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Abstract This paper deals with the global analysis of a dynamical model for the spread
of tuberculosis with isolation and incomplete treatment. The model exhibits the traditional
threshold behavior. We prove that when the basic reproductive number is less than unity,
the disease-free equilibrium is globally asymptotically stable. When the basic reproductive
number is greater than unity, the disease-free equilibrium is unstable and a unique endemic
equilibrium exists which is locally asymptotically stable and globally asymptotically stable
when the disease-induced death rate is equal to zero. The stability of disease-free equilibrium
is derived by using Lyapunov stability theory and LaSalle’s invariant set theorem. The global
stability of endemic equilibrium is proved by generalized Dulac–Bendixson criterion when
the disease-induced death rate is equal to zero. Numerical simulations support our analytical
results.
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1 Introduction

Tuberculosis (TB) is a disease caused by infection withMycobacterium tuberculosis, which
most frequently affects the lungs (pulmonary TB). It is one of the most common infectious
diseases with about 2 billion people (one-third of the world’s population) currently infected.
About 9 million new cases of active disease develop each year, resulting in two million
deaths, mostly in developing countries. There were an estimated 8.7 million incident cases
of TB globally in 2011 (World Health Organization 2012). TB infection remains a serious
public health challenge in China. According to the WHO estimates, China has the world’s
second largest TB epidemic accounting for 12 % of global cases, only after India, with more
than 1.3 million new cases of TB being reported every year. From the website of National
Health and Family Planning Commission of the PRC (2001–2013), we know that over the
period 2003–2013 TB was the second largest cause of death among China’s 39 notifiable
communicable diseases, after HIV/AIDS (National Health and Family Planning Commission
of the PRC 2003–2014).

Fortunately, TB is treatable and curable. TB patients can be treated and can recover using
antibiotics, though TB requires much longer periods of treatment than many other diseases
(typically 6–9 months) for complete removal of the causative bacteria (Palomino et al. 2009).
The treatment is usually divided into two stages: the first 2months and subsequent 4months or
more. If treatment compliance is maintained and theMycobacterium strain is drug sensitive,
85 % of patients convert from sputum positive to sputum negative, becoming noninfectious
within the first 2 months (American Thoracic Society 1994). Nearly 95 % of patients convert
to sputum negative on completion of treatment (American Thoracic Society 1994; Kirschner
1999). The vast majority of TB cases can be cured when medicines are provided and taken
properly (World Health Organization 2014). In this case, the individuals recover and become
susceptible after being treated (they may be infected again if they come in contact with
other infectious persons). On the other hand, within weeks following treatment initiation,
the majority of bacteria are removed and patients begin to see resolution of symptoms. Due
to these and other reasons, treatment is often interrupted or ceased (Mittal and Gupta 2011).
If treatment is interrupted, a fraction of the bacterial population (termed persisters) remains
in the body, and in this case the individuals after being treated may still be TB carriers and
become latent.

Mathematical models can provide a useful tool to analyze the spread and control of infec-
tious diseases (Anderson and May 1991; Hetcote 2000). Mathematical models for tubercu-
losis are especially useful tools in assessing the epidemiological consequences of medical or
behavioral interventions (which may cause many direct and indirect effects), because they
contain explicit mechanisms that link individuals with a population-level outcome such as
incidence or prevalence. Different mathematical models for tuberculosis have been formu-
lated and studied (see e.g., Blower et al. 1995, 1996; Castillo and Feng 1997; Connell and
Driessche 2004; Castillo and Song 2004; Yang et al. 2010; Liu and Zhang 2011; Feng et al.
2000, 2002; Yang et al. 2012 and references therein).

In (Yang et al. 2010, 2012), incomplete treatment and self-cure are incorporated in math-
ematics models. In (Castillo and Feng 1997; Feng et al. 2000, 2002), it is assumed that the
treated individuals have temporary immunity and can be infected through contacts with other
infectious individuals. In this paper, incomplete treatment and isolation are incorporated in
our model.We assume that the individuals become susceptible when received complete treat-
ment or become latent individuals when received incomplete treatment. It is assumed that the
treated individuals are isolated, and they are not able to infect others and cannot be infected
during the treatment period. Restricted by the levels of economic and social development,
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Global stability for a tuberculosis model 1239

especially in developing countries, we assume that the period of isolation is 1–2 months,
not the entire treatment period. In addition, we assume that the treated individuals cannot
be infected by the infectious individual before they finish their treatment, and not only the
isolation period.

The rest of the paper is organized as follows: Sect. 2 presents a TB model with isolation
and incomplete treatment. In Sect. 3, we present the global properties of the proposed model.
The basic reproductive number of infection is obtained and used to determine conditions for
the existence and uniqueness of endemic equilibrium. Lyapunov function is constructed to
prove the global asymptotic stability of the disease-free equilibrium. The global stability of
the endemic equilibrium is proved by generalized Dulac–Bendixson criterion with disease-
induced death rate d = 0. In Sect. 4, numerical simulations were given to support the
analytical results. Some discussions have been given in Sect. 5.

2 Model construction

In this section, we formulate a model for the spread of tuberculosis in the human population.
Figure 1 shows the model diagram. The total population at time t denoted by N (t) is divided
into four classes: susceptible (S), latent (E , infected but not infectious), infectious (I ) and
treated individuals (T ). All recruitment is into the susceptible class and occurs at a constant
rate �. We assume that an individual may be infected only through contacts with infectious
individuals. The natural death rate is μ. The infectious class has an additional death rate due
to the disease with constant rate d . k is the rate coefficient at which an individual leaves
the latent class and becomes infectious. Infectious individuals are treated with constant rate
r , entering the treatment class. δ is the rate coefficient at which a treated individual leaves
compartment T . The leaving treated individuals enter into the latent class with a fraction
q and into the susceptible class with a fraction 1 − q . Susceptible individuals acquire TB
infection from individuals with active TB at rate βS I

N where β is the disease transmission
coefficient. A fraction c of newly infected individuals moves to the latent TB class (E), and
the remaining fraction 1−cmoves to the active TB class (I ). It is assumed that individuals in
the latent class do not transmit infection. Combining all the aforementioned assumptions, the
model for the transmission dynamics of TB is given by the following system of differential
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − βS

I

N
− μS + (1 − q)δT,

dE

dt
= cβS

I

N
+ qδT − (μ + k)E,

dI

dt
= (1 − c)βS

I

N
+ kE − (μ + r + d)I,

dT

dt
= r I − (μ + δ)T .

(1)

By adding all Eq. (1), the dynamics of the total population N (t) is given by:

dN/dt = � − μN − dI. (2)

Since dN/dt < 0 for N > �/μ, then, without loss of generality, we can only consider
solutions of (1) in the following positively subset of R4:

�ε =
{

(S, E, I, T )|S, E, I, T ≥ 0, S + E + I + T ≤ �

μ

}

.
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Fig. 1 The transfer diagram for system (1)

With respect to system (1), we have the following result.

Proposition 2.1 The compact set�ε is a positively invariant and absorbing set that attracts
all solutions of Eq. (1) in R4.

Proof Define a Lyapunov function as W (t) = S(t) + E(t) + I (t) + T (t), then we have:

dW (t)

dt
= � − μW − dI ≤ � − μW. (3)

Hence, that dW
dt ≤ 0 for W > �

μ
. �ε is a positively invariant set. On the other hand, solving

the differential inequality Eq. (3) yields:

0 < W (t) <
�

μ
+ W (0)e−μt .

where W (0) is the initial condition of W (t). Thus, as t → ∞, one has that 0 ≤ W (t) ≤ �
μ
.

3 Mathematical analysis

In this section, the model is analyzed to obtain the basic reproductive number, conditions for
the existence and uniqueness of endemic equilibria and asymptotic stabilities of equilibria.

3.1 Basic reproductive number

The disease-free equilibrium of system (1) is X0 = (S0, 0, 0, 0)with S0 = �/μ. To compute
the basic reproductive number, it is important to distinguish new infections from all other
class transitions in the population. The infected classes are E , I and T . Following Van den
Driessche and Watmough (2002), we can rewrite system (1) as

ẋ = f (x) = F (x) − V (x) = F (x) − (V −(x) − V +(x)).

where x = (E, I, T, S), F is the rate of appearance of new infections in each class, V + is
the rate of transfer into each class by all other means and V − is the rate of transfer out of
each class. Hence,

F (x) =
(

βcS
I

N
, (1 − c)βS

I

N
, 0, 0

)T

.
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and

V (x) =

⎛

⎜
⎜
⎝

(μ + K )E − qδT
(μ + r + d)I − kE

(μ + δ)T − r I
μS + βS I

N − (1 − q)δT − �

⎞

⎟
⎟
⎠ .

The Jacobian matrices of F and V at the disease-free equilibrium X0 = (0, 0, 0,�/μ) can
be partitioned as

DF (X0) =
(
F 0
0 0

)

and DV (X0) =
(
V 0
J1 J2

)

,

where F and V correspond to the derivatives ofF and V with respect to the infected classes:

F =
⎛

⎝
o βc 0
0 (1 − c)β 0
0 0 0

⎞

⎠ and V =
⎛

⎝
μ + k 0 −qδ

−k μ + r + d 0
0 −r μ + δ

⎞

⎠ .

The basic reproductive number is defined, following Van den Driessche and Watmough
(2002), as the spectral radius of the next generation matrix, FV−1:

R0 = β(μ + δ)[k + (1 − c)μ]
(μ + δ)(μ + k)(μ + r + d) − krqδ

.

3.2 Stability of the disease-free equilibrium

We have the following result about the global stability of the disease-free equilibrium.

Theorem 3.1 When R0 > 1, the disease-free equilibrium X0 is unstable. When R0 ≤ 1, the
disease-free equilibrium X0 is globally asymptotically stable in �ε; this implies the global
asymptotic stability of the disease-free equilibriumon the nonnegative orthantR4. Thismeans
that the disease naturally dies out.

Proof The Jacobian matrix of (1) at X0 is

J (X0) =

⎛

⎜
⎜
⎝

−μ 0 −β (1 − q)δ

0 −(μ + k) βc qδ

0 k −(μ + r + d) + (1 − c)β 0
0 0 r −(μ + δ)

⎞

⎟
⎟
⎠ ,

and the characteristic equation is

f (λ) = (λ + μ)(λ3 + aλ2 + bλ + e) = 0

where

a = 3μ + k + r + d + δ − (1 − c)β,

b = (μ + δ)(2μ + k + r + d) + (μ + k)(μ + r + d) − (2μ + k + δ)(1 − c)β − βck,

e = β(μ + δ)[k + (1 − c)μ]
(

1

R0
− 1

)

.

When R0 > 1, we have e < 0; thus f (0) = μe < 0 and f (λ) → ∞ as λ → ∞. It
follows that f (λ∗) = 0 for some λ∗ > 0. Therefore J has a positive eigenvalue, and X0 is
unstable.

123
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We define the following Lyapunov–LaSalle function

V (t) = E + μ + k

k
I + qδ

μ + δ
T .

Its time derivative along the trajectories of system (1) satisfies

V̇ = Ė + μ + k

k
İ + qδ

μ + δ
Ṫ

= βcS
I

N
+ qδT − (μ + k)E + μ + k

k
(1 − c)βS

I

N
+ (μ + k)E

−μ + k

k
(μ + r + d)I + qδr

μ + δ
I − qδT

= k + (1 − c)μ

k
· βS

I

N
− (μ + k)(μ + r + d)

k
I + qδr

μ + δ
I

= β[k + (1 − c)μ]I
k

[
S

N
− 1

R0

]

≤ β[k + (1 − c)μ]I
k

(

1 − 1

R0

)

.

R0 ≤ 1 implies that V̇ ≤ 0. By LaSalle’s invariance principle, the largest invariant set in
�ε contained in {(S, E, I, T ) ∈ �ε, V̇ = 0} is reduced to the disease-free equilibrium X0.
This proves the global asymptotic stability of X0 on�ε (Bhatia and Szegö 1970). Since�ε is
absorbing, this proves the global asymptotic stability on the nonnegative octant for R0 ≤ 1. It
should be stressed that we need to consider a positively invariant compact set to establish the
stability of X0 since V is not positive definite. Generally, the LaSalle’s invariance principle
only proves the attractivity of the equilibrium. Considering �ε permits to conclude for the
stability (LaSalle 1976, 1968; Bhatia and Szegö 1970). This achieves the proof.

3.3 Existence and uniqueness of endemic equilibrium

To find an endemic equilibrium (S∗, E∗, I ∗, T ∗) of system (1) with I ∗ > 0, we let x =
I ∗/N∗. Then,

I ∗ = �

μ + dx
x, S∗ = �

μ + βx
+ (1 − q)δ

μ + βx

r

μ + δ

�

μ + dx
x, T ∗ = r

μ + δ

�

μ + dx
x,

E∗ = μ + r + d

k

�

μ + dx
x − (1 − c)βx

k

�

μ + βx
− (1 − c)βx

k

(1 − q)δ

μ + βx

r

μ + δ

�

μ + dx
x .

Using S∗ + E∗ + I ∗ + T ∗ = N∗ = �/(μ + dx) and the definition of R0, we get

x(mx − n) = 0.

with

m = β[(μ + k)(μ + δ + r) + δr(c + q) + cd(μ + δ) − cqδr ],
n = [(μ + δ)(μ + k)(μ + r + d) − krqδ](R0 − 1).

Then, one can observe that the above equation has two solutions: x = 0which corresponds
to the disease-free equilibrium and x = n

m . Thus, when R0 > 1, n > 0 and x = n
m > 0. The

endemic equilibrium is defined by
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S∗ = �m[(μ + δ)(μm + dn) + (1 − q)δrn]
(μ + δ)(μm + βn)(μm + dn)

, I ∗ = �n

μm + dn
, T ∗ = r�n

(μ + δ)(μm + dn)
,

E∗ = �n[(μ + r + d) − (1 − c)βn]
k(μm + dn)

− (1 − c)(1 − q)βδr�n2

k(μ + δ)(μm + βn)(μm + dn)
. (4)

Then we have the following result:

Theorem 3.2 When R0 > 1, there exists a unique endemic equilibrium X∗ =(S∗, E∗, I ∗, T ∗)
for the system (1)where S∗, E∗, I ∗ and T ∗ are defined as inEq. (4)which is in the nonnegative
octant R4+.

3.4 Stability of endemic equilibrium

Theorem 3.3 If R0 > 1, the unique endemic equilibrium X∗ of the system (1) is locally
asymptotically stable.

Proof Since the total population N (t) = S(t) + E(t) + I (t) + T (t) satisfies dN/dt =
� − μN − dI , we can replace E(t) by E(t) = N (t) − S(t) − I (t) − T (t). Then the
system (1) is equivalent to the following system, and the endemic equilibrium becomes
X∗′ = (S∗, I ∗, T ∗, N∗).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − βS

I

N
− μS + (1 − q)δT,

dI

dt
= (1 − c)βS

I

N
+ kE − (μ + r + d)I,

dT

dt
= r I − (μ + δ)T,

dN

dt
= � − μN − dI

(5)

The Jacobian matrix of the system (5) at the endemic equilibrium X∗′ = (S∗, I ∗, T ∗, N∗)
is

J (X∗′
) =

⎛

⎜
⎜
⎜
⎜
⎝

−μ − β I ∗
N∗ −βS∗

N∗ (1 − q)δ
βS∗ I ∗
N∗2

(1−c)β I ∗
N∗ − k −(μ + r + d + k) + (1−c)βS∗

N∗ −k k − (1−c)βS∗ I ∗
N∗2

0 r −(μ + δ) 0
0 −d 0 −μ

⎞

⎟
⎟
⎟
⎟
⎠

and the characteristic equation is

λ4 + m3λ
3 + m2λ

2 + m1λ + m0 = 0

where

m0 = d(μ + δ)

(

μ + β I ∗

N∗

) (

k − (1 − c)βS∗ I ∗

N∗2

)

+ d(μ + δ)
βS∗ I ∗

N∗2

(
(1 − c)β I ∗

N∗ − k

)

+ μrk

(

μ + β I ∗

N∗

)

+ μ(μ + δ)

(

μ + β I ∗

N∗

) (

μ + r + d + k − (1 − c)βS∗

N∗

)
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1244 J. Zhang, G. Feng

+ μ(μ + δ)
βS∗

N∗

(

k − (1 − c)βS∗ I ∗

N∗

)

− μrδ(1 − q)

(
(1 − c)β I ∗

N∗ − k

)

= d(μ + δ)(μ + k)

(
β I ∗

N∗ − βS∗ I ∗

N∗2

)

+ dcμ(μ + δ)
βS∗ I ∗

N∗2

+ [μ(μ + k)(μ + r + δ) + cμrδ + μδrq(1 − c)]β I
∗

N∗ > 0,

m1 = d

(

k − (1 − c)βS∗ I ∗

N∗2

)(

2μ + δ + β I ∗

N∗

)

+ d
βS∗ I ∗

N∗2

(
(1 − c)β I ∗

N∗ − k

)

+ (2μ + δ)
(1 − c)β2S∗ I ∗

N∗2

+ μ(μ + δ)

(

2μ + r + d + k − (1 − c)βS∗

N∗

)

+
(

μ + β I ∗

N∗

)(

μ + r + d + k − (1 − c)βS∗

N∗

)

(2μ + δ)

− (1 − q)δr

(
(1 − c)β I ∗

N∗ − k

)

+ kr

(

2μ + β I ∗

N∗

)

+ (2μ + δ)
βS∗

N∗

(
(1 − c)β I ∗

N∗ − k

)

− k(2μ + δ)
βS∗

N∗

= d(2μ + δ + k)

(
β I ∗

N∗ − βS∗ I ∗

N∗2

)

+ μ(μ + δ)
kE∗

I ∗ + μ(μ + δ)(μ + k) + qδrkμ

μ + δ

+ dc(2μ + δ)
βS∗ I ∗

N∗2 + [μ(μ + δ) + 2μ(μ + r + k) + δ(μ + k) + kr

+ δr(c + q − qc)]β I
∗

N∗ > 0,

m2 = d

(

k− (1 − c)βS∗ I ∗

N∗2

)

+μ(μ + δ)+
(

μ+ β I ∗

N∗

) (

μ + r + d + k − (1 − c)βS∗

N∗

)

+
(

μ + β I ∗

N∗

)

(μ + δ)+μ

(

μ + β I ∗

N∗

)

+(μ + δ)

(

μ + r + d + k− (1 − c)βS∗

N∗

)

+ kr + μ

(

μ + r + d + k − (1 − c)βS∗

N∗

)

+ βS∗

N∗

(
(1 − c)β I ∗

N∗ − k

)

= d

(
β I ∗

N∗ − βS∗ I ∗

N∗2

)

+ (2μ + δ)
kE∗

I ∗ + (3μ + δ + r + k)
β I ∗

N∗ + (2μ + k)(μ + δ)

+ μ2 + kqδr

μ + δ
+ dc

βS∗ I ∗

N∗2 > 0,

m3 = μ + β I ∗

N∗ + μ + r + d + k − (1 − c)βS∗

N∗ + μ + δ + μ

= 3μ + δ + k + β I ∗

N∗ + kE∗

I ∗ > 0.

We can calculate easily m1m2 − m0m3 > 0,m1m2m3 − m0m2
3 − m2

1 > 0. According
to Hurwitz criterion, the endemic equilibrium X∗′

is locally asymptotically stable, i.e., the
endemic equilibrium X∗ is locally asymptotically stable.
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To prove the following theorem, we first give a lemma: generalized Dulac–Bendixson
criterion.

Lemma 3.4 (Busenberg and Driessche 1990) Let f : R3 → R3 be a Lipschitz continuous
vector field and let �(t) be a closed, piecewise smooth, curve which is the boundary of an
orientable smooth surface S ⊂ R3. Suppose that g : R3 → R3 is defined and piecewise
smooth in a neighborhood of S and that is satisfies:

g(�(t)) · f(�(t)) ≤ 0 (or ≥ 0) for all t

and

(Curlg) · n ≥ 0(≤ 0) on S, and (Curlg) · n > 0(< 0) for some point on S

where n is the unit normal to S. Then, �(t) is not the finite union of solution trajectories of

x′ = f(x).

which are traversed in the positive sense relation to the direction of n.

Theorem 3.5 If R0 > 1 and d = 0, the unique endemic equilibrium X∗ of the system (1) is
globally asymptotically stable.

Proof When d = 0, from Eq. (2) we have

N (t) = �

μ
+

(

N (0) − �

μ

)

e−μt .

We only need to analyze the limiting system where N is replaced by its equilibrium value
[the dynamics of the resulting limiting system is qualitatively equivalent to that of the
original system (1) (Castillo and Thieme 1995; Castillo et al. 1996, 1999)]. Furthermore,
it is convenient to transform system (1) into proportions (using the change of variables
x = S

N , y = E
N , z = I

N , w = T
N and N = �

μ
) and also to use the relation x + y + z +w = 1

to eliminate the variable w. Performing the above manipulations gives
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = μ − βxz − μx + (1 − q)δ(1 − x − y − z),

dy
dt = cβxz + qδ(1 − x − y − z) − (μ + k)y,

dz
dt = (1 − c)βxz + ky − (μ + r)z.

(6)

We only need to prove the global stability of P(x∗, y∗, z∗) of system (6) on the invariant set
�∗ = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}. Obviously, the solutions of system
(6) are bounded, and the endemic equilibrium P(x∗, y∗, z∗) is locally asymptotically stable.
It is only necessary to prove that system (6) has no periodic solution in the invariant domain
�∗.

Obviously, the boundary curve of the domain �∗ cannot form the periodic solution of
system (6). We consider the following in the interior of �∗.

Assuming that system (6) has a periodic solution φ(t) = {x(t), y(t), z(t)}, the image �

of φ(t) is the boundary of a plane domain 
 which is in the interior of domain �∗.
Let f = ( f1, f2, f3)T (T denotes transpose) and g(x, y, z) = 1

xyz · r × f , (where r =
(x, y, z)T), then

g · f = 0.
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1246 J. Zhang, G. Feng

Let g = (g1, g2, g3) and Curlg = (
∂g3
∂y − ∂g2

∂z ,
∂g1
∂z − ∂g3

∂x ,
∂g2
∂x − ∂g1

∂y ). By calculating
straightforwardly, we get in the interior of domain �∗

(Curlg) · (1, 1, 1)T = −qδ(1−x−y−z)

y2

(
1

x
+ 1

z

)

− (1 − q)δ(1 − x − y − z)

x2

(
1

y
+ 1

z

)

−k

(
1

z2
+ 1

xz
+ y

xz2

)

− μ

x2

(
1

y
+ 1

z

)

− cβ

(
1

y
+ x

y2
+ z

y2

)

< 0.

If we choose the direction of plane domain 
 upward, the direction of the image � conforms
to the right-hand rule with the direction of plane domain 
. Vector (1, 1, 1) is the normal
vector of plane domain 
, then we get by Stokers theorem:

1√
3

∫∫




Curl g · (1, 1, 1)TdS =
∮

�

g · f
| f | dS.

This is in contradiction with the calculation above. The Theorem is proved.

4 Numerical results

In this section we will study the system (1) numerically to support our analytical results. Our
numerical simulations support that the result of Theorem 3.5 is also established when d > 0.

1. Choosing the following parameters: � = 600, β = 0.055, k = 0.00527, μ = 1/70,
d = 0.02, r = 1/6, q = 0.1, δ = 0.01, c = 0.7, we can get R0 = 0.7214 < 1. Hence,
the condition of Theorem 3.1 is satisfied. System (1) has a disease-free equilibrium and
it is globally asymptotically stable (Fig. 2).

2. Choosing the following parameters: � = 1,000, β = 1.2, k = 0.00527, μ = 1/70,
d = 0.02, r = 1/6, q = 0.4, δ = 0.5, c = 0.95, we can get R0 = 2.0013 > 1. Hence,
the conditions of Theorem 3.2 and Theorem 3.5 are satisfied. System (1) has a endemic
equilibrium and it is globally asymptotically stable with different initial values (Fig. 3).

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5
x 10

4

Time

th
e 

nu
m

be
r 

of
 S

(t
),

E
(t

),
I(

t)
 a

nd
 T

(t
)

S(t)
E(t)
I(t)
T(t)

Fig. 2 Trajectories of system (1) when � = 600, β = 0.055, k = 0.00527, μ = 1/70, d = 0.02, r = 1/6,
q = 0.1, δ = 0.01, c = 0.7, so that R0 = 0.7214 < 1. It shows that the disease-free equilibrium X0 is
globally asymptotically stable
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Fig. 3 Trajectories of system (1) when � = 1,000, β = 1.2, k = 0.00527, μ = 1/70, d = 0.02, r = 1/6,
q = 0.4, δ = 0.5, c = 0.95, so that R0 = 2.0013 > 1. It shows that the endemic equilibrium X∗ is globally
asymptotically stable
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Fig. 4 Left effect of β on the number of infectious individuals I (t) where all other parameters are same as
described in Fig. 3; right effect of r on the number of infectious individuals I (t) where all other parameters
are same as described in Fig. 3

3. Choosing the following parameters: � = 1,000, k = 0.00527, μ = 1/70, d = 0.02,
q = 0.4, δ = 0.5, c = 0.95 and with the values of β and r being variable. We can get the
relation between the number of infectious individuals I (t) and the parameters β, r (Fig.
4).

4. Choosing the following parameters: � = 1,000, β = 1.2, k = 0.00527, μ = 1/70,
d = 0.02, r = 1/6, c = 0.95 and with the values of δ and q being variable. We can get
the relation between the number of infectious individuals I (t) and the parameters δ, q
(Fig. 5).
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Fig. 5 Left effect of δ on the number of infectious individuals I (t) where all other parameters are same as
described in Fig. 3; right effect of q on the number of infectious individuals I (t) where all other parameters
are same as described in Fig. 3

5 Discussion

In this paper, we have studied a tuberculosis model with isolation and incomplete treatment.
By using the Lyapunov stability theory, LaSalle’s invariant set theorem and generalized
Dulac–Bendixson criterion, we have proved the global stabilities of disease-free equilibrium
and endemic equilibrium when the disease-induced death rate is equal to zero of the pro-
posed model. The basic reproductive number R0 provided the threshold condition which
determines the rate of spread of tuberculosis. When R0 < 1, the disease-free equilibrium
X0 is globally asymptotically stable and the disease will die out (Fig. 2). When R0 > 1, a
unique endemic equilibrium X∗ exists and is globally asymptotically stable when d = 0.
Numerical simulations support our analytical results and we get the global stability of the
endemic equilibrium when d �= 0 (Fig. 3). The effect of parameters β and r are shown in
Fig. 4. The effect of parameters δ and q are shown in Fig. 5.

To control the epidemic of TB is to eliminate the disease or to control the number of
infectious individuals. Figure 4 indicates that the number of infectious individuals decreases
as the value of β decreases and the value of r increases. Figure 5 indicates that the number
of infectious individuals decreases as the values of δ and q decrease. Therefore, there are
four control strategies to control the number of infectious individuals. The first strategy is
decreasing the value of transmission rate β. It is the most effective measure to decrease the
value of transmission rate β by isolating the infectious individuals. But, this is not feasible
because of the long-term treatment and high cost. Another measure to decrease the value of
transmission rate β is increasing case detection. Much transmission occurs before patients
seek treatment; therefore more case detection can help more infectious individuals to seek
treatment and decrease the transmission rate. The second strategy is increasing the treatment
rate. To increase the treatment rate, the most effective measure is reducing treatment costs so
thatmore infectious individuals can get appropriate treatment. The third strategy is decreasing
the leaving rate δ from the treatment class. This is also not feasible. The fourth strategy is
decreasing the fraction leaving treated individuals enter into latent class q . Decreasing the
value of q can increase the treatment success rate such as taking care of patients until complete
treatment. The above discussions show that effective and feasible strategies can be achieved
by virtue of increasing case detection and treatment success rate and reducing treatment costs.
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