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Abstract In this work, we propose an effective approach for solving singular boundary-
value problems with derivative dependence. The present approach is based on a modification
of the Adomian decomposition method (ADM) which combines with Green’s function. In
fact, it depends on constructing Green’s function before establishing the recursive scheme
for the solution components. In contrast to the existing recursive schemes based on ADM,
the proposed method avoids solving a sequence of transcendental equations for the undeter-
mined coefficients. The approximations of the solution are obtained in the form of series with
easily computable components. Additionally, the convergence analysis and error estimation
of the proposed method is discussed under quite general conditions. Moreover, the numer-
ical examples are included to demonstrate the accuracy, applicability, and generality of the
proposed scheme. The numerical results reveal that the proposed method is very effective
and simple.
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1 Introduction

Two-point singular boundary value problems for ordinary differential equations arise very
frequently in many branches of applied mathematics and physics such as gas dynamics,
chemical reactions, nuclear physics, atomic structures, atomic calculations, electrical poten-
tial theory, study of positive radial solutions of nonlinear elliptic equations and physiological
studies. Therefore, it has been studied extensively in recent years. However, such nonlinear
singular boundary value problems cannot be solved analytically in general. So these must be
tackled by various numerical or approximate methods. However, the numerical treatment of
the singular boundary value problems has always been far from trivial due to the singularity.

The aim of this paper is to propose an effective recursive scheme for solving nonlinear
derivative-dependent singular boundary value problems (SBVPs). This scheme is based on
Adomian decomposition method (ADM) and the Green’s function technique. We consider
the SBVPs with derivative dependence (Bobisud 1990; Verma and Pandey 2011)

(p(x)u′(x))′ = q(x) f (x, u(x), p(x)u′(x)), x ∈ (0, 1],
u(0) = α1, β1u(1) + γ1u′(1) = η1,

}
(1.1)

where α1, β1 > 0, γ1 and η1 are any finite real constants. The condition p(0) = 0 says that
the Eq. (1.1) is singular and if q(x) is allowed to be discontinuous at x = 0 then the Eq. (1.1)
is called doubly singular (Bobisud 1990). Throughout the paper the following conditions are
assumed on p(x), q(x) and f (x, u(x), p(x)u′(x))

(E1) p(x) ∈ C[0, 1] ∩ C1(0, 1] with p(x) > 0 in (0, 1] and 1/p(x) ∈ L1(0, 1].
(E2) q(x) > 0 in (0, 1], q(x) ∈ L1(0, 1] and q(x) is not identically zero.
(E3) Assume f (x, u, pu′) is continuous on D1 = {(0, 1] × (0,∞) × R} and is not iden-

tically zero.
(E4) The nonlinear function f (x, u, pu′) is locally Lipschitz continuous such that

| f (x, u, pu′) − f (x, v, pv′)| ≤ L1|u − v| + L2|p(u′ − v′)|, (1.2)

where L1 and L2 are Lipschitz constants.
There has been much interest devoted in the study of singular two point boundary value

problems, Bobisud (1990), Verma and Pandey (2011), Wazwaz et al. (2013), Singh and Kumar
(2013b), Chawla and Katti (1982), Inc and Evans (2003), Kumar and Aziz (2006), Ebaid
(2011), Khuri and Sayfy (2010), Kumar and Singh (2010), Singh et al. (2012), Ravi Kanth
and Aruna (2010), Wazwaz and Rach (2011), Cen (2007), Öztürk and Gülsu (2013) and many
of the references therein. The main difficulty of (1.1) is that the singularity behavior occurs at
x = 0. Bobisud (1990) and Verma and Pandey (2011) discussed the existence and uniqueness
of solution of the problem (1.1). Recently, a great deal of numerical methods have been
used to solve the particular case of (1.1). For example, the cubic spline, B-spline and finite
difference methods were carried out in Chawla and Katti (1982), Kanth and Bhattacharya
(2006), Çağlar et al. (2009) and Kumar and Aziz (2006). Although, these numerical methods
have many advantages, but an immense amount of computational work is involved that
combines some root-finding techniques to obtain accurate numerical solution especially for
nonlinear problems.

Furthermore, some newly developed numerical-approximate methods have also been
applied to handle (1.1). Such as, the ADM and modified Adomian decomposition method
(MADM) were employed in Khuri and Sayfy (2010), Kumar and Singh (2010), Inc and
Evans (2003), Ebaid (2011). The homotopy analysis method (HAM) was introduced in
Danish et al. (2012). It is well known that solving (1.1) by using ADM or MADM is always a
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computationally involved task as it requires the computation of undetermined coefficients in
a sequence of nonlinear algebraic or more difficult transcendental equations which increases
the computational work (for details see Kumar and Singh 2010; Khuri and Sayfy 2010; Dan-
ish et al. 2012; Bataineh et al. 2009). Moreover, the undetermined coefficients may not be
uniquely determined in some cases. This may be the major disadvantage of these methods for
solving nonlinear two-point BVPs. Furthermore, the variational iteration method (VIM) and
its modified versions have been employed in Wazwaz and Rach (2011) and Ravi Kanth and
Aruna (2010). Wazwaz and Rach (2011) showed that VIM gives good approximations only
when the problem is linear or weakly nonlinear with nonlinearity of the form un, uu′ . . . etc.
However, the VIM suffers when the nonlinearity is of the form eu, ln(u), sin u, sinh u . . . etc.
This may be one of the major drawbacks of VIM for solving difficult nonlinear problems.

In this paper, we present a modification of the ADM which combines with Green’s func-
tion to overcome the difficulties occurring in the ADM or MADM for solving nonlinear
SBVPs (1.1). In fact, we propose an efficient recursive scheme which does not require any
computation of undetermined coefficients, that is, without solving a sequence of growingly
higher order polynomials or difficult transcendental equations for obtaining undetermined
coefficients (Kumar and Singh 2010; Khuri and Sayfy 2010; Inc and Evans 2003; Wazwaz
and Rach 2011). The main advantage of proposed method is that it provides a direct recur-
sive scheme for solving the SBVP. Moreover, the convergence analysis and error estimation
of the proposed method is discussed. In addition, the numerical examples are included to
demonstrate the accuracy of the proposed method.

1.1 Review of ADM

In this subsection, we shall briefly describe ADM for nonlinear second order differential
equation of the form (1.1).

It is well-known that ADM allows us to solve both nonlinear IVPs and BVPs with-
out unphysical restrictive assumptions such as linearization, discretization, perturbation and
guessing the initial term or a set of basis function. In recent years, many authors Singh
and Kumar (2013a,b), Wu et al. (2009), Duan and Rach (2011), Singh et al. (2012, 2013),
Ebaid (2011), Wazwaz and Rach (2011), Khuri and Sayfy (2010), Kumar and Singh (2010),
Benabidallah and Cherruault (2004), Inc and Evans (2003), Adomian (1994), Adomian and
Rach (1983), Wazwaz (2001), Al-Khaled and Allan (2005), El-Kalla (2012), El-Sayed et al.
(2013) and Duan et al. (2013) have shown interest in the study of ADM for different scientific
models. According to the ADM, the operator form of (1.1) can be written as

Lu(x) = Ru(x) + Nu(x), x ∈ (0, 1], (1.3)

where L = d2

dx2 is linear second-order differential operator, Ru(x) = − p′(x)
p(x)

u′(x) is remain-

der operator and Nu(x) = q(x)
p(x)

f (x, u(x), p(x)u′(x)) represents the nonlinear function. The
inverse operator of L is defined as

L−1[·] =
x∫

0

x∫
0

[·] dx dx . (1.4)

Operating the inverse operator L−1[·] on both sides of (1.3) and using the boundary condition
u(0) = α1 we obtain

u(x) = α1 + cx + L−1[Ru(x) + Nu(x)], (1.5)

123



454 R. Singh et al.

where c = u′(0) �= 0 is unknown constant, and it will be determined later using boundary
conditions at x = 1.

The solution u(x) and the nonlinear function Nu(x) are decomposed by infinite series

u(x) =
∞∑

n=0

un(x), Nu(x) =
∞∑

n=0

An, (1.6)

where An are Adomian’s polynomials that can be constructed for various classes of nonlinear
functions with the formula given by Adomian and Rach (1983)

An = 1

n!
dn

dλn

[
N

( ∞∑
k=0

ukλ
k

)]

λ=0

, n = 0, 1, 2, . . . (1.7)

Substituting the series (1.6) into (1.5), we obtain

∞∑
n=0

un(x) = α1 + cx + L−1

[
R

∞∑
n=0

un(x) +
∞∑

n=0

An

]
. (1.8)

Upon comparing both sides of (1.8), the ADM admits the following recursive scheme

u0(x, c) = α1 + cx,

u j (x, c) = L−1[Ru j−1 + A j−1], j ≥ 1,

}
(1.9)

that will lead to the complete determination of components u j (x, c), j = 0, 1, 2, . . . , of the
solution u. Hence the n-term truncated approximate series solution can be obtained as

φn(x, c) =
n∑

j=0

u j (x, c). (1.10)

One can note that the approximate solution φn(x, c) depends on the unknown constant c.
This constant c will be determined approximately by imposing the boundary condition at
x = 1 on φn(x, c), which leads to a sequence of transcendental equations φn(1, c) = 0, n =
1, 2, 3, . . . .

Recently, in Wazwaz (2001), Inc and Evans (2003), Benabidallah and Cherruault (2004),
Khuri and Sayfy (2010) and Kumar and Singh (2010) authors applied ADM for solving
nonlinear two-point BVPs. However, solving such BVPs using ADM is always a computa-
tionally involved task because it requires the computation of undetermined coefficients in
a sequence of difficult transcendental equations that increases the computational work. For
example, consider

u′′(x) = −eu(x), u(0) = 0, u(1) = 0, (1.11)

According to the ADM (1.9), the (1.11) can be transformed into the recursive scheme as

u0(x, c) = cx, u j (x, c) = −L−1[A j−1], j ≥ 1. (1.12)

Using the formula (1.7), the Adomian’s polynomials for f (u) = eu about u0 = cx are

A0 = ecx , A1 = u1cecx , A2 = u2cecx + 1

2
u2

1c2ecx , . . . (1.13)
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Using (1.12) and (1.13), we obtain the components as

u0(x, c) = cx,

u1(x, c) = 1

c2 − ecx

c2 + x

c
,

u2(x, c) = − 5

4c4 + ecx

c4 + e2cx

4c4 − x

2c3 − ecx x

c3 ,

u3(x, c) = 11

6c6 − 5ecx

4c6 − e2cx

2c6 − e3cx

12c6 + x

2c5
+ 3ecx x

2c5
+ e2cx x

2c5
− ecx x2

2c4 ,

...

Consequently, the n-term truncated series solution is obtained

φn(x, c) =
n∑

j=0

u j (x, c). (1.14)

By imposing the boundary condition at x = 1 on φn(x, c), which leads to a sequence of
transcendental equations φn(1, c) = 0, n = 1, 2, 3, . . .

φ1(1, c) ≡ c +
(

1
c2 − ec

c2 + 1
c

)
= 0

φ2(1, c) ≡ c +
(

1
c2 − ec

c2 + 1
c

)
+

(
− 5

4c4 + ec

c4 + e2c

4c4 − 1
2c3 − ec

c3

)
= 0

φ3(1, c) ≡ c +
(

1
c2 − ec

c2 + 1
c

)
+

(
− 5

4c4 + ec

c4 + e2c

4c4 − 1
2c3 − ec

c3

)
+

(
11
6c6 − 5ec

4c6 − e2c

2c6 − e3c

12c6 + 1
2c5 + 3ec

2c5 + e2c

2c5 − ec

2c4

)
= 0

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.15)

In order to obtain unknown constant c, we need some root finding techniques and these tech-
niques require additional computational work. However, solving a sequence of transcendental
equations (1.15) for c is difficult task in general. Moreover, in some cases the undetermined
coefficient c may not be uniquely determined. This may be the major drawback of ADM for
solving nonlinear boundary value problems. In order to avoid solving such types of a sequence
of transcendental equations for unknown constant c, in next section we shall propose a new
recursive scheme which does not involve any undetermined coefficient to be determined.

2 ADM with Green’s function technique

In this section, we propose an efficient recursive scheme which is based on the Green’s
function technique and ADM for solving nonlinear derivative-dependent singular two point
boundary value problems of the form (1.1). To this end, we first consider the following
homogeneous SBVP:

(p(x)v(x))′ = 0, x ∈ (0, 1],
v(0) = α1, β1v(1) + γ1v

′(1) = η1.

}
(2.1)

Note that the unique solution of (2.1) is given by

v(x) = α1 + 1

μ
(η1 − α1β1)h(x), (2.2)

where h(x) = ∫ x
0

ds
p(s) , μ = β1h(1) + γ1h′(1), h(1) = ∫ 1

0
ds

p(s) and h′(1) = 1
p(1)

.
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In order to construct the Green’s function, we now consider the linear SBVP as

(p(x)u′(x))′ = q(x)F(x), x ∈ (0, 1],
u(0) = 0, β1u(1) + γ1u′(1) = 0.

}
(2.3)

Integrating the Eq. (2.3) twice first from x to 1 and then from 0 to x, changing the order of
integration, and applying the boundary conditions, we obtain

u(x) = − 1

μ

1∫
0

β1h(x)h(ξ)q(ξ)F(ξ) dξ +
x∫

0

h(ξ)q(ξ)F(ξ) dξ +
1∫

x

h(x)q(ξ)F(ξ) dξ,

u(x) = − 1

μ

x∫
0

β1h(x)h(ξ)q(ξ)F(ξ) dξ − 1

μ

1∫
x

β1h(x)h(ξ)q(ξ)F(ξ) dξ

+
x∫

0

h(ξ)q(ξ)F(ξ) dξ +
1∫

x

h(x)q(ξ)F(ξ) dξ,

u(x) =
x∫

0

h(ξ)

(
1 − β1h(x)

μ

)
q(ξ)F(ξ) dξ +

1∫
x

h(x)

(
1 − β1h(ξ)

μ

)
q(ξ)F(ξ) dξ,

u(x) =
1∫

0

G(x, ξ)q(ξ)F(ξ) dξ,

where the Green’s function of the problem (2.3) is given by

G(x, ξ) =
⎧⎨
⎩

h(x)
(

1 − β1h(ξ)
μ

)
, 0 ≤ x ≤ ξ ≤ 1,

h(ξ)
(

1 − β1h(x)
μ

)
, 0 ≤ ξ ≤ x ≤ 1.

(2.4)

It is easy to check that the function G(x, ξ) satisfies all the properties of Green’s function.
Making use of (2.2) and (2.4), we transform original SBVP (1.1) into the integral equation

as

u(x) = α1 + 1

μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ) f (ξ, u(ξ), p(ξ)u′(ξ)) dξ. (2.5)

It should be noted that the (2.5) does not involve any undetermined coefficients to be deter-
mined.

We now decompose the solution u(x) by a series as follows

u(x) =
∞∑

n=0

un(x), (2.6)

and the nonlinear function f (x, u(x), p(x)u′(x)) by a series as

f (x, u(x), p(x)u′(x)) =
∞∑

n=0

An, (2.7)
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where An are Adomian’s polynomials (Adomian and Rach 1983). Recently, in Duan
(2010a,b) Duan developed several new efficient algorithms for rapid computer-generation
of the one-variable and the multi-variable Adomian polynomials. El-Kalla (2012) deduced
another programmable formula for Adomian polynomials

An = f (x, χn, pχ ′
n) −

n−1∑
j=0

A j , (2.8)

where χn = ∑n
j=0 u j is partial sum of the series solution

∑∞
j=0 u j .

Substituting the series (2.6) and (2.7) into (2.5), we obtain

∞∑
n=0

un(x) = α1 + 1

μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ)

∞∑
n=0

An dξ. (2.9)

Comparing both sides of (2.9), we obtain a new recursive scheme as

u0(x) = α1,

u1(x) = 1
μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ)A0 dξ,

u j (x) =
1∫

0
G(x, ξ)q(ξ)A j−1 dξ, j ≥ 2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.10)

Using the recursive scheme (2.10), we can determine the solution components u j (x) and
hence, the n-term truncated series solution can be obtained as

χn =
n∑

j=0

u j (x). (2.11)

Unlike ADM or MADM, the proposed recursive scheme (2.10) does not involve any unde-
termined coefficients to be determined. In other words, it avoids solving the sequence of
transcendental equations for the undetermined coefficients.

3 Convergence analysis

In this section, we shall discuss the convergence analysis and the error estimation of the
proposed scheme (2.10). To do this, let X = C[0, 1] ⋂

C1(0, 1] be a Banach space with the
norm

‖u‖ = max{‖u‖0, ‖u‖1}, u ∈ X, (3.1)

where, ‖u‖0 = maxx∈[0,1] |u(x)| and ‖u‖1 = maxx∈[0,1] |p(x)u′(x)|. It is well known that
X is Banach space with norm (3.1) (see Bobisud 1990). The operator equation form of (2.5)
is given by

u = N (u), (3.2)

where N : X → X is a nonlinear operator given by

N (u) = α1 + 1

μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ) f (ξ, u(ξ), p(ξ)u′(ξ)) dξ. (3.3)
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We next discuss the existence of the unique solution of the Eq. (3.2). To do this, we first prove
the following lemma.

Lemma 3.1 Let the assumptions (E1) and (E2) hold, then

(i) M1 := maxx∈[0,1]
∫ 1

0 |G(x, ξ)q(ξ) dξ | < ∞,

(ii) M2 := maxx∈[0,1]
∫ 1

0 |p(x)Gx (x, ξ)q(ξ) dξ | < ∞, where Gx (x, ξ) = ∂G(x,ξ)
∂x .

Proof (i) The maximum value of Green’s function (2.4) is given by

C1 = max
x,ξ∈[0,1] |G(x, ξ)| = μ

4β1
. (3.4)

Using the assumption (E2) and (3.4), we obtain

1∫
0

|G(x, ξ)q(ξ) dξ | ≤ max
x,ξ∈[0,1] |G(x, ξ)|

1∫
0

|q(ξ)| dξ = C1

1∫
0

|q(ξ)| dξ < ∞.

Hence, M1 := maxx∈[0,1]
∫ 1

0 |G(x, ξ)q(ξ) dξ | < ∞.

(ii) From (2.4), we see that

p(x)Gx (x, ξ) =
⎧⎨
⎩

1 − β1h(ξ)
μ

, 0 ≤ x ≤ ξ ≤ 1,

−β1h(ξ)
μ

, 0 ≤ ξ ≤ x ≤ 1.
(3.5)

Hence, we obtain C2 = maxx,ξ∈[0,1] |p(x)Gx (x, ξ)| < ∞.

Again using (E2), we have

1∫
0

|p(x)Gx (x, ξ)q(ξ) dξ | ≤ max
x,ξ∈[0,1] |p(x)Gx (x, ξ)|

1∫
0

|q(ξ)| dξ =C2

1∫
0

|q(ξ)| dξ < ∞.

(3.6)

Hence it follows that M2 := maxx∈[0,1]
∫ 1

0 |p(x)Gx (x, ξ)q(ξ) dξ | < ∞. �

Theorem 3.1 Let X be Banach space with norm given by (3.1). Also, assume that the
nonlinear function f (x, u, pu′) satisfies the Lipschitz condition (E4).Let M = max{M1, M2}
and L = max{L1, L2}, where the constants M1 and M2 given as in Lemma3.1 and L1 and
L2 are Lipschitz constants. If δ = 2L M < 1, then the equation (3.2) has a unique solution
in X.

Proof Using the Lemma 3.1 and the Lipschitz continuity of f, we have for any u, v ∈ X,

‖Nu − Nv‖0 = max
x∈[0,1]

∣∣∣∣∣∣
1∫

0

G(x, ξ)q(ξ)
[

f (ξ, u, pu′) − f (ξ, v, pv′)
]

dξ

∣∣∣∣∣∣ ,

≤ max
x∈[0,1]

1∫
0

|G(x, ξ)q(ξ) dξ | ∣∣ f (ξ, u, pu′) − f (ξ, v, pv′)
∣∣ ,

≤ M1 max
x∈[0,1][L1|u − v| + L2|p(u′ − v′)|],

≤ 2L M1 max{‖u − v‖0, ‖u − v‖1} = 2L M1‖u − v‖,
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where L = max{L1, L2}. Thus we have

‖Nu − Nv‖0 ≤ 2L M1‖u − v‖. (3.7)

Similarly, we have

‖Nu − Nv‖1 = max
x∈[0,1]

∣∣∣∣∣∣
1∫

0

p(x)Gx (x, ξ)q(ξ)[ f (ξ, u, pu′) − f (ξ, v, pv′)] dξ

∣∣∣∣∣∣ ,

≤ max
x∈[0,1]

1∫
0

|p(x)Gx (x, ξ)q(ξ) dξ || f (ξ, u, pu′) − f (ξ, v, pv′)|,

≤ M2 max
x∈[0,1]{L1|u − v| + L2|p(u′ − v′)|},

≤ 2L M2 max{‖u − v‖0, ‖u − v‖1} =≤ 2L M2‖u − v‖.
Hence

‖Nu − Nv‖1 ≤ 2L M2‖u − v‖. (3.8)

Combining the estimates (3.7) and (3.8), we obtain

‖Nu − Nv‖ = max{‖Nu − Nv‖0, ‖Nu − Nv‖1},
≤ max{2L M1‖u − v‖, 2L M2‖u − v‖},
= δ‖u − v‖, (3.9)

where δ = 2L M and M = max{M1, M2}. If δ < 1, then N : X → X is contraction
mapping and hence by the Banach contraction mapping theorem, the Eq. (3.2) has a unique
solution in X. �


Now let {χn = ∑n
j=0 u j } be a sequence of partial sums of the series solution

∑∞
j=0 u j .

Using (2.10) and (2.11), we have

χn = u0 +
n∑

j=1

u j = α1 + 1

μ
(η1 − α1β1)h(x) +

n∑
j=1

⎡
⎣

1∫
0

G(x, ξ)q(ξ)A j−1 dξ

⎤
⎦ ,

= α1 + 1

μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ)

n−1∑
j=0

A j dξ. (3.10)

Using (2.8) in (3.10), it follows that

χn = α1 + 1

μ
(η1 − α1β1)h(x) +

1∫
0

G(x, ξ)q(ξ) f (x, χn−1, pχ ′
n−1) dξ. (3.11)

which is equivalent to the following operator equation

χn = N (χn−1), n = 1, 2, . . . . (3.12)

In following theorem, we give the convergence of the sequence χn to the exact solution u of
(3.2).
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Theorem 3.2 Let N (u) be the nonlinear operator defined by (3.3) is contractive that is
‖N (u) − N (v)‖ ≤ δ‖u − v‖, for all u, v ∈ X with 0 < δ < 1. If ‖u1‖ < ∞, then the
sequence χn defined by (2.11) converges to the exact solution u of (3.2).

Proof Using the relation (3.12) and the estimate (3.9), we have

‖χm+1 − χm‖ = ‖N (χm) − N (χm−1)‖ ≤ δ‖χm − χm−1‖.
Thus we have

‖χm+1 − χm‖ ≤ δ‖χm − χm−1‖ ≤ δ2‖χm−1 − χm−2‖,≤ · · · ≤ δm‖χ1 − χ0‖.
For all n, m ∈ N, with n > m, consider

‖χn − χm‖ = ‖(χn − χn−1) + (χn−1 − χn−2) + · · · + (χm+1 − χm)‖,
≤ ‖χn − χn−1‖ + ‖χn−1 − χn−2‖ + · · · + ‖χm+1 − χm‖,
≤ [δn−1 + δn−2 + · · · + δm]‖χ1 − χ0‖,
= δm[1 + δ + δ2 + · · · + δn−m−1]‖χ1 − χ0‖,
= δm

(
1 − δn−m

1 − δ

)
‖u1‖.

Since 0 < δ < 1 so, (1 − δn−m) < 1, and ‖u1‖ < ∞, it follows that

‖χn − χm‖ ≤ δm

1 − δ
‖u1‖, (3.13)

which converges to zero, that is, ‖χn − χm‖ → 0, as m → ∞. This implies that there exits
a χ such that limn→∞ χn = χ. Since, we have u = ∑∞

n=0 un = limn→∞ χn, that is, u = χ

which is exact solution of (3.2). �

In the following theorem we obtain the error bounds for the approximate solution χn .

Theorem 3.3 Let u(x) be the exact solution of (3.2). Let χm be the sequence of approximate
series solution defined by (3.2). Then there holds

max
x∈[0,1]

∣∣∣∣∣∣u(x) −
m∑

j=0

u j (x)

∣∣∣∣∣∣ ≤ δm

(1 − δ)
max

x∈[0,1] |u1|.

Proof Using the estimate (3.13), for n ≥ m, n, m ∈ N, we have

‖χn − χm‖ ≤ δm

1 − δ
‖u1‖.

Since limn→∞ χn = u, fixing m and letting n → ∞, we obtain

‖u − χm‖ ≤ δm

1 − δ
max

x∈[0,1] |u1|. (3.14)

Hence, we have

max
x∈[0,1]

∣∣∣∣∣∣u(x) −
m∑

j=0

u j (x)

∣∣∣∣∣∣ ≤ δm

(1 − δ)
max

x∈[0,1] |u1|.

�
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4 Numerical illustrations

In this section, the proposed recursive scheme (2.10) is applied to solve SBVP of form (1.1).
In order to check the efficiency of proposed scheme (2.10), we shall consider one linear and
two strongly nonlinear singular problems.

Example 4.1 We first consider linear SBVPs with derivative dependence

(xαu′)′ = xα+β−2(βxu′ + β(α + β − 1)u), x ∈ (0, 1],
u(0) = 1, u(1) = e,

}
(4.1)

with the exact solution u(x) = exβ
, 0 ≤ α < 1 and β > 0 are any real constants.

According to proposed scheme (2.10), the (4.1) can be converted into following recursive
scheme

u0 = 1,

u1 = (e − 1)x1−α + ∫ 1
0 G(x, ξ)ξα+β−2 A0 dξ,

u j = ∫ 1
0 G(x, ξ)ξα+β−2 A j−1 dξ, j ≥ 2.

⎫⎬
⎭ (4.2)

where,

A j = (βxu′
j + β(α + β − 1)u j ). (4.3)

For the demonstration purpose, we pick some specific values of α and β.

For α = 0.5, β = 1, using (4.2) and (4.3), we obtain the components un as:

u0 = 1,

u1 = 0.718282x0.5 + x,

u2 = −0.978855x0.5 + 0.478855x1.5 + 0.5x2,

u3 = 0.294361x0.5 − 0.65257x1.5 + 0.191542x2.5 + 0.166667x3,

u4 = −0.0316058x0.5 + 0.196241x1.5 − 0.261028x2.5 + 0.0547262x3.5 + 0.0416667x4,

...

For α = 0.5, β = 2.5, using (4.2), the components un are obtained as:

u0 = 1,

u1 = 0.718282x0.5 + x2.5,

u2 = −1.09857x0.5 + 0.598568x3 + 0.5x5,

u3 = 0.47673x0.5 − 0.915473x3 + 0.272076x5.5 + 0.166667x7.5,

u4 = −0.107842x0.5 + 0.397275x3 − 0.416124x5.5 + 0.0850239x8 + 0.0416667x10,

...

Note that all above components are computed by computer algebra system, such as ‘MATH-
EMATICA’. Now, we define absolute error function as En(x) = |χn(x)−u(x)|, n = 1, 2, . . .

and the maximum absolute errors as

En = max
x∈(0,1] En(x) (4.4)

where u(x) is exact solution and χn(x) is n-term approximate series solution. In order test
efficiency and accuracy of the proposed recursive scheme (2.10), we exhibit the maximum
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Table 1 Maximum absolute error estimate for Example 4.1, when β = 1

α E(4) E(5) E(6) E(7) E(8) E(9) E(10)

0.25 9.466E−04 1.593E−04 3.093E−05 3.981E−06 9.456E−07 9.533E−08 1.907E−08

0.5 6.549E−04 1.412E−04 6.265E−05 1.215E−05 1.467E−06 3.584E−07 3.261E−08

0.75 8.356E−04 2.321E−04 3.615E−05 1.792E−05 3.860E−06 2.674E−07 8.044E−08

Table 2 Maximum absolute error estimate for Example 4.1, when β = 2.5

α E(4) E(5) E(6) E(7) E(8) E(9) E(10)

0.25 9.211E−04 1.749E−04 8.364E−05 2.083E−05 5.112E−06 5.560E−07 6.880E−08

0.50 8.654E−04 2.141E−04 6.139E−05 1.397E−05 5.946E−06 9.377E−07 6.738E−08

0.75 6.549E−04 1.412E−04 6.265E−05 1.215E−05 1.538E−06 4.065E−07 4.379E−08

absolute error estimate for various values of α and β in Tables 1 and 2. From these numerical
results, it is observed that as the number of iterations increases the maximum absolute error
decreases. Furthermore, the comparison between our approximate series solutions χ2, χ3 and
the exact solution is plotted in Fig. 1, it is shown that our three terms approximate solution
χ3 is coincides with the exact solution.

Example 4.2 Consider the nonlinear SBVPs with derivative dependence

(xαu′)′ = xα−1(−xu′eu − αeu), x ∈ (0, 1],
u(0) = ln

( 1
2

)
, u(1) = ln

( 1
3

)
,

}
(4.5)

and the exact solution is u(x) = ln
(

1
2+x

)
, where 0 ≤ α < 1.

According to proposed scheme (2.10), where p(x) = xα, q(x) = xα−1, α1 = ln
( 1

2

)
,

β1 = 1, γ1 = 0 and η1 = ln
( 1

3

)
, we have the recursive scheme:

1.2

1.6

2.0

2.4

2.8

u(
x )

x

2

3
exact

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.2

1.6

2.0

2.4

2.8

u(
x)

x

2

3
exact

(a) (b)

Fig. 1 Comparison of the approximate series χ2, χ3 and the exact u solutions of Example 4.1, when a α = 0.5
and β = 1 b α = 0.5 and β = 2.5
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Table 3 Maximum absolute error estimate for Example 4.2

α E(4) E(5) E(6) E(7) E(8) E(9) E(10)

0.25 5.790E−04 2.181E−04 5.069E−05 8.737E−06 2.240E−06 6.142E−07 5.882E−08

0.50 9.709E−04 3.531E−04 4.566E−05 2.136E−05 4.025E−06 1.290E−06 3.344E−07

0.75 7.733E−04 3.486E−04 8.713E−05 2.483E−05 8.272E−06 1.146E−06 4.819E−07

u0 = ln
( 1

2

)
,

u1 = [
ln

( 1
3

) − ln
( 1

2

)]
x1−α +

1∫
0

G(x, ξ)ξα−1 A0 dξ,

u j =
1∫

0
G(x, ξ)ξα−1 A j−1 dξ, j ≥ 2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

Using the formula (1.7), the Adomian’s polynomials for f = −(xeuu′ + euα) about u0 =
ln

( 1
2

)
are calculated as:

A0 = −eu0(xu′
0 + α),

A1 = −eu0(xu′
1 + u1α),

A2 = −eu0

(
x(u′

2 + u1u′
1) +

(
u2 + u2

1
2

)
α

)
,

A3 = −eu0

(
x

(
u′

3 + u′
2u1 + u′

1

(
u2

1
2 + u2

))
+

(
u3 + u1u2 + u3

1
6

)
α

)
,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

For α = 0.5, using (4.6) and (4.7), we obtain the successive solution components un as:

u0 = −0.693147,

u1 = 0.0945349x0.5 − 0.5x,

u2 = −0.0934884x0.5 − 0.0315116x1.5 + 0.125x2,

u3 = −0.00413483x0.5+0.0311628x1.5−0.00111711x2+0.0157558x2.5 − 0.0416667x3,

u4 = 0.00321966x0.5+0.00137828x1.5+0.00220948x2−0.0156096x2.5+0.00105504x3

−0.00787791x3.5 + 0.015625x4,

...

In similar manner as we did in last example Table 3 shows the maximum absolute error
estimate for various values of α. From these results, one can observe that as the number
of iterations increases, the maximum absolute error decreases. Furthermore, we plot the
approximate series solutions χ1, χ3 with the exact solution in Fig. 2. It is clear from the
figure that only three term approximate series solution χ3 is almost identical to the exact
solution u(x).

Example 4.3 Consider the nonlinear SBVP

(xαu′)′ = −xα+β−2(βxeuu′ + β(α + β − 1)eu), x ∈ (0, 1],
u(0) = ln

( 1
4

)
, u(1) = ln

( 1
5

)
,

}
(4.8)

with exact solution u(x) = ln
(

1
4+xβ

)
.
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Fig. 2 Comparison of the
approximate series χ1, χ3 and the
exact u solutions of Example 4.2,
when a α = 0.5 and β = 1

0.0 0.2 0.4 0.6 0.8 1.0
-1.1

-1.0

-0.9

-0.8

-0.7

u(
x)

x

1

3
exact

(a)

According to proposed scheme (2.10), where p(x) = xα, q(x) = xα+β−2, α1 =
ln

( 1
4

)
, β1 = 1, γ1 = 0, and η1 = ln

( 1
5

)
, we obtain:

u0 = ln
( 1

4

)
,

u1 = [
ln

( 1
5

) − ln
( 1

4

)]
x1−α + ∫ 1

0 G(x, ξ)ξα+β−2 A0 dξ,

u j = ∫ 1
0 G(x, ξ)ξα+β−2 A j−1 dξ, j ≥ 2.

⎫⎪⎬
⎪⎭ (4.9)

Using the formula (1.7) the Adomian’s polynomials for f = −(βxeuu′ + β(α + β − 1)eu)

about u0 are obtained as:

A0 = −βeu0(xu′
0 + (α + β − 1))

A1 = −βeu0(xu′
1 + u1(α + β − 1)),

A2 = −βeu0

(
x(u′

2 + u1u′
1) + (u2 + u2

1
2 )(α − β + 1)

)
,

A3 = −βeu0

(
x

(
u′

3 + u′
2u1 + u′

1

(
u2

1
2 + u2

))
+

(
u3 + u1u2 + u3

1
6

)
(α + β − 1)

)
,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

As we did before we pick some specific values of α and β.

For α = 0.5, β = 1, using (4.9) and (4.10), we obtain the components un as

u0 = −1.38629436,

u1 = 0.0268564x0.5 − 0.25x,

u2 = −0.0267739x0.5 − 0.00447607x1.5 + 0.03125x2,

u3 = −0.0003279x0.5+0.0044623x1.5−0.000045079x2+0.00111902x2.5−0.0052083x3,

u4 = 0.00025327x0.5+0.0000546545x1.5+0.0000898816x2−0.0011159x2.5

+0.0000212874x3 − 0.0002797x3.5 + 0.000976563x4,

...
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Table 4 Maximum absolute error estimate for Example 4.3, when β = 1

α E(4) E(5) E(6) E(7) E(8) E(9) E(10)

0.25 4.842E−05 1.112E−05 1.107E−06 1.228E−07 2.303E−08 2.156E−09 3.541E−10

0.50 9.426E−05 1.523E−05 1.523E−06 2.491E−07 2.687E−08 4.012E−09 5.403E−10

0.75 1.792E−04 1.164E−05 2.779E−06 3.102E−07 4.911E−08 6.759E−09 9.224E−10

Table 5 Maximum absolute error estimate for Example 4.3, when β = 3.5

α E(4) E(5) E(6) E(7) E(8) E(9) E(10)

0.25 1.881E−04 1.509E−05 3.038E−06 3.133E−07 4.782E−08 6.467E−09 1.127E−09

0.5 2.191E−04 1.582E−05 3.505E−06 3.271E−07 6.530E−08 6.958E−09 1.327E−09

0.75 2.377E−04 2.895E−05 3.757E−06 6.245E−07 6.926E−08 1.299E−08 1.386E−09

For α = 0.5, β = 3.5, using (4.9) and (4.10), we have components un as follows:

u0 = −1.38629436,

u1 = 0. + 0.0268564x0.5 − 0.25x3.5,

u2 = −0.0253752x0.5 − 0.00587485x4 + 0.03125x7,

u3 = −0.00174107x0.5 + 0.00555081x4−0.000070123x4.5+0.00146871x7.5

−0.00520833x10.5,

u4 = 0.000230726x0.5 + 0.000380859x4 + 0.000132511x4.5 − 5.6497931825 × 10−7x5

−0.0013877x7.5 + 0.0000347878x8 − 0.000367178x11 + 0.000976563x14,

...

In similar fashion, Tables 4 and 5 show the maximum absolute error for different values
of α and β. It is obvious from these results that the error decreases as one increases the terms
in approximate solution. In addition, by plotting approximate solutions χ2, χ3 and the exact
solution in Fig. 3, we have shown that only few terms are required for acceptable solution.
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Fig. 3 Comparison of the approximate series χ2, χ3 and the exact u solutions of Example 4.3, when a α = 0.5
and β = 1 b α = 0.5 and β = 3.5
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Remark It can be seen from the numerical results of all three examples discussed in this
section that only three terms are sufficient for obtaining good approximations to the exact
solution.

5 Conclusion

In this article, we have verified the proposed recursive scheme by solving one linear and
two nonlinear singular two-point boundary value problems. The accuracy of the numerical
results shows that the proposed method is suitable for solving such problems. Unlike ADM
or MADM, the proposed method does not involve any undetermined coefficients to be deter-
mined. In fact, the proposed method provides a direct recursive scheme for obtaining the
approximations of the exact solution.
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Çağlar H, Çağlar N, Özer M (2009) B-spline solution of non-linear singular boundary value problems arising

in physiology. Chaos Solitons Fractals 39(3):1232–1237
Cen Z (2007) Numerical method for a class of singular non-linear boundary value problems using Green’s

functions. Int J Comput Math 84(3):403–410
Chawla M, Katti C (1982) Finite difference methods and their convergence for a class of singular two point

boundary value problems. Numerische Mathematik 39(3):341–350
Danish M, Kumar S, Kumar S (2012) A note on the solution of singular boundary value problems arising in

engineering and applied sciences: use of OHAM. Comput Chem Eng 36:57–67
Duan J (2010) Recurrence triangle for Adomian polynomials. Appl Math Comput 216(4):1235–1241
Duan J (2010) An efficient algorithm for the multivariable Adomian polynomials. Appl Math Comput

217(6):2456–2467
Duan J, Rach R (2011) A new modification of the Adomian decomposition method for solving boundary value

problems for higher order nonlinear differential equations. Appl Math Comput 218(8):4090–4118
Duan J, Rach R, Wazwaz A, Chaolu T, Wang Z (2013) A new modified Adomian decomposition method and

its multistage form for solving nonlinear boundary value problems with robin boundary conditions. Appl
Math Model 1–22. doi:10.1016/j.apm.2013.02.002

Ebaid A (2011) A new analytical and numerical treatment for singular two-point boundary value problems
via the Adomian decomposition method. J Comput Appl Math 235(8):1914–1924

El-Kalla I (2012) A new approach for solving a class of nonlinear integro-differential equations. Commun
Nonlinear Sci Numer Simul 17:4634–4641

El-Kalla I (2012) Error estimates for series solutions to a class of nonlinear integral equations of mixed type.
J Appl Math Comput 38(1):341–351

El-Sayed A, Hashem H, Ziada E (2013) Picard and Adomian decomposition methods for a quadratic integral
equation of fractional order. Comput Appl Math 1–15. doi:10.1007/s40314-013-0045-3

123

http://dx.doi.org/10.1016/j.apm.2013.02.002
http://dx.doi.org/10.1007/s40314-013-0045-3


Effective recursive scheme to solve SBVPs 467

Inc M, Evans D (2003) The decomposition method for solving of a class of singular two-point boundary value
problems. Int J Comput Math 80(7):869–882

Kanth A, Bhattacharya V (2006) Cubic spline for a class of non-linear singular boundary value problems
arising in physiology. Appl Math Comput 174(1):768–774

Khuri S, Sayfy A (2010) A novel approach for the solution of a class of singular boundary value problems
arising in physiology. Math Comput Model 52(3):626–636

Kumar M, Aziz T (2006) A uniform mesh finite difference method for a class of singular two-point boundary
value problems. Appl Math Comput 180(1):173–177

Kumar M, Singh N (2010) Modified Adomian decomposition method and computer implementation for solving
singular boundary value problems arising in various physical problems. Comput Chem Eng 34(11):1750–
1760

Öztürk Y, Gülsu M (2013) An approximation algorithm for the solution of the Lane–Emden type equations
arising in astrophysics and engineering using hermite polynomials. Comput Appl Math 1–15. doi:10.1007/
s40314-013-0051-5

Ravi Kanth A, Aruna K (2010) He’s variational iteration method for treating nonlinear singular boundary
value problems. Comput Math Appl 60(3):821–829

Singh R, Kumar J, Nelakanti G (2012) New approach for solving a class of doubly singular two-point boundary
value problems using Adomian decomposition method. Adv Numer Anal 2012:22. doi:10.1155/2012/
541083

Singh R, Kumar J (2013) Computation of eigenvalues of singular Sturm-Liouville problems using modified
Adomian decomposition method. Int J Nonlinear Sci 15(3):247–258

Singh R, Kumar J (2013b) Solving a class of singular two-point boundary value problems using new modified
decomposition method. ISRN Comput Math 1–11. doi:10.1155/2013/262863

Singh R, Kumar J, Nelakanti G (2013) Numerical solution of singular boundary value problems using
Green’s function and improved decomposition method. J Appl Math Comput 1–17. doi:10.1007/
s12190-013-0670-4

Verma A, Pandey R (2011) On a constructive approach for derivative-dependent singular boundary value
problems. Int J Differ Equ 2011:1–16. doi:10.1155/2011/261963

Wazwaz A (2001) A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems.
Comput Math Appl 41(10–11):1237–1244

Wazwaz A, Rach R (2011) Comparison of the Adomian decomposition method and the variational iteration
method for solving the Lane–Emden equations of the first and second kinds. Kybernetes 40(9–10):1305–
1318

Wazwaz A, Rach R, Duan J (2013) Adomian decomposition method for solving the volterra integral form of
the Lane–Emden equations with initial values and boundary conditions. Appl Math Comput 219(10):5004–
5019

Wu L, Xie L, Zhang J (2009) Adomian decomposition method for nonlinear differential-difference equations.
Commun Nonlinear Sci Numer Simul 14(1):12–18

123

http://dx.doi.org/10.1007/s40314-013-0051-5
http://dx.doi.org/10.1007/s40314-013-0051-5
http://dx.doi.org/10.1155/2012/541083
http://dx.doi.org/10.1155/2012/541083
http://dx.doi.org/10.1155/2013/262863
http://dx.doi.org/10.1007/s12190-013-0670-4
http://dx.doi.org/10.1007/s12190-013-0670-4
http://dx.doi.org/10.1155/2011/261963

	Approximate series solution of singular boundary value problems with derivative dependence using Green's function technique
	Abstract
	1 Introduction
	1.1 Review of ADM

	2 ADM with Green's function technique
	3 Convergence analysis
	4 Numerical illustrations
	5 Conclusion
	Acknowledgments
	References


