of the Kronecker product, it
becomes

Êvec�X̂ + F̂vec�Ŝ = vec
(
τμI − H(X̂ Ŝ)

)
, (11)

where

Ê ≡ 1

2

(
Ŝ ⊗ I + I ⊗ Ŝ

)
, F̂ ≡ 1

2

(
X̂ ⊗ I + I ⊗ X̂

)
. (12)

As in (Monteiro andZhang 1998), for the choice P = W
1
2 , it is easy to check that PXSP−1 ∈

Sn and X̂ = Ŝ and therefore Ê = F̂ .
As it is well known, the classical path-following interior-point algorithms for SDO prob-

lems are based on the following usual central path neighborhoods

NF (τ ) =
{
(X, y, S) ∈ F0 :

∥∥∥μI − X
1
2 SX

1
2

∥∥∥
F

≤ τμ

}
,

and

N−∞(τ ) =
{
(X, y, S) ∈ F0 : λmin(XS) ≥ τμ

}
,

where τ ∈ (0, 1) is a constant and μ = Tr(XS)
n is the normalized duality gap corresponding

to (X, y, S). In this paper, we define a new wide neighborhood as follows:

N (τ, β) =
{
(X, y, S) ∈ F0 :

∥∥∥∥
(
τμI − X

1
2 SX

1
2

)+∥∥∥∥
F

≤ βτμ

}
,

where β, τ ∈ (0, 1) are given constants. The new neighborhood is similar to the proposed
neighborhood byAi and Zhang (2005). The following lemma indicates that the neighborhood
N (τ, β) is indeed a scaling invariant wide neighborhood. For the proof and more details see
Sect. 2 in Feng and Fang (2014).

Lemma 2.1 If β, τ ∈ (0, 1) are given constants, then N−∞(τ ) ⊆ N (τ, β) and N (τ, β) is

scaling invariant. That is, (X, y, S) is in the neighborhood if and only if
(
X̂ , y, Ŝ

)
is.
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3 Search directions and algorithm

In this section, motivated by Feng et al. (2014), we replace the right-hand side of the third
equation in system (7) by a new term and obtain a class of new search directions for solving
SDO problems.We also present a general description of feasible wide neighborhood interior-
point algorithm for SDO problems.

Let V be a matrix related to the current iterate (X, y, S) as follows:

V := (τμI − HP (XS))+ + η (τμI − HP (XS))− + HP (XS), (13)

where

η := −Tr (τμI − HP (XS))+

Tr (τμI − HP (XS))−
. (14)

According to (13) and (14), it is clear that

Tr(V ) = Tr (HP (XS)) = Tr
(
H(X̂ Ŝ)

)
= Tr

(
X̂ Ŝ

)
= Tr (XS) = nμ. (15)

Introducing the new matrix tV − HP (XS) with t ∈ [0, 1] and replacing the right-hand side
of the third equation in (7) by tV − HP (XS), this system can be rewritten as follows:

〈Ai ,�X〉 = 0, i = 1, 2, . . . ,m,
m∑

i=1

�yi Ai + �S = 0,

HP (X�S + �XS) = tV − HP (XS), (16)

or equivalently, in terms of the scaled search directions and Kronecker product

〈 Âi ,�X̂〉 = 0, i = 1, 2, . . . ,m,
m∑

i=1

�yi Âi + �Ŝ = 0,

Êvec�X̂ + F̂vec�Ŝ = vec
(
tV − H(X̂ Ŝ)

)
, (17)

where Ê and F̂ are defined as in (12) and Âi = P−1Ai P−1. After taking a full Newton step
along (�X,�y,�S), the new iterate is given by

(X (t), y(t), S(t)) = (X, y, S) + (�X,�y,�S). (18)

Below, we describe more precisely the wide neighborhood feasible interior-point algorithm
for SDO problems.

The wide neighborhood feasible algorithm for SDO problems

• Input parameters: Required precision ε > 0, neighborhood parameters β, τ ∈ (0, 1
3 ]

and initial solution
(
X0, y0, S0

) ∈ N (τ, β).

• Output: A sequence of iterates
(
X̂ k, yk, Ŝk

)
for k = 1, 2, . . .

• step 0: Set k := 0.
• step 1: If nμk ≤ ε, then stop. Otherwise go to step 2.

• step 2: Let
(
X̂ , y, Ŝ

)
= (X̂ k, yk, Ŝk) and μ = μk . Compute V = V k from (13) and

(
�X̂ ,�y,�Ŝ

)
(t) from (17).
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Let
(
X̂(t), y(t), Ŝ(t)

)
=

(
X̂ , y, Ŝ

)
+

(
�X̂ ,�y,�Ŝ

)
(t) and find the smallest t̄ such

that
(
X̂(t), y(t), Ŝ(t)

)
∈ N (τ, β), for any t ∈ [t̄, 1].

• step 3:Let tk = t̄ and set (X̂ k+1, yk+1, Ŝk+1) = (X̂(tk), y(tk), Ŝ(tk)) andμk+1 = tkμk .
Then, go to step1.

Remark 1 In practice, we do not need to obtain an exact value for the parameter t̄ . Similar
to Ai (2004) and Feng et al. (2014) we only find an approximate value t̂ of t̄ such that(
X̂(t), y(t), Ŝ(t)

)
∈ N (τ, β), t̂ ≤ 1 − α√

n
and t̂ ≤ γ t̄ , where γ ≥ 1 is a constant. This

approximate value ensures the O(
√
nL)-iteration complexity as we prove in Theorem 4.1.

An efficientmethod to find such an approximate value t̂ is the bisectionmethod on the interval
[0, 1 − α√

n
], in which case we have t̂ ≤ 2t̄ and we can choose γ = 2.

3.1 Technical results

In this subsection, we present some technical lemmas which will be used in proof of conver-
gence analysis of the proposed algorithm. According to (13) and (14), we have the following
lemma.

Lemma 3.1 Let V and η be defined as (13) and (14). Then, η ∈ [0, 1) and
V � τμI.

Proof The first part of the lemma can be easily concluded as follows:

0 ≤ η = −Tr (τμI − HP (XS))+

Tr (τμI − HP (XS))−
= −Tr (τμI − HP (XS)) − Tr (τμI − HP (XS))−

Tr (τμI − HP (XS))−

= (1 − τ)nμ

Tr (τμI − HP (XS))−
+ 1 < 1.

On the other hand, using the definition of V , we have

V − τμI = (τμI − HP (XS))+ + η (τμI − HP (XS))− + (HP (XS) − τμI )

= (η − 1) (τμI − HP (XS))− � 0,

which concludes that V � τμI . This follows the second claim and completes the proof. ��

Lemma 3.2 After a full Newton-step one has

(i) HP (X (t)S(t)) = tV + HP (�X�S) ,

(ii) μ(t) = tμ.

Proof To prove the first claim (i), due to (18) and the third equation of (16), we have

HP (X (t)S(t)) = HP ((X + �X) (S + �S))

= HP (XS + (X�S + �XS) + �X�S)

= HP (XS) + HP (X�S + �XS) + HP (�X�S)

= tV + HP (�X�S) . (19)
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On the other hand, due to (19), the orthogonality of the search directions �X and �S and
(15) we have

μ(t) = Tr (X (t)S(t))

n
= Tr (HP (X (t)S(t)))

n
= tTr(V ) + Tr (HP (�X�S))

n

= tTr(V )

n
= tμ,

which proves the second part of the lemma and ends the proof. ��
Lemma 3.3 Let (X, y, S) ∈ N (τ, β). Then

Tr
(
τμI − X

1
2 SX

1
2

)− ≤ (τ − 1)nμ, (20)

Tr
(
τμI − X

1
2 SX

1
2

)+ ≤ √
nβτμ. (21)

Proof Due to similarity of the matrices XS and S
1
2 XS

1
2 , we have

Tr
(
τμI − X

1
2 SX

1
2

)− = Tr
(
τμI − X

1
2 SX

1
2

)
− Tr

(
τμI − X

1
2 SX

1
2

)+

≤ Tr
(
τμI − X

1
2 SX

1
2

)
= (τ − 1)Tr(XS) = (τ − 1)nμ,

which results (20). To prove (21), noticing the facts Tr(Q+) = ∥∥λ
(
Q+)∥∥

1 and ‖x‖1 ≤√
n ‖x‖∞ for x ∈ R

n , we obtain

Tr
(
τμI − X

1
2 SX

1
2

)+ =
∥∥∥∥λ

(
τμI − X

1
2 SX

1
2

)+∥∥∥∥
1

≤ √
n

∥∥∥∥λ
(
τμI − X

1
2 SX

1
2

)+∥∥∥∥∞

≤ √
n

∥∥∥∥λ
(
τμI − X

1
2 SX

1
2

)+∥∥∥∥

= √
n

∥∥∥∥
(
τμI − X

1
2 SX

1
2

)+∥∥∥∥
F

≤ √
nβτμ,

where the last inequality follows from (X, y, S) ∈ N (τ, β). This follows the inequality (21)
and completes the proof. ��

Corollary 1 Let (X, y, S) ∈ N (τ, β) and β, τ ∈ (0, 1
3 ]. Then, η ≤ 1

2

√
βτ
n .

Proof Considering the definition of η, similarity of matrices X̂ Ŝ and X
1
2 SX

1
2 , and using

Lemma 3.3 we immediately derive

η := −Tr (τμI − HP (XS))+

Tr (τμI − HP (XS))−
= −

Tr
(
τμI − X

1
2 SX

1
2

)+

Tr
(
τμI − X

1
2 SX

1
2

)− ≤
√
nβτμ

(1 − τ)nμ

=
√

βτ

1 − τ

√
βτ

n
≤ 1

2

√
βτ

n
,

where the last inequality follows from β, τ ∈ (0, 1
3 ]. This follows the result. ��

Now, we recall the following technical lemma from (Li and Terlaky 2010) which directly
uses in Proof of Lemma 3.5.
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Lemma 3.4 (Lemma 5.10 in Li and Terlaky 2010) Let X, S ∈ Sn++, P ∈ C(X, S), X̂ and Ŝ

be defined by (9) and Ê, F̂ be defined as in (12). Then
∥
∥
∥
∥
(
F̂ Ê

)−1
2

[
vec

(
τμI − X̂ Ŝ

)− ]∥∥
∥
∥

2

≤ Tr
(
X̂ Ŝ

)
. (22)

Lemma 3.5 Let (X, y, S) ∈ N (τ, β). Then
∥
∥
∥ηÊ−1[vec (τμI − HP (XS))−]

∥
∥
∥
2 ≤ 1

4
βτμ. (23)

Proof Using Lemma 3.4 with Ê = F̂ and Corollary 1, we have

∥
∥
∥ηÊ−1[vec (τμI − HP (XS))−]

∥
∥
∥
2 =

∥
∥
∥∥ηÊ−1

[
vec

(
τμI − X̂ Ŝ

)− ]∥∥
∥∥

2

= η2
∥
∥
∥
∥Ê

−1
[
vec

(
τμI − X̂ Ŝ

)− ]∥∥
∥
∥

2

≤ 1

4

βτ

n
Tr

(
X̂ Ŝ

)
= 1

4
βτμ,

where the last equality is obtained because of Tr
(
X̂ Ŝ

)
= nμ. This follows the desired

result. ��
Lemma 3.6 Let (X, y, S) ∈ N (τ, β). Then we have

∥∥∥Ê−1[vec (τμI − HP (XS))+]
∥∥∥
2 ≤ 1

2
βτμ. (24)

Proof Since λmin(Ê2) = λmin(X̂ Ŝ) ≥ (1 − β)τμ, it follows that

∥∥∥Ê−1[vec (τμI − HP (XS))+]
∥∥∥
2 =

∥∥∥∥Ê
−1

[
vec

(
τμI − X̂ Ŝ

)+ ]∥∥∥∥

2

≤
∥∥∥Ê−1

∥∥∥
2
∥∥∥∥vec

(
τμI − X̂ Ŝ

)+∥∥∥∥

2

=
∥∥∥Ê−1

∥∥∥
2
∥∥∥∥
(
τμI − X̂ Ŝ

)+∥∥∥∥

2

F

≤ 1
(
λmin(Ê)

)2

∥∥∥∥
(
τμI − X̂ Ŝ

)+∥∥∥∥

2

F

≤ 1

λmin(X̂ Ŝ)

∥∥∥∥
(
τμI − X̂ Ŝ

)+∥∥∥∥

2

F

≤ 1

(1 − β)τμ
β2τ 2μ2 ≤ 1

2
βτμ,

where the first inequality is obtained because of the properties of norms and the last inequality
follows because of β ≤ 1

3 . This completes the proof. ��
Corollary 2 Let (X, y, S) ∈ N (τ, β). Then

∥∥∥Ê−1vec (V − HP (XS))

∥∥∥
2 ≤ βτμ (25)
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Proof According to the definition of the matrix V , we have

V − HP (XS) = (τμI − HP (XS))+ + η (τμI − HP (XS))− .

Therefore, due to the orthogonality of the vectors vec (·)+ and vec (·)− and Lemmas 3.5
and 3.6, we have

∥
∥
∥Ê−1vec (V − HP (XS))

∥
∥
∥
2 =

∣
∣
∣
∣

∣
∣
∣
∣Ê

−1vec
[

(τμI − HP (XS))+

+ η (τμI − HP (XS))−
]∣
∣
∣
∣

∣
∣
∣
∣

2

=
∥
∥
∥Ê−1vec (τμI − HP (XS))+

∥
∥
∥
2

+ η2
∥
∥
∥Ê−1vec (τμI − HP (XS))−

∥
∥
∥
2

≤ 1

2
βτμ + 1

4
βτμ = 3

4
βτμ ≤ βτμ.

This completes the proof. ��

Lemma 3.7 Let (X, y, S) ∈ N (τ, β), 0 < τ ≤ β ≤ 1
3 and 1 − α√

n
≤ t ≤ 1 such that

α ≤ 1
4

√
βτ . Then, we have

∥∥∥Ê−1vec (tV − HP (XS))

∥∥∥
2 ≤ 2tβτμ = 2βτμ(t). (26)

Proof We may write

∥∥∥Ê−1vec (tV − HP (XS))

∥∥∥
2 =

∥∥∥Ê−1vec (t (V − HP (XS)) + (t − 1)HP (XS))

∥∥∥
2

≤
[
t
∥∥∥Ê−1vec (V − HP (XS))

∥∥∥

+ (1 − t)
∥∥∥Ê−1vec (HP (XS))

∥∥∥
]2

≤
(
t
√

βτμ + α√
n

√
nμ

)2

≤
(
t
√

βτμ + 1

4

√
βτμ

)2

=
(
t + 1

4

)2

βτμ ≤ 2tβτμ = 2βτμ(t),

where the last inequality follows from the fact
(
t + 1

4

)2 ≤ 2t for 1 − α√
n

≤ t ≤ 1 that

α ≤ 1
4

√
βτ . This follows the desired result. ��

4 Convergence analysis

In this section, we investigate the proposed feasible algorithm iswell defined and its complex-
ity is O

(√
n
)
. To this end, let us to state the following lemma which is useful for obtaining

the iteration bound of the algorithm.
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Lemma 4.1 Let P(t) ≡ (W (t))
1
2 where

W (t) = X (t)−
1
2

(
X (t)

1
2 S(t)X (t)

1
2

) 1
2
X (t)−

1
2 .

Moreover, suppose that (�X,�y,�S) is the solution of system (16). Then
∥
∥HP(t) (�X�S)

∥
∥
F ≤ βτμ(t). (27)

Proof Using the third equation of system (17) and the fact Ê = F̂ , we have

vec�X̂ + vec�Ŝ = Ê−1vec
(
tV − H(X̂ Ŝ)

)
.

TakingEuclidean-norm squared of both side of the above equation, applying the orthogonality
property of vec�X̂ and vec�Ŝ and using Lemma 3.7 we get

∥
∥HP(t) (�X�S)

∥
∥
F =

∥
∥
∥H(�X̂�Ŝ)

∥
∥
∥
F

≤
∥
∥
∥�X̂

∥
∥
∥
F

∥
∥
∥�X̂

∥
∥
∥
F

=
∥
∥
∥vec�X̂

∥
∥
∥

∥
∥
∥vec�Ŝ

∥
∥
∥

≤ 1

2

(∥
∥
∥vec�X̂

∥
∥
∥
2 +

∥
∥
∥vec�Ŝ

∥
∥
∥
2
)

= 1

2

∥
∥
∥vec�X̂ + vec�Ŝ

∥
∥
∥
2

= 1

2

∥∥∥Ê−1vec
(
tV − H(X̂ Ŝ)

)∥∥∥
2 ≤ βτμ(t),

which completes the proof. ��
We are ready to present the main result of the paper as follows.

Lemma 4.2 Assume that the current iterate (X, y, S) ∈ N (τ, β). Let 0 < τ ≤ β ≤ 1
3 and

1− α√
n

≤ t ≤ 1 such that α ≤ 1
4

√
βτ . Then, the new iterate (X (t), y(t), S(t)) generated by

the feasible wide neighborhood algorithm belongs to N (τ, β).

Proof Using (19) and the facts
∥∥(M + N )+

∥∥
F ≤ ∥∥M+∥∥

F + ∥∥N+∥∥
F and

∥∥M+∥∥
F ≤∥∥(HP (M))+

∥∥
F (Lemmas 3.1 and 3.3 in Li and Terlaky 2010), we have

∥∥∥∥
(
τμ(t)I − X (t)

1
2 S(t)X (t)

1
2

)+∥∥∥∥
F

≤
∥∥∥
(
HP(t) (τμ(t)I − X (t)S(t))

)+∥∥∥
F

=
∥∥∥
(
τμ(t)I − HP(t) (X (t)S(t))

)+∥∥∥
F

=
∥∥∥
(
tτμI − tV − HP(t) (�X�S)

)+∥∥∥
F

≤ ∥∥t (τμI − V )+
∥∥
F +

∥∥∥
(−HP(t) (�X�S)

)+∥∥∥
F

=
∥∥∥
(−HP(t) (�X�S)

)+∥∥∥
F

=
∥∥∥
(
HP(t) (�X�S)

)−∥∥∥
F

≤ ∥∥HP(t) (�X�S)
∥∥
F ≤ βτμ(t), (28)

where the third equality follows because of the fact
∥∥(τμI − V )+

∥∥
F = 0 and the last

inequality is due to Lemma 4.1. On the other hand, due to (28) and similarity of matrices

X (t)S(t) and X (t)
1
2 S(t)X (t)

1
2 we conclude

λi ((X (t)S(t))) = λi

(
X (t)

1
2 S(t)X (t)

1
2

)
≥ (1 − βτ)μ(t) > 0,
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which reveals X (t)S(t) is non-singular matrix and further implies that X (t) and S(t) are
non-singular as well. Using continuity of the eigenvalues of a symmetric matrix, it fol-
lows that X (t) and S(t) are positive definite matrices for all t ∈ [0, 1], since X, S are
positive definite matrices. This proves that (X (t), y(t), S(t)) ∈ N (τ, β) and completes the
proof. ��

Theorem 4.1 The proposed feasible wide neighborhood algorithm terminates in at most

O
(√

nL
)
iterations where L = 1

α
log

Tr
(
X0S0

)

ε
and α = 1

4

√
βτ .

Proof According to Remark 1, we have tk � t̂k ≤ 1− α√
n
. Since μ(t) = tμ, it follows that

μk ≤
(
1 − α√

n

)k

μ0,

which implies nμk ≤ ε for k ≥ √
nL . This follows the desired result and completes the

proof. ��

5 Concluding remarks

In this paper, we proposed a new path-following wide neighborhood feasible interior-point
algorithm for SDO problems. The algorithm is based on using a wide neighborhood and
a new class of search directions. Although, the proposed algorithm belongs to the class of
large-step algorithms, its complexity is coincide with the best iteration bound obtained by
the short-step path-following algorithms for SDO problems.
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