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Abstract In this paper, we propose a high accurate method based on non-standard Runge–
Kutta (NRK), modified weighted essentially non-oscillatory (MWENO) and grid stretching
methods to solve the Black–Scholes equation with discontinuous final condition. For the
spatial and temporal discretization of the Black–Scholes equation, the MWENO method and
the NRK method are applied, respectively. The MWENO method is a high-order method that
prevents the appearance of spurious solutions close to non-smooth points. To achieve the high-
order accuracy in non-smooth points as well as smooth points, a grid stretching technique is
employed. The accuracy analysis and the CFL stability condition of this hybrid method are
presented. The high efficiency of this method for the solution of non-linear Black–Scholes
equation is demonstrated numerically. Comparisons are made with the available methods in
the literature.

Keywords Black–Scholes equation · Modified WENO method · Grid stretching ·
High-order
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1 Introduction

Research in option pricing theory concerns, among other issues, the computation of the value
of an option during the lifetime of an option contract. There are many types of options on
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126 M. Hajipour, A. Malek

the market including European Call (Put), American Call (Put) and Exotic options. In this
work, we focus on European Call option. A European Call (Put) option is the right but not
obligation to purchase (sell) an underlying asset at the expiration price E at the expiration
time T (Wilmott et al. 2002). In an idealized financial market, the price of an option can be
computed from the well-known Black–Scholes equation that have been introduced by Black
and Scholes (1973) and previously by Robert Merton (1973). In the recent several years,
the Black–Scholes equation for pricing derivatives has attracted a lot of attention from both
theoretical as well as practical point of view. The European Call option price V (S; t) can be
obtained by solving the Black–Scholes partial differential equation

Vt + 1

2
σ̃ 2S2VSS + r SVS = r V, (1)

where S is the price of the underlying asset at time t and the real constants r > 0 and σ̃ 2

represent the interest rate and the volatility, respectively. Various methods for approximating
Black–Scholes equation (1) have been developed in the literature, e.g., finite element method
(Forsyth et al. 1999), explicit finite difference method (Kluge 2002; Company et al. 2008,
2012), Crank–Nicolson method (Ankudinova and Ehrhardt 2008), fourth-order compact finite
difference (FOCFD) methods (Tangman et al. 2008; Dremkova and Ehrhardt 2011) and
Adomian approximate decomposition technique (Bohner and Zheng 2009). In year 2004, the
Asian option Black–Scholes equation is solved by a WENO approach (Oosterlee et al. 2004)
numerically. Their numerical results do not show efficiency of the implemented method. In
year 2012, the efficient high-order modified weighted essentially non-oscillatory (MWENO)
method has been introduced by Hajipour and Malek (2012, 2011). The MWENO method is
a modification of the weighted essentially non-oscillatory (WENO) method (Liu et al. 2011)
for spatial discretization of degenerate parabolic equations which may contain discontinuous
solutions. The key ingredient of the WENO methods, which were first introduced by Liu
et al. (1994) to approximate hyperbolic conservation laws, is a non-linear interpolation or
reconstruction procedure (Jiang and Shu 1996). These methods are a class of very high-order
schemes that are constructed based on the successful essentially non-oscillatory techniques
(Balsara and Shu 2000; Hidalgo and Dumbser 2011). The MWENO method presents sharper
results near the discontinuities and takes about 20 % less CPU time than the WENO method
(Hajipour and Malek 2012). In this paper, we use a fifth-order hybrid method based on
MWENO, non-standard Runge–Kutta (NRK), grid stretching and imposing of non-traditional
time boundary conditions techniques for the solution of Black–Scholes equation. Among the
high-order performance methods (Shu 2009), mixed MWENO and NRK techniques have
shown its ability to solve parabolic problems very accurately at smooth points. It prevents
the appearance of spurious solutions near the non-smooth points (Liu et al. 1994; Hajipour
and Malek 2012). However one does not expect the high-accuracy order all together when
we have a problem with non-smooth solution. Another difficulty with NRK method appears
when one faces the problem with time-dependent boundary conditions. This difficulty will
reduce the high-order accuracy of the mixed MWENO and NRK technique. On the other
hand, the European option by its nature has non-smooth solution in its final time. Thus,
using a high-order standard finite difference method on the big stencil will be oscillatory
near non-smooth points (Liu et al. 2011; Pedro et al. 2013). Furthermore, the high-order
accuracy of mixed MWENO and NRK methods will reduce around the non-smooth point.
The Black–Scholes equation (1) also has a time-dependent boundary condition. These are the
authors motivation to propose the novel hybrid method based on mixed MWENO and NRK,
grid stretching and imposing of non-traditional time boundary conditions techniques for the

123



High accurate modified WENO method 127

solution of Black–Scholes equation. This novel adaptive method recovers the fifth-order of
accuracy around non-smooth point as well as smooth points.

The remainder of this paper is organized as follows. In Sect. 2, we review some various
models of Black–Scholes equation for European Call option. In Sect. 3, we first give an
overview of MWENO and NRK methods for the spatial and temporal discretization of non-
linear parabolic equations, respectively. Then, we extend MWENO and NRK methods to
solve a diffusion–convection–reaction problem with time-dependent boundary conditions by
imposing non-traditional match time technique. In Sect. 4, to restore the high accuracy of
NRK–MWENO method when we solve the European call option Black–Scholes equation,
a grid stretching transformation is used around a non-smooth point. Numerical comparisons
between adaptive MWENO, fifth-order standard finite difference (SFD), Crank–Nicolson
and a FOCFD are given.

2 Black–Scholes equation of European Call option

In this work, we will be concerned with several transaction cost models from the most
relevant class of non-linear Black–Scholes equations for European Call option with a modified
volatility function

σ̃ = σ̃ (t, S, VS, VSS). (2)

The value V (S, t)of the European Call option is the solution to (1) on 0 ≤ S < ∞, 0 ≤ t ≤ T
with the following non-differentiable terminal and time-dependent boundary conditions

V (S, T ) = max(0, S − E), 0 < S < ∞, (3)

V (0, t) = 0, 0 < t < T
V (S, t) ∼ S − Ee−r(T −t), S → ∞,

(4)

where E is exercise or strike price. In the past years, different models have been proposed to
relax unrealistic assumptions of the Black–Scholes model (1). These models result in fully
non-linear Black–Scholes equations.

Jandačka and Ševčovič (2005) derived an option price taking into account transaction
costs that are equal to a Black–Scholes price but with a risk-adjusted pricing methodology
(RAPM) of the form

σ̃ 2 = σ 2

⎛

⎝1 + 3

(

C2 M

2π
SVSS

)

1
3

⎞

⎠ , (5)

where M ≥ 0 is the transaction cost measure and C ≥ 0 is the risk premium measure.
The Black–Scholes (Leland 1985) model has the following modified volatility

σ̃ 2 = σ 2 (1 + Le sign(VSS)), (6)

where σ represents the original volatility, Le the Leland number given by Le =
√

2
π

μ

σ
√
δt

,
where δt denotes the transaction frequency and μ the round trip transaction cost per unit cost
of the transaction.

A more complex model has been proposed by Barles and Soner (1998) in year 1998. In
their model, the non-linear volatility reads

σ̃ 2 = σ 2
(

1 +�
(

er(T −t)a2S2VSS

))

, (7)
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where a is a constant parameter. The function�(x) is the solution to the following non-linear
ordinary differential equation (ODE)

� ′(x) = �(x)+ 1

2
√

x�(x)− x
, x 	= 0, (8)

with the initial condition �(0) = 0. Here, we solve ODE in (8) with the ode45 function
in MATLAB, which is based on an explicit Runge–Kutta (4, 5) one-step solver (Dormand
and Prince 1980). We remind that an exact implicit expression for � has been given in Ref.
Company et al. (2008).

Remark 1 For σ̃ as a constant function σ̃ 2(t, S, VS, VSS) = σ 2, the standard Black–Scholes
equation (1) is a linear parabolic PDE. In this case, the exact solution for standard Black–
Scholes equation with the final and boundary conditions (3)–(4), or the value of the European
call option, is given by

V (S, t) = SN (d1)− Ee−r(T −t)N (d2), (9)

where

N (d1) := ln( S
E )+ (r + σ 2

2 )(T − t)

σ
√

T − t
, N (d2) := ln( S

E )+ (r − σ 2

2 )(T − t)

σ
√

T − t
, (10)

and N (x) is the standard normal cumulative distribution function

N (x) = 1√
2π

x
∫

−∞
e− y2

2 dy, x ∈ R. (11)

In this paper, in order to ease the numerical solution of (1)–(4) for the European Call option,
we transform the problem into a forward parabolic problem. The following variable trans-
formations

S = Eex , τ = T − t, V (S, t) = Eu(x, τ ). (12)

for Eq. (1) yield

uτ = σ̃ 2

2
uxx +

(

r − σ̃ 2

2

)

ux − ru, (13)

where σ̃ 2 depends on the volatility model, x ∈ R and 0 ≤ τ ≤ T . The initial and boundary
conditions (3) and (4) also transformed into

u(x, 0) = max (ex − 1, 0) , for x ∈ R
u(x, τ ) = 0, as x → −∞
u(x, τ ) = ex − e−rτ , as x → ∞.

(14)

Using variables (12), the RAPM (5), Leland’s model (6) and Barles and Soner’s (BS) model
(7) transformed into

σ̃ 2 = σ 2

⎛

⎝1 + 3

(

C2 M

2π
e−x (uxx − ux )

)

1
3

⎞

⎠ , (15)

σ̃ 2 = σ 2 (1 + Le sign(uxx − ux )) , (16)
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σ̃ 2 = σ 2 (

1 +�
(

erτa2 E(uxx − ux )
))

. (17)

From both the computational point of view and the numerical analysis, in this paper we
use the transformed problem (13)–(14) with transformed volatilities (15)–(16) instead of the
original problem (1)–(4).

3 NRK–MWENO method

In this section, we briefly review the basic ideas of MWENO and NRK methods for spatial
and temporal discretization, respectively. We also extend the MWENO approach for spa-
tial discretization of transformed Black–Scholes equation (13). To maintain the third-order
accuracy of NRK, non-conventional imposing time-dependent boundary conditions in the
two interior stages of the NRK method are used.

Consider the following non-linear parabolic PDE

∂t u(x, t) = ∂xx�(u(x, t))+ B(u(x, t)) x ∈ 	, t > 0, (18)

where � and B are the physical flux and the reaction term, respectively. An uniform grid
on 	 = [a, b] is defined by the points xi = a + i�x, i = 0, ..., N + 1, where �x is the
uniform grid spacing. Using the method-of-lines, the semi-discretized MWENO form of Eq.
(18) yields a system of ODEs

dui (t)

dt
=

f̂i+ 1
2

− f̂i− 1
2


x2 + B(ui (t)), (19)

where ui (t) ≈ u(xi , t) and f̂i+ 1
2

= f̂ (ui−2, . . . , ui+3) are numerical flux functions. f̂i+ 1
2

is Lipschitz continuous and consist with physical flux �(u) in the sense that f̂ (u, . . . , u) =
�(u) (Hajipour and Malek 2012; Liu et al. 2011). The numerical flux f̂i+ 1

2
is defined in the

following form

f̂i+ 1
2

= 1

12
(�(ui−2)−3�(ui−1)− 9�(ui )+11�(ui+1)) ω0+ 1

12
(�(ui−1)− 15�(ui )

+ 15�(ui+1)−�(ui+2)) ω1 + 1

12
(−11�(ui )+ 9�(ui+1)+ 3�(ui+2)

−�(ui+3)) ω2, (20)

where coefficients ωm , called non-linear weights, are given by

ωm = 42

15
ω+

m − 27

15
ω−

m . (21)

Parameters ω±
m are introduced Hajipour and Malek (2012) by

ω±
m = α±

m
∑2

l=0 α
±
l

, α±
m = γ±

m

(ε + βm)
2

[

(β2 − β0)
2 + (ε + βm)

2], m = 0, 1, 2, (22)

whereα±
m stands for as the unnormalized weights and parameter ε is used to avoid the division

by zero in the denominator. In practice, ε = 10−30 is used. Parameters γ±
m are defined in the

following form

γ+
m = 1

2
(dm + 3|dm |), γ−

m = γ+
m − dm, m = 0, 1, 2, (23)
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where parameters dm , called linear weights, are d0 = − 2
15 , d1 = 19

15 and d2 = − 2
15 . βm is a

measure of smoothness for interpolation polynomials given by

β0 = 13
12 (�(ui−2)− 3�(ui−1)+ 3�(ui )−�(ui+1))

2

+ 1
4 (�(ui−2)− 5�(ui−1)+ 7�(ui )− 3�(ui+1))

2 ,

β1 = 13
12 (�(ui−1)− 3�(ui )+ 3�(ui+1)−�(ui+2))

2

+ 1
4 (�(ui−1)−�(ui )−�(ui+1)+�(ui+2))

2 ,

β2 = 13
12 (�(ui )− 3�(ui+1)+ 3�(ui+2)−�(ui+3))

2

+ 1
4 (−3�(ui )+ 7�(ui+1)− 5�(ui+2)+�(ui+3))

2 .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(24)

The numerical flux f̂i− 1
2

is obtained from shifting each index by −1 in Eqs. (20)–(24). In
the following Theorem of Hajipour and Malek (2012), it is shown that the sixth order of
accuracy can be obtained using non-linear weights ωm defined in Eq. (21).

Theorem 1 If the numerical flux f̂i+ 1
2

is given by Eqs. (20)–(24), then the finite difference

MWENO method (19) for smooth solution of Eq. (18) has the sixth order accuracy.

Note that, if one replaces non-linear weights ωm by linear weights dm in Eq. (20), the finite
difference MWENO method (19) will replace to the sixth-order SFD method. In this paper, the
fifth-order finite difference WENO5 method (Wang and Spiteri 2007) is applied to discretize
the convection term of Eq. (13). The WENO5 method by its nature is designed for first-order
derivatives. To implement the WENO5 for both diffusion and convection terms, Eq. (13)
must be transformed into a system of PDEs that is difficult to deal with. We suppose that the
operator of MWENO for spatial discretizations of diffusion term is in the following form

Ld (�(ui−3(t)),�(ui−2(t)), . . . , �(ui+3(t))) = f̂i+ 1
2

− f̂i− 1
2
, (25)

and Lc is the operator of WENO5 method given in Wang and Spiteri (2007) for spatial
discretizations of convection term.

Corollary 1 Let Ld and Lc are operators of spatial discretizations of diffusion and convec-
tion terms of Eq. (13), respectively. Then, the mixed finite difference method

dui (t)

dt
= σ̃ 2

2

1

(
x)2
Ld (ui−3(t), . . . , ui+3(t))

+
(

r − σ̃ 2

2

)

1


x
Lc (ui−3(t), . . . , ui+2(t))− rui (t), (26)

for smooth solution of Eq. (13), has the fifth-order accuracy.

Proof From Theorem 1 and fifth-order of accuracy for WENO5 method, the proof follows
easily. �

For temporal discretization, we use a third-order NRK method (Hajipour and Malek 2012)
to integrate the system of ordinary differential equations (26) in time

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

y(1) = un
i +
t

(

L (un
i )+ B(un

i , un
i )

)

,

y(2) = 3

4
un

i + 1

4
y(1) + 1

4

t

(

L (y(1))+ B(y(1), y(1))
)

,

un+1
i = 1

3
un

i + 2

3
y(2) + 2

3

t

(

L (y(2))+ B(un
i , un+1

i )
)

,

(27)
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where L (.) is the operator that could be defined by the right-hand side of Eq. (26) that
evaluates diffusion and convection terms. B is a non-unique discrete operator that evaluates
the reaction term by a non-local non-standard representation in the points xi . The operator B
consists with reaction term B(u) in the sense that B(u, u) = B(u). The standard explicit RK
schemes for the solution of non-linear autonomous differential equations can have asymptotic
solutions that satisfy the difference equations. These approximated solutions may converge
to the incorrect solutions of the differential equations. These solutions are known as spurious
asymptotic solutions (Chen and Solis 1998). The NRK schemes appear to be powerful in
producing qualitatively stable schemes and generally are known to preserve some important
features of the problem, e.g., fixed points and their stability, positivity and boundedness
(Mickens 1994). The third-order NRK method (27) is a modification of third-order TVD
Runge–Kutta method and it has wider stability region for the problems containing the reaction
terms. In Lemma 1, the stability condition for mixed NRK and MWENO methods is presented.

Lemma 1 The mixed finite difference (26) and NRK given by Eq. (27) are stable, if α ≤
0.4157, where α = σ̃ 2

2

t
(
x)2

.

Proof From the von Neumann stability analysis, we deduce the amplification factor

ξ(θ) = 1 + Q(θ)+ 1

2
(Q(θ))2 + 1

6
(Q(θ))3,

where Q(θ) = 
t
(
x)2

(

σ̃ 2

2 ψ(θ)+ (r − σ̃ 2

2 )z(θ)
x − r(
x)2
)

, ψ(θ) and z(θ) are the given

functions in Refs. Hajipour and Malek (2012) and Wang and Spiteri (2007), respectively.
If one replaces B(un

i, un+1
i ) by B(y(2), y(2)) in Eq. (27), the NRK method (27) will replace

to the third-order standard Runge–Kutta (RK) method. In this case, the von Neuman condition
is satisfied if |ξ(θ)| � 1. This leads to the condition |ξ̂ (θ)| � 1 for all θ ∈ [−π, π], when

x,
t → 0 and

ξ̂ (θ) = 1 + α

(

−109

45
+ 44

15
cos θ − 3

5
cos2 θ + 4

45
cos3 θ

)

+ α2
(

11881

4050
− 4796

675
cos θ

+259

45
cos2 θ − 160

81
cos3 θ + 119

270
cos4 θ − 4

75
cos5 θ + 8

2025
cos6 θ

)

+α3
(

−1295029

546750
+ 261382

30375
cos θ − 246667

20250
cos2 θ+ 795566

91125
cos3 θ − 221671

60750
cos4 θ

+10526

10125
cos5 θ − 36817

182250
cos6 θ + 838

30375
cos7 θ − 8

3375
cos8 θ + 32

273375
cos9 θ

)

,

where α = σ̃ 2

2

t
(
x)2

. Consequently, for the Courant–Friedrichs–Lewy (CFL) stability con-
dition

272

45
α − 36992

2025
α+ 10061824

273375
α3 � 2.

the von Neuman condition automatically will satisfy. This leads to α � 0.4157.
For the non-standard representation B(un

i, un+1
i ) = −run+1

i for reaction term B(u) =
−ru, the von Neuman condition is satisfied if 1

1+ 2
3 r
t

|ξ̂ (θ)| � 1. This leads to

272

45
α − 36992

2025
α+ 10061824

273375
α3 � 2 + 2

3
r
t.
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Therefore, the stability region of NRK method is larger than the standard Runge–Kutta
method. �

It is well known that the non-standard framework is not a unique framework. The operator
B in Eq. (27) is a non-linear discrete operator that evaluates reaction term rui (t) in Eq. (26)
by a non-local non-standard representation e.g. B(un

i, un+1
i ) = run+1

i . Thus, we can choose

the CFL stability condition such that 0 < σ̃ 2

2

t
(
x)2

� 0.42.

3.1 Boundary treatment

Suppose we have a time-dependent boundary condition g(t). For imposing time-dependent
boundary conditions in the two interior stages of the NRK method (27), special care must be
taken. The conventional time matching in the following form

⎧

⎨

⎩

un
∼ g(tn),

y(1) ∼ g(tn +
t),
y(2) ∼ g(tn + 
t

2 ),

(28)

decreases the accuracy of the third-order NRK method (27) to second order, independent of
the spatial operator L and B (see Eq. (27)).

To achieve the high order of accuracy near the boundaries, we specifically use the following
expressions for the intermediate boundary conditions:

⎧

⎨

⎩

un
∼ g(tn),

y(1) ∼ g(tn)+
tg′(tn),

y(2) ∼ g(tn)+ 1
2
tg′(tn)+ 1

4 (
t)2g′′(tn).

(29)

This time matching maintains the third-order accuracy for Eq. (27) (see Carpenter et al.
1995). Here, the method based on the mixed finite difference (26) and third-order NRK given
by Eqs. (27) and (29) is denoted by “NRK–MWENO” method. In the following example,
it is shown that imposing boundary conditions by Eq. (29) for NRK method maintain the
fifth-order accuracy of NRK–MWENO method.

3.2 Accuracy test

Consider the following parabolic PDE subject to the time-dependent boundary conditions:

ut = 1

2
uxx + 1

2
ux − u, (30)

u(x, 0) = e−x , for x ∈ [−2, 2]
u(±2, t) = e−t−±2, t > 0.

(31)

The exact solution of the PDE (30) satisfying conditions (31) is u(x, t) = e−t−x . For N =
20, 40, 80 and 160, the NRK–MWENO solution for Eqs. (30)–(31) at the time t = 1 is
reported in Table 1. As shown in Table 1, the conventional imposing time-dependent boundary
conditions for NRK time advancement decreases the accuracy of NRK–MWENO method.
While the imposing boundary conditions by Eq. (29) for NRK method maintains the fifth-
order accuracy of NRK–MWENO method. From Lemma 1, let us choose 
t such that

t
(
x)2

= 0.42
ρ

for ρ = 1
2 . This choice guarantees the accuracy order of the NRK–MWENO

method plus the technique that used by Eq. (29) to be in the form O
(

(
x)6
)+ O

(

(
x)5
)+

O
(

(
t)3
) ≈ O

(

(
x)5
)

. This behavior is shown in Table 1.
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Table 1 Accuracy of the NRK–MWENO method for Eqs. (30) and (31) on domain 	 = [−2, 2]
Conventional imposing Imposing by Eq. (29)

N L2 Error Order L∞ Error Order L2 Error Order L∞ Error Order

20 1.4 × 10−4 – 1.9 × 10−4 – 3.2 × 10−5 – 3.6 × 10−5 –

40 1.2 × 10−5 3.5 1.2 × 10−5 3.9 1.4 × 10−6 4.5 1.2 × 10−6 4.9

80 7.8 × 10−7 3.9 7.7 × 10−7 4.0 4.1 × 10−8 5.1 3.4 × 10−8 5.1

160 4.9 × 10−8 4.0 4.8 × 10−8 4.0 1.2 × 10−9 5.1 1.0 × 10−9 5.1

Table 2 Infinity norm error and convergence rates of Crank–Nicolson, FOCFD and NRK–MWENO methods
for a European option with financial parameters σ = 0.2, r = 0.04, E = 40 and T = 0.5

N NRK–MWENO Order FOCFD Order Crank–Nicolson Order

40 5.5 × 10−4 – 8.5 × 10−4 – 1.3 × 10−3 –

80 7.7 × 10−5 2.8 2.0 × 10−4 2.1 3.2 × 10−4 2.1

160 1.0 × 10−5 3.0 5.0 × 10−5 2.0 7.8 × 10−5 2.0

4 Numerical results and grid stretching

In this section, the NRK–MWENO method is first used to solve the linear transformed
Black–Scholes equation (13). To confirm the efficiency of the proposed method, the NRK–
MWENO, Crank–Nicolson, FOCFD (Tangman et al. 2008) and fifth-order SFD-5 methods
for the solution of European and digital call options of the Black–Scholes equation are
compared. The linear fifth-order SFD-5 method is based on the third-order Runge–Kutta for
time stepping and the linear fifth-order SFD method for space discretization. Then, in order to
achieve the high-order accuracy in the non-smooth point as well as smooth points, the NRK–
MWENO method is improved by the grid stretching technique for linear and non-linear
Black–Scholes equations. Here, the norm of errors is computed by the norm(.,.) function in
MATLAB.

Example 1 To solve problem (13)–(14) numerically, we apply Crank–Nicolson, FOCFD,
SFD-5 and NRK–MWENO methods for the financial parameters σ = 0.2, r = 0.04, E = 40
and T = 0.5.

The L∞ error and convergence rates of FOCFD, Crank–Nicolson and NRK–MWENO meth-
ods are shown in Table 2. Difference absolute values between the exact solution and the NRK–
MWENO solution are plotted in Fig. 1a, when the computational domain 	 = [−3, 1] is
divided into N = 40, 80 and 160 uniform cells. The results of Table 2 show that FOCFD
and Crank–Nicolson methods achieve only second-order convergence. As shown in Table 2,
the convergence rate of NRK–MWENO method instead of five is almost three. While for
smooth solutions, the order of accuracy for NRK–MWENO method is fifth-order (see Sect.
3). To restore the asymptotic fifth-order convergence of the NRK–MWENO method, we use
a grid stretching transformation (Oosterlee et al. 2005) that concentrates grid nodes at the
non-smooth point. A linear combination of the space grid values in the stencil is called a
linear SFD method (Shu 2009). Although the solution of the Black–Scholes equation is con-
tinuous and the equation is not degenerate, the payoff has a kink. If for simplicity we use the
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Fig. 1 For financial parameters σ = 0.2, r = 0.04, E = 40 and T = 0.5, a plots of difference absolute values
between the exact V (S, t) and NRK–MWENO U (S, t) solutions of European option when the computational
domain is divided into N = 40, 80 and 160 cells, b plots of the linear SFD-5, NRK–MWENO (non-linear)
and exact solutions of the European option

linear SFD methods that involved a wide numerical stencil, these methods will be oscillatory
near non-smooth point. To confirm the efficiency of NRK–MWENO method for the approx-
imating of non-smooth solutions, numerical approximations of NRK–MWENO and SFD-5
methods for solving the linear European option Black–Scholes equation are compared. In
Fig. 1b, we plot the linear SFD-5, NRK–MWENO and exact solutions of European option
with financial parameters σ = 0.2, r = 0.04, E = 40 and T = 0.5, when the computational
domain is divided into N = 160 cells and 
t

(
x)2
= 0.84

σ 2 .

Example 2 (Linear digital call option) Consider the digital call option in the following form

Vt + 1

2
σ 2S2VSS + r SVS = r V, (32)

V (S, T ) = H(S − E), 0 < S < ∞
V (0, t) = 0, 0 < t < T
V (S, t) ∼ e−r(T −t), S → ∞,

(33)

where H is the Heaviside function, H(S − E) = 1 if S > E and H(S − E) = 0 if S < E .
The analytical solution for digital call option is V (S, t) = e−r(T −t)N (d2), where N (d2) is
defined in (10).

The digital Call option belongs to the class of exotic options. These options are not traded
at exchanges, but such contracts are traded between a bank and a customer (Hull 1989). To
apply numerical methods for Eqs. (32)–(33), the transformations in (12) are used. In Fig.
2, plots of the NRK–MWENO, SFD-5 and analytical solutions for the digital call option
with financial parameters σ = 0.3, r = 0.05 and E = 15 at times t = 0.5 and t = 2 are
depicted when the computational domain 	 = [−3, 1.5] is divided into N = 80 cells. As
shown in Fig. 2, the linear fifth-order SFD-5 method oscillates near the discontinuity, while
the NRK–MWENO method does not produce the spurious solution near discontinuity. For
t = 2 and N = 80, the infinity norm error for the NRK–MWENO method is 7.1 × 10−4,
while the linear SFD-5 solution diverges.

Remark 2 The MWENO method involves a wide numerical stencil, thus it needs a suitable
treatment of several ghost points near the boundary. Namely, one obtains irregular cut cells
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Fig. 2 Plots of the NRK–MWENO, SFD-5 and analytic solutions for digital call option Eqs. (32)–(33) with
financial parameters σ = 0.3, r = 0.05 and E = 15 at two times a t = 0.5, b t = 2

near the boundary, which may be orders of magnitude smaller than the regular grid cells,
leading to a severe time step restriction (Company et al. 2008). For ghost European call
option values ui where i = −1,−2,−3 and i = N + 2, N + 3, N + 4, we will impose the
conditions

ui = 0, as i = −1,−2,−3, (34)

ui = exi − e−rτ, as i = N + 2, N + 3, N + 4. (35)

For ghost values of digital call option, ui = 0; i = −1,−2,−3 and ui = 1
E e−rτ ; i =

N + 2, N + 3, N + 4 are used.

In the following, we consider the effect of the grid stretching technique.

4.1 Hybrid NRK–MWENO and grid stretching method

As shown in Fig. 1a, the maximum difference between the exact solution and NRK–MWENO
solution of transformed European option Black–Scholes equation occurs near the point S =
E . The order of accuracy NRK–MWENO method also reduces from five to three (see Table 2).

In option pricing, the final condition is not differentiable at point S = E (see Eq. (3)).
Because of the discretization error locally decreases by a grid refinement in the vicinity of a
non-smooth point, the local grid refinement near sharp corners in the domain or near singu-
larities in an equation often improves the overall discretization accuracy drastically. To retain
a satisfactory accuracy, we choose a local grid refinement. The principle of local refinement
is to choose more points in the neighborhood of the non-smooth points. This can be done
by adaptive grid refinement for some regions or by an analytic coordinate transformation.
We use the grid stretching transformation that has been explained by Oosterlee et al. (2005)
to restore the asymptotic fifth-order convergence of the NRK–MWENO method. The trans-
formed Black–Scholes equation (13)–(14) is not differentiable at point x = 0 at the time
τ = 0. Thus, we transform the coordinate for Eqs. (13)–(14) around this point.

Consider the coordinate transformation y = ψ(x) with inverse x = φ(y) = ψ−1(y) in
the following form

y = ψ(x) = sinh−1(ξ(x − κ))

c2 − c1
, x = φ(y) = 1

ξ
sinh(c2 y + c1(1 − y))+ κ, (36)

123



136 M. Hajipour, A. Malek

Table 3 Infinity norm error and convergence rates of Crank–Nicolson, FOCFD and adaptive MWENO meth-
ods to solve the European call option

N adaptive MWENO Order FOCFD Order Crank–Nicolson Order

20 1.5 × 10−3 – 1.7 × 10−3 – 6.1 × 10−3 –

40 3.3 × 10−5 5.5 1.0 × 10−4 4.1 1.3 × 10−3 2.2

80 9.2 × 10−7 5.2 6.1 × 10−6 4.0 3.2 × 10−4 2.0

160 2.5 × 10−8 5.2 3.8 × 10−7 4.0 7.8 × 10−5 2.0

Financial parameters are σ = 0.2, r = 0.04, E = 40 and T = 0.5

where c1 = sinh−1(ξ(a − κ)) and c2 = sinh−1(ξ(b − κ)). The grid is refined around x = κ

with stretching rate ξ . The first and second derivatives with respect to x of yield

∂u

∂x
= 1

φ′(y)
∂ û

∂y
,

∂2u

∂x2 = 1

(φ′(y))2
∂2û

∂y2 − φ′′(y)
(φ′(y))3

∂ û

∂y
, (37)

where û(y, τ ) := u(x, τ ). Substituting (37) into Eq. (13) leads to

ûτ = σ̃ 2

2

1

(φ′(y))2
∂2û

∂y2 +
((

r − σ̃ 2

2

)

1

φ′(y)
− σ̃ 2

2

φ′′(y)
(φ′(y))3

)

∂ û

∂y
− r û, (38)

Here, the hybrid method based on NRK–MWENO method given in Sect. 3 and grid stretching
techniques is called “adaptive MWENO” method.

Example 3 (Linear call options) Approximation solution of the proposed adaptive MWENO
method to solve the Eq. (38) is compared with Crank–Nicolson (Ankudinova and Ehrhardt
2008) and the FOCFD (Tangman et al. 2008) techniques.

The numerical results of Crank–Nicolson, FOCFD and adaptive MWENO for the solution
of European call option with financial parameters σ = 0.2, r = 0.04, E = 40 and T =
0.5 are compared in Table 3. The use of the grid stretching restores the fifth-order rate of
convergence for adaptive MWENO and fourth-order convergence for FOCFD methods. The
Crank–Nicolson and FOCFD methods are the implicit finite difference techniques, while
the adaptive MWENO method is explicit technique. Error for adaptive MWENO method is
smaller than errors for FOCFD and Crank–Nicolson methods. For N = 160, the infinity
norm error of the adaptive MWENO method is 2.5 × 10−8, and its rate of convergence is
5.2. It is shown numerically that the novel adaptive MWENO method is more efficient than
the FOCFD and Crank–Nicolson methods. Numerical results confirm the high performance
of adaptive MWENO method in the smooth points as well as the non-smooth point. For
N = 40, the adaptive MWENO solution for the European call option is depicted in Fig. 3a.

For N = 40, the plot of the adaptive MWENO solution for the digital call option with
financial parameters σ = 0.3, r = 0.05, E = 15 and T = 1 is illustrated in Fig. 3b. The
infinity norm error of the adaptive MWENO method is 2.1 × 10−5 when the computational
domain 	 = [0, 1] is divided into N = 80 cells. However, the adaptive MWENO method
with the grid stretching strategy cannot achieve global fifth-order accuracy for the solution
of the digital call option with discontinuous final condition.

Example 4 (Non-linear European call option) To solve the non-linear Black–Scholes equa-
tion (1)–(4) with RAPM, Leland and BS volatilities defined by Eqs. (5)–(7), we first sub-
stitute first and second derivatives given in Eq. (37) into transformed volatilities (15)–(16),
then implement the method for solving Eq. (38).
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Fig. 3 For N = 40, a the plot of the adaptive MWENO solution for the European call option with financial
parameters σ = 0.2, r = 0.04, E = 40 and T = 0.5. b The plot of the adaptive MWENO solution for the
digital call option with financial parameters σ = 0.3, r = 0.05, E = 15 and T = 1

In Fig. 4a, we compute the price given by the numerical solution of non-linear Black–
Scholes equation (1)–(4) with modified volatilities (5)–(7) for the following choice of para-
meters

σ = 0.3, r = 0.05, E = 15 and T = 0.25, (39)

where in Eqs. (5)–(7), C = 30,M = 0.01, δt = 0.01, μ = 0.05 and a = 0.02. The
solutions of adaptive MWENO method for different values of the transaction cost parameter
a = 0, 0.01 and 0.02 with Barles and Soner’s volatility and pay-off for financial parameters
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Fig. 4 For N = 40, a Price of a European Call option V (S, 0) for different transaction cost models. b Solution
of non-linear Black–Scholes equation for different values of the transaction cost parameter a with Barles and
Soner’s volatility

Table 4 Infinity norm error and convergence rates of adaptive MWENO method for solving the Black–Scholes
equation with modified volatilities (5)–(7) where C = 30,M = 0.01, δt = 0.01, μ = 0.05 and a = 0.02

N RAPM model Order Leland’s model Order BS model with a = 0.02 Order

20 8.9 × 10−4 – 1.2 × 10−3 – 1.0 × 10−3 –

40 3.5 × 10−5 4.7 3.4 × 10−5 5.1 3.5 × 10−5 4.8

80 1.3 × 10−6 4.7 1.0 × 10−6 5.1 1.4 × 10−6 4.7

Financial parameters are σ = 0.3, r = 0.05, E = 15 and T = 0.25

given in Eq. (39) are plotted in Fig. 4b. This figure shows that when transaction costs a
increase, the corresponding option prices also increase. For each of the volatility models that
is given in Eqs. (5)–(7) where C = 30,M = 0.01, δt = 0.01, μ = 0.05 and a = 0.02, we
compute the infinity norm error and convergence rates of the adaptive MWENO method for
Black–Scholes equation when the computational domain [0, 1] is divided into N = 20, 40
and 80 cells. Results are shown in Table 4. Since the exact solution of non-linear Black–
Scholes equation (1) with modified volatilities (5)–(7) is not available, for the reference
solution, we compute a solution for each model with the corresponding adaptive MWENO
method on a very fine grid when the computational domain is divided into N = 320 cells.
Then the comparison is made with this reference solution. In Table 4, the efficiency and high-
order accuracy of the proposed adaptive MWENO method are demonstrated. It is shown that
the rate of accuracy for this adaptive MWENO method is almost of fifth-order for three
different non-linear modified volatilities.

5 Conclusion

This paper considers a high accurate adaptive MWENO method based on MWENO, NRK
with non-traditional time boundary imposing and grid stretching techniques to solve the Euro-
pean and digital options of Black–Scholes equation. For linear and non-linear Black–Scholes
equations, the error analysis is presented for the RAPM, Leland’s and Barles and Soner’s
Black–Scholes models. The proposed numerical results have demonstrated the advantage of

123



High accurate modified WENO method 139

the novel adaptive MWENO method. The adaptive MWENO method is an explicit high-order
method that deals with non-smooth points successfully. The authors believe that this adaptive
MWENO method can be extended to solve the American option Black–Scholes equation.
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