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Abstract In this paper, we give new convergence results for the basic fixed point iteration
and its two inversion-free variants for finding the maximal positive definite solution of the
matrix equation X + A∗X−1A + B∗X−1B = Q, proposed by Long et al. (Bull Braz Math
Soc 39:371–386, 2008) and Vaezzadeh et al. (Adv Differ Equ 2013). The new results are
illustrated by numerical examples.
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1 Introduction

In this paper, we study the matrix equation

X + A∗X−1A + B∗X−1B = Q, (1)

where A, B are square matrices and Q is a positive definite matrix. Here, A∗ denotes the
conjugate transpose of the matrix A. The matrix Eq. (1) can be reduced to

Y + C∗Y−1C + D∗Y−1D = I, (2)

where I is the identity matrix. Moreover, the Eq. (1) is solvable if and only if the Eq. (2)
is solvable. For the first time, the Eqs. (2) and (1) are considered by Long et al. (2008) and
Vaezzadeh et al. (2013), respectively.Also, theEqs. (1) and (2) are appeared as particular cases
of the equations in El-Sayed and Ran (2001), Ran and Reurings (2002), He and Long (2010),
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Duan et al. (2011) and Liu and Chen (2011). El-Sayed and Ran (2001) and Ran and Reurings
(2002) investigated the equation X + A∗F(X)A = Q. He and Long (2010) and Duan et al.
(2011) investigated the equation X + ∑m

i=1 A
∗
i X

−1Ai = I . Liu and Chen (2011) studied
the equation Xs + A∗X−t1 A+ B∗X−t2 B = Q. Berzig et al. (2012) considered the equation
X = Q − A∗X−1A + B∗X−1B. Zhou et al. (2013) and Li et al. (2014) investigated the

equation X + A∗X−1
A = Q.

Specifically, if B = 0, the Eq. (1) reduces to

X + A∗X−1A = Q, (3)

which has many applications and has been studied recently by several authors (Anderson
et al. 1990; Engwerda 1993; Zhan and Xie 1996; Zhan 1996; Guo and Lancaster 1999; Xu
2001; Meini 2002; Sun and Xu 2003; Hasanov and Ivanov 2006; Hasanov 2010).

In this paper, we write A > 0 (A ≥ 0) if A is a Hermitian positive definite (semidefinite)
matrix. ForHermitianmatrices A and B, wewrite A > B (A ≥ B) if A−B > 0 (A−B ≥ 0).
A positive definite solutions XS and XL of a matrix equation is called minimal and maximal,
respectively, if XS ≤ X ≤ XL for any positive definite solution X of the equation.

Long et al. (2008) presented some conditions for existence of a positive definite solution of
(2). They propose two iterative methods: basic fixed point iteration (BFPI) and an inversion-
free variant of BFPI for computing the maximal positive definite solution of (2). Vaezzadeh
et al. (2013) studied the Eq. (1) and considered inversion-free iterative methods. They give
partial generalization of the convergence theorems of Guo and Lancaster (1999). Popchev
et al. (2011, 2012) made a perturbation analysis of (1).

Motivated by the work in Long et al. (2008), Vaezzadeh et al. (2013) and Popchev et al.
(2011, 2012), we continue to study the fixed point iteration and inversion-free variant of
BFPI for solving of (1). In Sect. 2, we give the convergence rate of the BFPI. In Sect. 3, we
improve the convergence theorems, proved by Vaezzadeh et al. (2013), of two inversion-free
iterativemethods.With thesemethods we obtain themaximal positive definite solution of (1).
Some numerical examples are presented to illustrate the convergence behaviour of various
algorithms in Sect. 4.

Throughout this paper, we denote by ‖A‖ and ρ(A) the spectral norm and the spectral
radius of a square matrix A, respectively.

2 Basic fixed point iteration

Long et al. (2008) investigated Eq. (2). They propose some iterative algorithms and obtained
some conditions for the existence of the positive definite solutions of (2).

We consider the BFPI:

Algorithm 2.1 (Basic fixed point iteration) Let X0 = Q. For n = 0, 1, . . . , compute

Xn+1 = Q − A∗X−1
n A − B∗X−1

n B.

Long et al. (2008) proved that, if Eq. (1) with Q = I has a positive definite solution, then
the Algorithm 2.1 defines a monotonically decreasing matrix sequence, which converges to
positive definite solution of (1). But the problem of convergence rate in Long et al. (2008)
was not considered. It is easy to prove by induction that, if Eq. (1) has a positive definite
solution then the Algorithm 2.1 defines a monotonically decreasing matrix sequence, which
converges to the maximal positive definite solution XL of (1) for general positive definite
matrix Q, i.e.
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X0 = Q ≥ Xn ≥ Xn+1 ≥ XL, n = 1, 2, . . . , lim
n→∞ Xn = XL. (4)

We now establish the following result.

Theorem 2.1 If Eq. (1) has a positive definite solution, then for Algorithm 2.1 we have

‖Xn+1 − XL‖ ≤
(∥

∥
∥X−1

L A
∥
∥
∥
2 +

∥
∥
∥X−1

L B
∥
∥
∥
2
)

‖Xn − XL‖,

for all n ≥ 0.

Proof The proof is similar to Theorem 2.3 in Guo and Lancaster (1999). Since Xn+1 =
Q − A∗X−1

n A − B∗X−1
n B and XL = Q − A∗X−1

L A − B∗X−1
L B, we have

Xn+1 − XL = A∗ (
X−1
L − X−1

n

)
A + B∗ (

X−1
L − X−1

n

)
B,

= A∗ (
X−1
L + X−1

n − X−1
L

)
(Xn − XL)X−1

L A

+B∗ (
X−1
L + X−1

n − X−1
L

)
(Xn − XL)X−1

L B

= A∗X−1
L (Xn − XL)X−1

L A + B∗X−1
L (Xn − XL)X−1

L B

−A∗X−1
L (Xn − XL)X−1

n (Xn − XL)X−1
L A

−B∗X−1
L (Xn − XL)X−1

n (Xn − XL)X−1
L B.

Hence,

0 ≤ Xn+1 − XL ≤ A∗X−1
L (Xn − XL)X−1

L A + B∗X−1
L (Xn − XL)X−1

L B

and

‖Xn+1 − XL‖ ≤
(∥

∥
∥X−1

L A
∥
∥
∥
2 +

∥
∥
∥X−1

L B
∥
∥
∥
2
)

‖Xn − XL‖.

�	
Remark 2.1 If ‖X−1

L A‖2+‖X−1
L B‖2 < 1 in Theorem 2.1, then the Algorithm 2.1 converges

to XL linearly with rate r ≤ ‖X−1
L A‖2 + ‖X−1

L B‖2. Moreover, if X is a positive definite
solution of the Eq. (1) and ‖X−1A‖2 + ‖X−1B‖2 < 1, then X ≡ XL.

3 Inversion-free variants of the basic fixed point iteration

Zhan (1996) proposed an inversion-free variant of the BFPI for the maximal solution of
(3) when Q = I . Guo and Lancaster (1999) considered this algorithm for general positive
definite Q and solved the problem of convergence rate.

Long et al. (2008) investigated Eq. (2). They applied Zhan’s idea for (2) and proposed
inversion-free variant of the BFPI for the maximal solution of (2). We rewrite their algorithm
for general Q, which is applicable directly for (1).

Algorithm 3.1 Let X0 = Q, Y0 = Q−1. For n = 0, 1, 2, . . . compute
{
Xn+1 = Q − A∗Yn A − B∗Yn B
Yn+1 = Yn(2I − XnYn)
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The convergence of Algorithm 3.1 was established in Long et al. (2008) for Q = I .
Moreover, Long et al. (2008) derived that, if (1) has a positive definite solutionwith Q = I , for
Algorithm3.1, X0 ≥ X1 ≥ · · · ,Y0 ≤ Y1 ≤ · · · , and limn→∞ Xn = XL, limn→∞ Yn = X−1

L ,
where XL is the maximal positive definite solution. For general positive definite matrix Q
the convergence properties of Algorithm 3.1 are preserved.

Vaezzadeh et al. (2013) studied the Eq. (1) with Q = I and investigated the problem of
convergence rate for Algorithm 3.1. The following result is given in Vaezzadeh et al. (2013).

Theorem 3.1 (Vaezzadeh et al. 2013, Theorem 2) If matrix Eq. (1) with Q = I has a positive
definite solution, for Algorithm 3.1 and any ε > 0, we have

∥
∥
∥Yn+1 − X−1

L

∥
∥
∥ ≤

( ∥
∥
∥AX−1

L

∥
∥
∥ +

∥
∥
∥BX−1

L

∥
∥
∥ + ε

)2 ∥
∥
∥Yn−1 − X−1

L

∥
∥
∥ (5)

and
‖Xn+1 − XL‖ ≤ (‖A‖2 + ‖B‖2)

∥
∥
∥Yn − X−1

L

∥
∥
∥ (6)

for all n large enough.

We now show that the above result can be improved.

Theorem 3.2 If matrix Eq. (1) has a positive definite solution, then for Algorithm 3.1 and
any ε > 0, we have

∥
∥
∥Yn+1 − X−1

L

∥
∥
∥ ≤

(∥
∥
∥AX−1

L

∥
∥
∥
2 +

∥
∥
∥BX−1

L

∥
∥
∥
2 + ε

) ∥
∥
∥Yn−1 − X−1

L

∥
∥
∥ (7)

and
‖Xn+1 − XL‖ ≤ (‖A‖2 + ‖B‖2)

∥
∥
∥Yn − X−1

L

∥
∥
∥ (8)

for all n large enough. Moreover, if A and B are nonsingular, then

‖Xn+1 − XL‖ ≤
(∥

∥
∥X−1

L A
∥
∥
∥
2 +

∥
∥
∥X−1

L B
∥
∥
∥
2 + ε

)

‖Xn−1 − XL‖ (9)

for all n large enough.

Proof In the proof of Theorem 3.1 (Vaezzadeh et al. 2013) obtained the expression

X−1
L − Yn+1 =

(
X−1
L − Yn

)
XL

(
X−1
L − Yn

)
+ Yn A

∗ (
X−1
L − Yn−1

)
AYn

+Yn B
∗ (

X−1
L − Yn−1

)
BYn . (10)

The inequality (7) follows from (10) since ‖Yn − X−1
L ‖ ≤ ‖Yn−1− X−1

L ‖ and lim Yn = X−1
L .

The inequality (8) follows from

Xn+1 − XL = A∗ (
X−1
L − Yn

)
A + B∗ (

X−1
L − Yn

)
B (11)

So, from (10) and (11) follows:

X−1
L − Yn =

(
X−1
L − Yn−1

)
XL

(
X−1
L − Yn−1

)
+ Yn−1(Xn−1 − XL)Yn−1 (12)

If A and B are nonsingular, from (11) and (12) we have
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Xn+1 − XL = A∗Yn−1(Xn−1 − XL)Yn−1A + B∗Yn−1(Xn−1 − XL)Yn−1B

+A∗ (
X−1
L − Yn−1

)
AA−1XL

(
X−1
L − Yn−1

)
A

+B∗ (
X−1
L − Yn−1

)
BB−1XL

(
X−1
L − Yn−1

)
B.

Hence,

‖Xn+1 − XL‖ ≤ (‖Yn−1A‖2 + ‖Yn−1B‖2) ‖Xn−1 − XL‖
+

∥
∥
∥A∗ (

X−1
L − Yn−1

)
A + B∗ (

X−1
L − Yn−1

)
B

∥
∥
∥

×
( ∥

∥
∥A−1XL

(
X−1
L − Yn−1

)
A
∥
∥
∥ +

∥
∥
∥B−1XL

(
X−1
L − Yn−1

)
B

∥
∥
∥

)

= (‖Yn−1A‖2 + ‖Yn−1B‖2) ‖Xn−1 − XL‖
+

( ∥
∥
∥A−1XL

(
X−1
L − Yn−1

)
A
∥
∥
∥ +

∥
∥
∥B−1XL

(
X−1
L − Yn−1

)
B

∥
∥
∥

)

×‖Xn − XL‖.
Therefore, since ‖Xn − X‖ ≤ ‖Xn−1 − X‖ and lim Yn = X−1

L , (9) is satisfied for all n large
enough. �	
Remark 3.1 According the Theorem 3.1 for the linear convergence of the Algorithm 3.1
is guaranteed if (‖AX−1

L ‖ + ‖BX−1
L ‖)2 < 1. But, according our result (Theorem 3.2) is

necessarily ‖AX−1
L ‖2 + ‖BX−1

L ‖2 < 1. It is obvious that

∥
∥
∥AX−1

L

∥
∥
∥
2 +

∥
∥
∥BX−1

L

∥
∥
∥
2

<

( ∥
∥
∥AX−1

L

∥
∥
∥ +

∥
∥
∥BX−1

L

∥
∥
∥

)2

.

Hence, there arematrices A, B andmaximal solution XL of the Eq. (1), for which ‖AX−1
L ‖2+

‖BX−1
L ‖2 < 1 and (‖AX−1

L ‖ + ‖BX−1
L ‖)2 > 1, see Examples 4.1 and 4.2.

Vaezzadeh et al. (2013) proposed modification of Algorithm 3.1 with Q = I and investi-
gated the problem of convergence rate. For general positive definite matrix Q this algorithm
takes the following form:

Algorithm 3.2 Let X0 = Q, Y0 = Q−1. For n = 0, 1, . . ., compute
{
Yn+1 = Yn(2I − XnYn)
Xn+1 = Q − A∗Yn+1A − B∗Yn+1B

We denote that Algorithm 3.2 is generalization of Guo and Lancaster algorithm for (3)
proposed in Guo and Lancaster (1999).

Vaezzadeh et al. (2013), Theorem 3 derived that, if (1) has a positive definite solution
with Q = I , for Algorithm 3.2, X0 ≥ X1 ≥ · · · , Y0 ≤ Y1 ≤ · · · , and limn→∞ Xn = XL,
limn→∞ Yn = X−1

L . Vaezzadeh et al. (2013) for convergence rate the following result is
given.

Theorem 3.3 (Vaezzadeh et al. 2013, Theorem 4) If matrix Eq. (1)with Q = I has a positive
definite solution, for Algorithm 3.2 and any ε > 0, then we have

∥
∥
∥Yn+1 − X−1

L

∥
∥
∥ ≤

( ∥
∥
∥AX−1

L

∥
∥
∥ +

∥
∥
∥BX−1

L

∥
∥
∥ + ε

)2 ∥
∥
∥Yn − X−1

L

∥
∥
∥ (13)
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and
‖Xn − XL‖ ≤ (‖A‖2 + ‖B‖2)

∥
∥
∥Yn − X−1

L

∥
∥
∥ (14)

for all n large enough.

For general positive definite matrix Q the convergence properties of Algorithm 3.2 are
preserved. We now show that the above result can be improved.

Theorem 3.4 If matrix Eq. (1) has a positive definite solution, then for Algorithm 3.2 and
any ε > 0, we have

∥
∥
∥Yn+1 − X−1

L

∥
∥
∥ ≤

(∥
∥
∥AX−1

L

∥
∥
∥
2 +

∥
∥
∥BX−1

L

∥
∥
∥
2 + ε

)∥
∥
∥Yn − X−1

L

∥
∥
∥ (15)

and
‖Xn − XL‖ ≤ (‖A‖2 + ‖B‖2)

∥
∥
∥Yn − X−1

L

∥
∥
∥ (16)

for all n large enough. Moreover, if A and B are nonsingular, then

‖Xn+1 − XL‖ ≤
(∥

∥
∥X−1

L A
∥
∥
∥
2 +

∥
∥
∥X−1

L B
∥
∥
∥
2 + ε

)

‖Xn − XL‖ (17)

for all n large enough.

Proof The proof is similar to that of Theorem 3.2. �	

4 Numerical experiments

In this section, we present some numerical examples to show the effectiveness of the new
result for convergence rate of the considered inversion-free methods. We consider examples,
which are modification of the examples in Long et al. (2008) and Vaezzadeh et al. (2013) and
compare the Algorithm 2.1 (BFPI), Algorithm 3.1 (FIFV-BFPI) and Algorithm 3.2 (SIFV-
BFPI). For the stopping criterion we take

‖Xn − Xn−1‖∞ ≤ 10−10,

where ‖A‖∞ = maxi
∑m

j=1 |ai j | for a complex m × m matrix A.
We use the following notations:

– k is the smallest number of iteration, such that the stopping criterion is satisfied;
– res(Xk) = ‖Xk + A∗X−1

k A + B∗X−1
k B − Q‖∞;

– r1 = ‖X−1
L A‖2 + ‖X−1

L B‖2—convergence rate of Algorithm 2.1 (BFPI);
– r2y = (‖AX−1

L ‖ + ‖BX−1
L ‖)2—convergence “semi”-rate of Yn in Algorithm 3.1 (FIFV-

BFPI) and convergence rate of Yn in Algorithm 3.2 (SIFV-BFPI) given by Veazzadeh et
al. [see (5) and (13)];

– r3y = ‖AX−1
L ‖2 + ‖BX−1

L ‖2 and r3x = r1 are convergence “semi”-rate of Yn and Xn in
Algorithm 3.1, respectively. Moreover, r3y and r3x are convergence rate of Yn and Xn in
Algorithm 3.2, respectively [see (17)];

– εx (r) = r − ‖Xn−XL‖
‖Xn−1−XL‖ ;ε

′
x (r) = r − ‖Xn−XL‖

‖Xn−2−XL‖ ;

– εy(r) = r − ‖Yn−X−1
L ‖

‖Yn−1−X−1
L ‖ ;ε

′
y(r) = r − ‖Yn−X−1

L ‖
‖Yn−2−X−1

L ‖ .

In our case for Algorithm 3.1 convergence “semi”-rate means that:

123



Convergence of 3 iterative methods for solving X + A∗X−1A + B∗X−1B = Q 85

‖Yn+1 − X−1
L ‖ ≤ (r2y + ε)‖Yn−1 − X−1

L ‖ is satisfied [see (5)];
‖Yn+1 − X−1

L ‖ ≤ (r3y + ε)‖Yn−1 − X−1
L ‖ is satisfied [see (7)];

‖Xn+1 − XL‖ ≤ (r3x + ε)‖Xn−1 − XL‖ is satisfied [see (9)].

Convergence rate of Algorithm 3.1 is approximately square root of the “semi”-rate.

Example 4.1 Consider the Eq. (1) with

A = 1

10

⎛

⎝
0.10 −1.50 −2.59
0.15 2.12 −0.64
0.25 −0.69 1.39

⎞

⎠, B = 1

10

⎛

⎝
1.60 −0.25 0.20

−0.25 −2.88 −0.60
0.04 −0.16 −1.20

⎞

⎠,

Q = 1

2
I + 2A∗A + 2B∗B.

Now, for Example 4.1 the maximal solution is XL = 1
2 I , and r1 = r3y = r3x = 0.7537

and r2y = 1.5063. In Table 1 are given the numbers of iteration k, for which the stopping
criterion is satisfied, the norm ‖Xk − Xk−1‖∞ and res(Xk) for the three algorithms.

The rest of our numerical results are reported in Table 2.

Example 4.2 Consider the Eq. (1) with

A = 1

70

⎛

⎜
⎜
⎜
⎜
⎝

40 25 23 35 66
25 32 27 45 21
23 27 28 16 24
35 45 16 52 65
66 21 24 65 69

⎞

⎟
⎟
⎟
⎟
⎠

, B = 1

70

⎛

⎜
⎜
⎜
⎜
⎝

11 21 23 25 32
21 31 60 42 33
23 60 34 18 26
25 42 18 44 30
32 33 26 30 50

⎞

⎟
⎟
⎟
⎟
⎠

,

Table 1 Numerical results of
Example 4.1

Algorithm k ‖Xk − Xk−1‖∞ res(Xk )

BFPI 31 8.0713e−11 4.0537e−11

FIFV-BFPI 60 6.6362e−11 1.1674e−10

SIFV-BFPI 32 7.2509e−11 7.2509e−11

Table 2 Numerical results of Example 4.1

BFPI FIFV-BFPI SIFV-BFPI

n εx (r1) ε′
y(r2y) ε′

y(r3y) ε′
x (r3x ) εy(r2y) εy(r3y) εx (r3x )

1 0.4526 * * * 0.5624 −0.1901 0.4136

2 0.3414 0.9317 0.1791 0.3332 0.8964 0.1438 0.2072

5 0.2622 1.0426 0.2900 0.3011 1.0111 0.2585 0.2544

10 0.2518 1.0136 0.2610 0.2628 1.0046 0.2521 0.2518

20 0.2515 1.0045 0.2519 0.2519 1.0041 0.2515 0.2515

30 0.2515 1.0041 0.2515 0.2515 1.0041 0.2515 0.2515

31 0.2515 1.0041 0.2515 0.2515 1.0041 0.2515 0.2515

32 * 1.0041 0.2515 0.2515 1.0041 0.2515 0.2515

k > 32 * 1.0041 0.2515 0.2515 * * *
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Table 3 Numerical results of
Example 4.2

Algorithm k ‖Xk − Xk−1‖∞ res(Xk )

BFPI 56 8.2800e−11 5.5176e−11

FIFV-BFPI 108 8.2826e−11 1.5294e−10

SIFV-BFPI 57 8.1894e−11 8.1894e−11

Table 4 Numerical results of Example 4.2

BFPI FIFV-BFPI SIFV-BFPI

n εx (r1) ε′
y(r2y) ε′

y(r3y) ε′
x (r3x ) εy(r2y) εy(r3y) εx (r3x )

1 0.3495 * * * 0.6124 −0.1028 0.3259

2 0.2213 0.8458 0.1306 0.2173 0.7368 0.0216 0.0918

5 0.1111 1.3130 0.5978 0.1650 1.1938 0.4786 0.1051

10 0.0826 0.8208 0.1056 0.1085 0.7983 0.0831 0.0829

20 0.0787 0.7969 0.0817 0.0824 0.7939 0.0787 0.0787

30 0.0786 0.7942 0.0790 0.0791 0.7938 0.0786 0.0786

40 0.0786 0.7939 0.0787 0.0787 0.7938 0.0786 0.0786

56 0.0786 0.7938 0.0786 0.0786 0.7938 0.0786 0.0786

57 * 0.7938 0.0786 0.0786 0.7938 0.0786 0.0786

k > 57 * 0.7938 0.0786 0.0786 * * *

Q = X + A∗X−1A + B∗X−1B, where X =

⎛

⎜
⎜
⎜
⎜
⎝

3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 3

⎞

⎟
⎟
⎟
⎟
⎠

We have for Example 4.2 the maximal solution XL = X , r1 = r3x = r3y = 0.7450 and
r2y = 1.4602. Our numerical results are reported in Tables 3 and 4.
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