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Abstract This paper considers the design of adaptive finite-volume discretizations for con-
servation laws. The methodology comes from the context of multiresolution representation
of functions, which is based on cell averages on a hierarchy of nested grids. The refinement
process is performed by the partition of each cell at a certain level into two equal child cells
at the next refined level by a hyperplane perpendicular to one of the coordinate axes, which
varies cyclically from level to level. The resulting dyadic grids allow the organization of the
multiscale information by the same binary-tree data structure for domains in any dimension.
Cell averages of neighbouring stencil cells, chosen on the subdivision direction axis, are used
to approximate the cell average of the child cells in terms of a classical A. Harten predic-
tion formula for 1D discretizations. The difference between successive refinement levels is
encoded as the prediction errors (wavelet coefficients) in one of the child cells. Adaptivity
is obtained by interrupting the refinement at the cells where the wavelet coefficients are suf-
ficiently small. The efficiency of the adaptive method is analysed in applications to typical
test problems in one and two space dimensions for second- and third-order schemes for the
space discretization (WENO) and time integration (explicit Runge–Kutta). The results show
that the adaptive solutions fit the reference finite-volume solution on the finest regular grid,
and memory and CPU requirements can be considerably reduced, thanks to the efficient
self-adaptive grid refinement.

Communicated by Margarete Oliveira Domingues and Elbert Macau.

D. A. Castro (B)
Universidade Federal do Tocantins, Campus Gurupi, Rua Badejós,
Chácaras 69 e 72, Lt.07. Zona Rural, Caixa Postal 66, Gurupi, TO, CEP 77402-970, Brazil
e-mail: dacastro@uft.edu.br

S. M. Gomes
IMECC-Universidade Estadual de Campinas, Campinas, SP, Brazil

J. Stolfi
IC-Universidade Estadual de Campinas, Campinas, SP, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-014-0159-2&domain=pdf


2 D. A. Castro et al.

Keywords Finite volumes · Multiresolution representation · Wavelets · Dyadic grids ·
Conservation laws

Mathematics Subject Classification 76M12 · 65T60 · 68P05 · 35L65
1 Introduction

Adaptive techniques require a memory-efficient data structure to give fast access to the stored
data. An efficient way to store the reduced data is to use a tree data structure, where grid
adaptivity is related with an incomplete tree and where the refinement may be interrupted at
intermediate scale levels.

Our purpose is to present a high-order adaptive finite-volume multiresolution (FV/MR)
scheme for d-dimensional nonlinear hyperbolic conservation laws which is a combination of
a finite-volume (FV) discretization and multiresolution analysis for cell averages in dyadic
grids, using binary data structure. This technique can lead to significant memory savings
and accelerate considerably the simulation with respect to the discretization on the finest
uniform mesh, without contaminating its accuracy. In Castro et al. (2012), preliminary
results are published for standard second-order accurate discretization method applied to
linear transport equations. The new contributions of the present manuscript are the usage
of higher-order schemes, requiring larger stencils, and the application to typical nonlinear
problems.

A dyadic grid is a hierarchy of meshes where a cell at a certain level is partitioned into
two equal children at the next refined level by a hyperplane perpendicular to one of the
coordinate axes, which varies cyclically from level to level. Cell averages of neighbouring
cells, chosen on the subdivision direction axis, are used to approximate the cell average of
the child cells in terms of a classical A. Harten prediction formula for 1D discretizations.
The difference between successive refinement levels is encoded as the prediction errors
(wavelet coefficients) in one of the child cells. Adaptivity is obtained by interrupting the
refinement at the cells where the wavelet coefficients are sufficiently small. Consequently,
instead of using the cell-average representation on the uniform fine grid, the MR scheme
computes the numerical solution represented by its cell averages on an adaptive sparse grid,
which is formed by the cells whose wavelet coefficients are significant and above a given
threshold.

One important aspect of multiresolution representations in dyadic grids is that we can use
the same binary-tree data structure for domains of any dimension. The tree structure allows us
to succinctly represent the data and efficiently navigate through it. Dyadic grids also provide
a more gradual refinement as compared to the traditional 2d refinements [dividing a cell into
2d children at each level, e.g. quad-trees (2D) or oct-trees (3D)] that are commonly used for
multiresolution analyses.

Using traditional 2d refinements, FV/MR schemes have been successfully applied to con-
servation laws (Cohen et al. 2003;Kaibara andGomes 2003;Müller 2003;Roussel et al. 2003;
Roussel and Schneider 2005; Domingues et al. 2008, 2009; Bürger et al. 2010). For compre-
hensive studies on adaptive FV/MR techniques, we refer to the books of Cohen (1998) and
Müller (2003) and also to the review papers: Schneider and Vasilyev (2010) and Domingues
et al. (2011).

The remaining text is organized as follows. Section 2 is dedicated to describe multires-
olution representations for cell averages based on dyadic grids. One example for image
compression shows the efficiency of dyadic grids in 2D as compared to quad grids. In Sect. 3
we describe the adaptive MR finite-volume scheme, giving a description of the algorithm.
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High-order adaptive finite-volume schemes 3

Fig. 1 The first eight subdivision steps of a three-dimensional dyadic grid

For the reference scheme in uniform grid, we use second- and third-order finite-volume
schemes. We present the results of the adaptive FV/MR scheme on two-dimensional dyadic
grids applied to a test problem for Burgers to be compared with the reference finite-volume
solution on the finest regular grid in terms of CPU time and memory requirements.

2 MR analyses for cell averages on d-dimensional dyadic grids

A general framework for the construction of multiresolution representations of data is pre-
sented in Hartten (1996) and Abgrall (1996). It requires a hierarchy of meshes and inter-
level transformations (restriction and prediction operators). Traditionally, 2d -schemes (which
divides a cell into 2d children at each level) are used. In the present context, we consider an
hierarchy of dyadic grids G = {G�} for a box region R ⊂ R

d [see Cardoso et al. (2006) or
Castro et al. (2012) for more details]. Experiments indicate that the gradual dyadic subdi-
vision scheme is more space- and computation-efficient than the well-known, especially in
higher dimensions.

2.1 Dyadic grids

The hierarchy starts with a box-like domain R ⊂ R
d as the rootcell. A point x =

(x0, . . . , xd−1) is in R if and only if ai < xi < bi , for all i , for certain bounds a0, . . . , ad−1,
and b0, . . . , bd−1.

1. At each level � ≥ 0 of the hierarchy, G� = {c�
α, α ∈ K(�)} form a partition: R =

∪α∈K(�)c�
α , the cells having pairwise disjoint interiors. The cells have the form c�

α =
c�0
α0 × · · · × c�d−1

αd−1 := ∏d−1
i=0 c�i

αi , where c
�i
αi correspond to one-dimensional cells on the

(
−→
0xi ) axis, with � = ∑d−1

i=0 �i .
2. The dyadic bisection goes from cells c�

α at level � to two child cells c�+1
αL

, c�+1
αH

at level

� + 1, such that |c�+1
αL

| = |c�+1
αH

| = 1
2 |c�

α|, and c�
α = c�

αL
∪ c�

αH
.

3. In each level �, the dyadic bisection is performed in a cyclic fashion, by a hyperplane
orthogonal to the coordinate axis (

−→
0xn), with n = �modd . That is, starting at � = 0

with the root cell R, the first bisection is by a hyperplane orthogonal to axis (
−→
0x0), next

by a hyperplane orthogonal to axis (
−→
0x1) and so on. Figure 1 illustrates the first eight

subdivision steps of a three-dimensional grid.

2.2 Discretization by cell averages, restriction and prediction operators

The discretization of an integrable function u at resolution � is defined by the cell-average
values
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4 D. A. Castro et al.

u�
α = 1

|c�
α|

∫

c�
α

u dμ.

Note that u�
α can be computed from the averages u�+1

αL
and u�+1

αH
of the two child cells

u�
α = 1

2
(u�+1

αH
+ u�+1

αL
). (1)

Formula (1) can be viewed as a restriction operator P�
�+1, that yields the coarser dis-

cretization u� from the finer one u�+1.
For MR analysis we also require a prediction operation P�+1

� that yields a finer approxi-
mation ũ�+1 from the coarser approximation u�. For conservation, P�

�+1P
�+1
� should be the

identity operator.
For the prediction of the cell average at a child cell c�+1

αH
, information is required from

neighbouring cells on the direction n = (� mod d). Denote by c�
α± j , 1 ≤ j ≤ s the 2s

closer cells c�
α± j =

(∏d−1
i=0,i �=n c

�i
αi

)
× c�n

αn± j . We shall consider prediction formulae of the

form

ũ�+1
αH

=
(
P�+1

� u�
)

αH
= u�

α +
s∑

j=1

λ j

[
u�

α+ j − u�
α− j

]
. (2)

Similarly, for the left child cell c�+1
αL

, we consider

ũ�+1
αL

=
(
P�+1

� u�
)

αL
= u�

α −
s∑

j=1

λ j

[
u�

α+ j − u�
α− j

]
. (3)

It is clear that conservation holds for any choice of the coefficients λ j . We assume that the
coefficients λ j are the ones used in the cell-average predictions given in Harten (1996), which
are exact for one-dimensional polynomials of degree p ≤ 2s. Under this condition, it can
be seen that the prediction (2–3) applied to d-dimensional dyadic grids is also exact for
any d-dimensional polynomials of degree ≤ 2s in each coordinate. In fact, taking u(x) =
∏d−1

i=0 x pi
i , 0 ≤ pi ≤ 2s, and considering that c�+1

αH
= ∏d−1

i=0,i �=n c
�i
αi ×c�n+1

αnH , from (2) we get

ũ�+1
αH

= 1

|c�
α|

d−1∏

i=0,i �=n

∫

c�
αi

x pi
i dxi

⎡

⎢
⎢
⎣

∫

c�
αn

x pn
n dxn +

s∑

j=1

λ j

⎛

⎜
⎜
⎝

∫

c�
αn+ j

x pn
n dxn −

∫

c�
αn− j

x pn
n dxn

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= 2

|c�
α|

d−1∏

i=0,i �=n

∫

c�
αi

x pi
i dxi

∫

c�+1
αn R

x pn
n dxn,

which coincides to the exact value u�+1
αH

.
For the applications of this paper we shall use the prediction that is exact for polynomials

of degree less or equal to 2 and 4. Namely, with s = 1, λ1 = 1
8 , and with s = 2, λ1 = 22

128 ,
and λ2 = − 3

128 .
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High-order adaptive finite-volume schemes 5

2.3 Detail coefficients

ForMR analyses, the important quantities are the details, orwavelet coefficients, that express
the new information between successive levels. Namely, for the present context, one con-
siders the differences between the actual cell averages u�+1

α and the predicted values ũ�+1
α ,

extrapolated from the cell averages at level �. The detail d�
α associated to the cell cα is then

defined as the prediction error for one of its children. For instance,

d�
α = u�+1

αH
− ũ�+1

αH
.

As prediction errors, d�
α vanishes for polynomials of degree ≤ 2s.

Observe that the average values of both children of cα can be computed from the average
u� and the detail d�

α , namely

u�+1
αH

= ũ�+1
αH

+ d�
α,

u�+1
αL

= 2u�
α − u�+1

αH
.

These formulae define a bijection u�+1 ↔ (d�, u�). In general, if uL denotes the cell averages
of u to a specified highest resolution level L , we obtain the direct (decomposition) and inverse
(reconstruction) multiresolution transformations

uL ↔ (u0; d0, d1, . . . , dL−1),

where u0 is the vector whose single element is the average of u in the root cell R.

2.4 Functional MR context

As in traditional MR analyses, it is proved in Castro (2011) that the MR algorithms defined
in the previous sections are related to multilevel functional spaces decompositions

U �+1 = U � ⊕ W �

which are associated with representations of the form
∑

α∈K(�+1)

u�+1
α φ�+1

α (x) =
∑

α∈K(�)

u�
αφ�

α(x) +
∑

α∈K(�)

d�
αψ�

α(x).

For each cell c�
α = ∏d−1

i=0 c�i
αi , the scaling function

φ�
α(x) =

d−1∏

i=0

φ�i
αi

(xi ),

is defined in terms of the basic Harten’s scaling functions associated to one-dimensional cells
c�i
αi . Similarly, the wavelets are

ψ�
α(x) = ψ�n

αn
(xn)

d−1∏

i=0,i �=n

φ�i
αi

(xi ),

where ψ
�n
αn (xn) is the one-dimensional Harten’s wavelet associated to the cell c�n

αn .
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6 D. A. Castro et al.

2.5 Adaptive MR representation

The wavelet coefficients d�
α , as prediction errors, can be used as indicators of local regularity

of the function u. Precisely, let Sα be a region containing the stencil centred on cell c�
α used

to compute the prediction ũ�+1
αH

. Suppose that u has continuity to some order r ≤ 2s in Sα ,
where 2s is the degree of polynomial exactness for the prediction operator.

Using the classical theory of local approximation by polynomials, the magnitude of the
details d�

α can be bounded as

|d�
α| ≤ C2−r�|u|Cr (Sα),

where C is a constant independent of � (Cohen 1998). Therefore, |d�
α| is expected to be small

in regions where u is smooth and large in regions of sharp variation.
As in general adaptive MR applications, the main idea is to use the wavelet coefficients

in a multiresolution representation of cell averages to construct adaptive grids by stopping
the dyadic bisection in regions where the analysed function is smooth, indicated by the
cells where |d�

α| are bellow a prescribed tolerance ε�. Usually, the threshold strategy has the
level-dependent form

ε� = 2(�−L)ε, (4)

where ε > 0 is previously specified. Experience shows that, in many problems, such adaptive
representations reduce significantly the required storage, with control of the accuracy. The
crucial property for that is the �1-stability

‖ũL − uL‖�1 =
∑

α∈K(L)

|uLα − ũLα | ≤ C
L−1∑

�=0

ε�,

which is expected to hold, independently of L . This property is valid for the MR schemes
considered here as a consequence of the underlying prediction formulae, which are based on
stable one-dimensional refinement schemes. Therefore, we can control the information loss
of the pruning algorithm by choosing ε properly.

2.6 Example: image compression

Consider the 512×512 pixels grey-scale image from Lichtenstein’s Castle (Fig. 2) with pixel
values between 0 (black) and 255 (white).

Figure 3 shows two adaptive dyadicMR representations of that image using the prediction
operator with s = 1. Figure 4 shows the �1 relative error of the reconstructed thresholded
images, as a function of compression ratio = N−Nε

N × 100, where Nε is the cells in the
adaptive grid, and N is the total cells in the full grid at level L . On the left plot, we compare
three threshold strategies: eps refers to a constant threshold ε� = ε, eps1 corresponds to the
formula (4), where the threshold is halved in every bisection, and eps2 means that it is halved
after two bisections. Observe that for eps1 and eps2 the compromise error × compression is
similar. However, the constant threshold affects significantly the error for high compression
values, showing the importance of decreasing the threshold at coarse levels of resolution. On
the right side, the plots compare the performance of the MR schemes in dyadic grids and
quad grids. For a given accuracy level, the compression with dyadic grids for this example is
about 2 % higher than with quad grid. We also mention that the dyadic-grid structure saves
10 % in memory space when compared with quad-tree.
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High-order adaptive finite-volume schemes 7

Fig. 2 Lichtenstein’s Castle,
512 × 512 pixels grey-scale
image

3 Adaptive FV/MR scheme for PDE

Several authors have used the quad-grid subdivision in adaptivemultiresolution finite-volume
schemes for the integration of conservation laws (Müller 2003; Cohen et al. 2003; Roussel
et al. 2003; Domingues et al. 2008, 2009). For completeness, in this section we summarize
the main steps required for the implementation of FV/MR schemes based on dyadic grids, as
presented in Castro et al. (2012). We first describe a reference finite-volume scheme based
on uniform grids in any dimension, which we then modify for an adaptive multiresolution
representation using dyadic grids.

3.1 Reference finite-volume discretization

We consider the problem of integrating the generic conservation law

∂v

∂t
= −∇ · f (v), (5)

where v is an unknown real function of x ∈ R ⊆ R
d and t ∈ [0,∞), with appropriate initial

and boundary conditions; and f is a given function from R to R
d .

We use the finite-volume method, with a uniform dyadic grid GL over R. The function v

is approximated the cell averages u = uL = (uα), where

uα(t) ≈ v̄α(t) = 1

|cLα |
∫

cLα

v(x, t)dx .

Equation (5) then reduces to a system of ordinary differential equations

∂u

∂t
= D̄(u), (6)
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8 D. A. Castro et al.

Fig. 3 Adaptive dyadic grids (left) and the recovered images (right) of the MR representation of Fig. 2, using
ε = 5 (top) and ε = 20 (bottom)

where D̄α(u) is the numerical flux

D̄α(u) ≈ Dα(v) = − 1

|cLα |
∫

∂cLα

f (v) · σαds, (7)

where σα denotes the outer normal vector to cLα .
For the applications of this paper, the numerical flux is represented in the form

D̄α = − 1


x0

(
F̄0

α+ 1
2

− F̄0
α− 1

2

)
− 1


x1

(
F̄1

α+ 1
2

− F̄1
α− 1

2

)
.

where F̄ i
α± 1

2
are the numerical fluxes throughout the boundary of cell cα parallel to the i-axes,

as indicated in Fig. 5. We shall considerWENO-type numerical fluxes [see Liu et al. (1994)],
defined in terms of linear convex combinations of polynomial reconstructions of degree r −1
approximating v(x, t) on cα , which require cell-average information of 2r−1 centred stencil
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Fig. 4 Reconstruction error versus compression ratio using MR in dyadic grids for s = 1, with different
threshold strategies (left), and comparison with MR in quad grids (right)

Fig. 5 Numerical fluxes through
the boundaries of cell cα
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cells in each i direction. For the present applications WENO2 (r = 2) and WENO3 (r = 3)
are applied.

For the time integration, we consider a sequence of uniform discrete instants tn = n
t ,
where 
t denotes the time step, and denote by un the approximation of u at tn . Depending
on the choice of the numerical flux WENO2 or WENO3, the ODE system (6) is integrated,
respectively, by the second-order (RK2)Runge–Kutta formulae or by applying the third-order
accurate TVD Runge–Kutta scheme (Shu and Osher 1988).

3.2 Adaptive MR scheme

The purpose of an adaptive grid refinement technique for partial differential equations (PDE)
is to save computational resources while preserving the accuracy of the solution with respect
to the uniform discretization in the finest scale level. Grid adaptation means that refined grids
are used only where they are required, such as in regions where the solution exhibits localized
strong features.
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10 D. A. Castro et al.

In the adaptive MR version of the finite-volume method, the numerical solution unMR is
the set of cell averages in an adaptive grid Gn . The grid Gn is associated to a non-uniform
data tree structure, where the refinement stops before the maximum level of resolution is
reached. To get un+1

MR from unMR we need three steps: refinement, evolution and thresholding.

Refinement This step is necessary because the grid Gn , that is adequate to represent the
solution at time n, may not be adequate for time n + 1. We assume that the time step 
t
is small enough so that at most one extra level of refinement is sufficient. Therefore, in this
step we construct a refined grid Gn+ by splitting each leaf cell c�

α of Gn , such that � < L , by
a hyperplane orthogonal to axis i = �modd . The cell averages un+ of the current solution
in the leaf cells of Gn+ are obtained by applying the prediction operator to the current
approximation unMR. We denote the refinement operator by R, and write Gn+ = RGn and
un+ = RunMR.

Evolution The discrete evolution operator computes the numerical solution ũn+1 at time
tn+1, over the grid Gn+, from the refined solution un+ at time tn . First, for each leaf cell c�

α

of Gn+, we estimate the flux across each of its 2d facets as follows. Let c�
β be the cell of the

multigrid G = ∪0≤�≤LG� that is adjacent to c�
α on the same level �. Then:

– If some c�
β is a leaf cell of Gn+, the flux across the shared facet is computed as in the

uniform grid.
– Otherwise, if c�

β is not inGn+, we locate the leaf cκ
γ ofGn+ (with κ < �) that contains c�

β ,

then use the prediction operator repeatedly to obtain the cell average for c�
β , and proceed

as in the previous case.
– Otherwise, if c�

β is present in Gn+ but is not a leaf, the desired flux is obtained by adding

the appropriate fluxes from all leaf cells that descend from c�
β and are adjacent to c�

α .

Once we have the fluxes across all facets of c�
α , we obtain ũn+1 by applying the Runge–

Kutta scheme. We denote the evolution operator by EMR, and write ũn+1 = EMRun+.

Thresholding In this last step, to get the solution un+1
MR from ũn+1, we use the restriction

operator to refresh the cell averages of non-leaf nodes of the tree, and prune any leaf cells
that make a negligible contribution to the representation of un+1

MR , as described in Sect. 2.5.
We denote this operator by T(ε), and write un+1

MR = T(ε)ũn+1.
Therefore, the inner loop of the integrator can be written as

un+1
MR = T(ε)EMR R unMR.

3.3 Outline of the algorithm

The integration algorithm can be summarized as follows. It depends on sixmain parameters—
the dimension d , the root cell R, the total integration time T , the CFL factor σ = 
t/
x ,
the maximum resolution level L , and pruning threshold ε—as well as on the flux function f
and the initial state v0(x) = v(x, 0).

– Compute the maximum widthW of the domain R along any axis, the minimum cell size

x = W/2L , the number of iterations N = �T/(σ
x)�, and the time step 
t = T/N .

– Create a uniform data tree structure with depth L . Store in each cell the average of
the initial state v0. Prune nodes from this tree which have details below the threshold
parameter ε, as described in Sect. 2.5.

– For n from 0 to N − 1, do:
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High-order adaptive finite-volume schemes 11

– Split each leaf cell of the grid which is not at the maximum level L . Estimate the cell
averages at those cells using the prediction operator.

– Evaluate the numerical flux in each leaf cell, as detailed in Sect. 3.
– Apply the Runge–Kutta scheme in each leaf cell, to estimate the cell average at time

n + 1.
– Update the cell average of each internal node, from the finest to coarsest level, by the

restriction operator (averaging the values of its two children).
– Prune nodes from this tree which have details below the threshold parameter, as

described in Sect. 2.5.

In the current implementation, the tree is generally traversed recursively, in depth-first
mode (Knuth 1997). Namely, the children of each cell are considered in some order, and the
entire sub-tree that descends from each child is processed before any cell that descends from
the next child. During this traversal, however, the implementation maintains a pack of tree
nodes that have the same level as the current tree node and whose cells surround the cell of
that node.

More precisely, the pack P is a d-dimensional array of node pointers, with some odd
numberm of elements along each axis. The array is stored as a vector withM = md elements,
which we will denote by P[0] through P[M − 1]. The central element P[(M − 1)/2] of
this array corresponds to the current node t of the traversal. The remaining elements of P
correspond to cells that surround the cell c of t in the same level � of the infinite multiscale
grid, so that the union of those cells is a d-dimensional box centred on c.

Each element P[i] thus represents some cell, denoted by P[i].cell, and contains a pointer
P[i].node to the node of the tree that represents that cell. The pointer is null if that node does
not exist in the tree. Each element P[i] of the pack also contains a vector of values P[i].val
of the state variables for the corresponding cell P[i].cell, even if the corresponding pointer
P[i].node is null.

When the traversal algorithmmoves from the current node t to some child node t ′, it builds
a pack P ′ for the latter. Each cell of P ′[ j].cell of P ′ is a child of some cell P[i].cell in P , so
every pointer P ′[ j].node is the corresponding child pointer of the node P[i].node; or null,
if P[i].node is null. In any case, the value vector P ′[ j].val is computed from P[i].val and
its neighbours by the interpolation formula, plus the detail data stored in node P ′[ j].node if
that node exits.

The pack size m must be large enough to allow the computation of every cell of P ′ from
the values stored in the parent pack P . For the second-order schema used in the previous
paper (Castro et al. 2012),m = 5 is sufficient. For the third-order schema used here, we must
use m = 9.

4 Illustrative examples

In this section, we apply the adaptive multiresolution scheme based on dyadic grids to
solve some typical test problems, with periodic boundary conditions. The basic FV schemes
(denoted by FV2 and FV3) are the combination WENO2 + RK2 or WENO3 + RK3, as
described in Sect. 3.1. In all the cases, CFL = 0.5.

The adopted threshold strategy uses the level-dependent form given in Eq. (4). The errors
are evaluated at the final instant T = 0.5 by interpolating the adaptive solution up to finest
uniform level and by comparing it with respect to the exact solution (in the 1D advection
case) or to the corresponding reference FV solutions (2D test case for Burgers equation).
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12 D. A. Castro et al.

The compression is defined as the percentage of cells not used in the adaptive grid at T , with
respect to the uniform finest grid, and the CPU gain is the ratio of CPU times spent to evolve
the solution by the reference FV scheme and by the FV/MR scheme.

Advection equation in 1D Let us consider the advection equation

vt + vx0 = 0, x0 ∈ R = (−1, 1),

subjected to periodic boundary condition and smooth initial condition v(x0, 0) =
exp(−100x20 ). In Fig. 6, the errors refer to the exact solution v(x0, 0.5) = v0(x0 − 0.5)
at the finest uniform grid with spacing 
x0 = 2−12. The L1 errors for reference FV2 and
FV3 schemes are 3.7998 × 10−6 and 2.92969 × 10−9, respectively.

The plots in Fig. 6 illustrate the effects of increasing the order of the reference FV scheme
and/or of the prediction operator by comparing accuracy, compression, CPU gain for the

10
−10

10
−8

10
−6

10
−4 10

−2
10

0
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Epsilon

E
rr

or

60

65

70

75

80

85

90

95

100

C
om

pr
es

si
on

0

5

10

15

20

25

30

35

40

45

G
ai

n

FV2/MR s1
FV3/MR s1
FV3/MR s2

10
−10

10
−8

10
−6

10
−4 10

−2
10

0

Epsilon

10
−10

10
−8

10
−6

10
−4 10

−2
10

0

Epsilon

FV2/MR s1
FV3/MR s1
FV3/MR s2

FV2/MR s1
FV3/MR s1
FV3/MR s2

Fig. 6 1D advection equation. Adaptive schemes FV2/MR with s = 1 and FV3/MR with s = 1, 2: plots of
ε versus accuracy (left side), compression (midle side), and CPU gain (right side)

123



High-order adaptive finite-volume schemes 13

schemes FV2/MR with lower-order prediction operator (for s = 1), and FV3/MR for s = 1
or s = 2, as functions of the threshold parameter ε.

We observe in the plots of the top-left side that there is a range of ε, where the threshold
errors dominate, and consequently, the three schemes produce similar accuracy. Decreasing
ε, the accuracy improves when the higher-order scheme FV3/MR is used. However, when the
lower-order prediction scheme (s = 1) is applied, the adaptive scheme FV3/MR is not able to
get the accuracy of the reference FV3 scheme, which is reached by the FV3/MR schemewhen
the prediction for s = 2 is used. Concerning compression rate, the behaviour is determined
by the prediction operator, as indicated in the plots of the top-right side. Independently of the
order of the reference finite-volume scheme, both FV2/MR and FV3/MR using the prediction
operator for s = 1 show quite similar compression rates. However, for the FV3/MR scheme
using the prediction operator for s = 2, the compression is significantly superior. From the
plots on the bottom side, it is also evident the good effect on the gain in the CPU time when
a higher-order scheme FV3/MR with s = 2 is used.

Burgers’s Equation Consider now the equation

vt + ( f (v))x0 + ( f (v))x1 = 0, (x0, x1) ∈ R = (−1, 1) × (−1, 1),

with f (v) = 1
2u

2, subjected to periodic boundary condition and initial condition:

v0(x0, x1) = exp
(−100(x20 + x21 )

)
, (x0, x1) ∈ R.

For this test case the finest uniform grid corresponds to 
x0 = 
x1 = 2−10, and the
results are for FV2/MR (with s = 1) and FV3/MR (with s = 2).

Table 1 shows FV3/MR data for compression, reconstruction error and CPU gain with
respect to the FV3 scheme on the finest regular grid. In Fig. 7, these data are plotted to be
compared with the corresponding ones produced by the lower-order scheme FV2/MR. As for
the 1D advection test case, it is also evident the good effect on the compression and CPU gain
when a higher-order scheme FV3/MRwith s = 2 is used. Since now the errors are computed
with respect to the corresponding FV solution on the finest uniform grid, the results show
that they are only controlled by the threshold parameter ε.

In Fig. 8 the isolines of the solutions for the schemes FV2/MR (left side) and FV3/MR
with ε = 10−6 are plotted, with the curves varying from 0.1 to 0.6, with step 0.1. The cor-
responding adaptive grids, presented on the bottom side, illustrate the ability of the adaptive
schemes in automatically fitting the refinement to the numerical solution features.

Table 1 2D Burgers Equation:
data for FV3/MR solutions in
function of threshold parameter

In uniform grid,
CPUFV3 = 4380.6 s

ε CPUMR (s) Gain Error (L1) Compression (%)

10−2 474.4 9.2 2.55 × 10−4 99.5

10−3 604.6 7.2 7.64 × 10−5 99.3

10−5 754.9 5.8 3.86 × 10−5 99.2

10−5 1186.5 3.7 1.62 × 10−5 98.8

10−6 1923.0 2.3 5.91 × 10−6 98.0

10−7 2843.5 1.5 1.58 × 10−6 96.8

10−8 3669.4 1.2 3.16 × 10−7 95.2
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Fig. 7 Burgers equation. Adaptive schemes FV2/MR with s = 1 and FV3/MR with s = 2: plots of ε versus
compression and CPU gain (top side), and error (bottom side)

5 Final remarks

This paper deals with adaptive multiresolution finite-volume schemes FV/MR for hyperbolic
conservation laws. Special attention is drawn onto the data structure. Here dyadic tree struc-
tures are advocated, which provide a more gradual refinement as compared to the traditional
quad-trees (2D) or oct-trees (3D) that are commonly used for multiresolution analysis, lead-
ing to adaptive binary-tree representations in any dimension. The efficiency of the method
is illustrated by the application to typical scalar test problems showing significant savings
in data storage and CPU time when compared with the reference scheme in uniform grid
at the finest scale level, with accuracy controlled by the truncation threshold. The effect of
increasing the order of the basic FV scheme is also analysed by considering the combinations
FV2 = WENO2 + RK2 and FV3 = WENO3 + RK3. Adaptive flux computations introduce
some overhead on the evolution of each cell average, which increases with costly larger
stencils required by the higher-order scheme FV3. However, this drawback is compensated
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Fig. 8 2D Burgers’s equation: FV2/MR (left side) and FV3/MR (right side) solutions with ε = 10−6, at
T = 0.5. Isolines (top side), varying from 0.1 to 0.6 with step 0.1, and the corresponding adaptive grids
(bottom side)

on the adaptive FV3/MR by higher compression rates and better accuracy. For the current
implementation of the adaptive FV/MR method, a depth-first traversal method is adopted
by keeping for each leaf cell a pack of tree nodes corresponding to some cells surrounding
it. However, it may occur that some missing cell averages of these packs are re-computed
many times, since a cell may occur in the packs of many different nodes. In the future, we
propose to improve this implementation using a breadth-first (that is, level by level) traversal
(Knuth 1997). Then, for each level � one would process all the level-� cells of the finite
mesh together, “dilated” by (m − 1)/2 cells all around; in that way, each cell value would be
interpolated only once.
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