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Abstract A control point form of quadratic trigonometric function is developed which obeys
all the properties of Bézier curve. To preserve the shape of data, the quadratic trigonometric
functions are transformed into GC1-interpolating functions. The GC1-interpolating func-
tions have two free parameters in each subinterval to control the magnitude and direction
of the tangent at the end points interval. Constraints are derived on these free parameters to
interpolate positive, monotone and convex data. The order of approximation of developed
interpolant is investigated as O(h3

i ).
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1 Introduction

Bernstein–Bézier interpolating functions are used for the generation of smooth curves and
surfaces. The Bézier functions interpolate first and last control points, and the interme-
diate control points determine the shape of the curve between the data points. However,
these interpolating functions even in rational form do not preserve the intrinsic properties of
data (positivity, monotonicity and convexity). The only possibility is to change the value of
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412 M. Z. Hussain et al.

intermediate control points as hit and trial until the desired shape is obtained. The user is
forced to go through this painstaking process for each data.

There exist sufficient polynomial interpolation techniques to preserve the positive,
monotone and convex shape of data. Butt and Brodlie (1993) developed a simple algorithm to
create positivity-preserving cubic Hermite interpolant. The data consisted of positive values
and slopes at the data points. The authors in Butt and Brodlie (1993) interpolated the positive
data values and associated slopes in each subinterval by the cubic Hermite interpolant. If
in a subinterval the cubic Hermite interpolant failed to preserve positivity, then one or two
extra knots were inserted into the concerned interval so that the resulting piecewise cubic
Hermite interpolant preserved positivity. Duan et al. (2009) used rational cubic interpolant
with two free parameters to control the value, convexity and inflection point of the interpolant
at a point. The constraints were developed on these free parameters to acquire the desired
results. Fuhr and Kallay (1992) used linear rational B-spline to interpolate monotone data
with derivatives as monotone curves. Higham (1992) modified the method of inserting knot,
proposed by Fritsch and Butland (1984), to preserve the shape of the monotone data. The
monotonicity-preserving scheme presented in Higham (1992) was more efficient and less
memory consuming as compared to Fritsch and Butland (1984). Higham (1992) claimed that
the proposed algorithm was well suited for the data arising from the discrete approximate
solution of an ODE. Hussain and Sarfraz (2008, 2009) developed a piecewise rational cubic
function in the most generalized form with four free parameters to preserve the positive as
well as monotone shape of the data. In the developed schemes, out of four parametres, two
were constrained to preserve the shape of positive data and monotone data, whereas the other
two were free to modify the shape of curve if desired. Lamberti and Manni (2001) used cubic
Hermite for shape preservation of parametric data. In Lamberti and Manni (2001), the step
length was constrained to preserve the shape of the data. Sarfraz (1992) developed a C1 and
Verlan (2010) developed a C2 interpolation scheme to preserve the convex shape of the data.

Han et al. (2009) presented a cubic trigonometric curve in Bézier form. It was comparable
to cubic Bézier curve, but somehow more efficient. In the cubic trigonometric Bézier curve,
shape modification was made possible by shape parameters, keeping the control polygon
unchanged. It was closer to the given control polygon than the cubic Bézier curves. Moreover,
it could exactly represent ellipses.

The study of this paper develops a GC1 trigonometric interpolant to preserve the three
shapes (positive, monotone and convex) of data, since an interpolant preserves the positive,
monotone and convex shapes of data if the interpolant, and its first and second derivatives
are positive over the entire domain. Keeping this in view, all the possible geometric config-
urations of interpolants and their first and second derivatives are discussed. The constraints
are developed on parameters to ensure that the minimum value of the GC1 trigonometric
interpolant and its derivative remain positive for each shape.

The shape-preserving interpolation scheme developed in this paper is beneficial due to
the following reasons:

• The trigonometric functions are considered unsuitable for shape-preserving interpola-
tion due to their oscillatory behaviour. The trigonometric interpolant developed in this
paper has two free parameters in each subinterval. These parameters are used to rein the
oscillatory behaviour of trigonometric functions where needed.

• The shape-preserving interpolation schemes developed in [Hussain and Sarfraz (2008,
2009), Sarfraz (1992)] used rational polynomial, but the trigonometric interpolant devel-
oped in this paper is non-rational. It requires less memory usage as compared to [Hussain
and Sarfraz (2008, 2009), Sarfraz (1992)].
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Shape-preserving trigonometric functions 413

• In [Butt and Brodlie (1993), Fritsch and Butland (1984), Fuhr and Kallay (1992), Higham
(1992)], the non-rational interpolant (cubic Hermite) was used to preserve the shape of
the data. The authors in [Butt and Brodlie (1993), Fritsch and Butland (1984), Fuhr
and Kallay (1992), Higham (1992)] inserted extra knots in the subinterval where cubic
Hermite failed to preserve the shape of the data. The trigonometric interpolation scheme
proposed in this paper does not need to insert an extra knot.

• The authors in Lamberti and Manni (2001) constrained step length to preserve the shape
of the data, whereas the trigonometric interpolation scheme developed in this paper is
equally applicable to both uniform and nonuniform data.

• The proposed interpolation scheme produces a unique curve for the given data and
selected values of parameters.

• The developed trigonometric interpolant inherits all the properties of the Bézier curve.
It can be termed as trigonometric Bézier function.

• Unlike Verlan (2010), the degree of interpolant is same for all the data points.
• An alternate scheme is developed to preserve the shape of the data.

The rest of the paper is organized as follows. Section 2 presents Bézier-like trigonometric
functions. Section 3 develops GC1 trigonometric functions with two free parameters to
control the shape of data. Section 4 addresses the problem of positive, monotone and convex
data interpolation. Section 5 is of numerical examples and Sect. 6 concludes the paper.

2 Quadratic trigonometric functions

Let {(xi , fi ), i = 0, 1, 2, . . . , n} be the given set of data points defined over the interval [a, b],
where a = x0 < x1 < x2 < · · · < xn = b. The piecewise quadratic trigonometric function
is defined as:

Si (x) =
3∑

k=0

Bk(x)Pk, ∀ x ∈ [xi , xi+1], (1)

where

B0(x) = (1 − Sinθ)2, B1(x) = 2Sinθ(1 − Sinθ), B2(x) = 2Cosθ(1 − Cosθ),

B3(x) = (1−Cosθ)2, hi = xi+1−xi , δ = x − xi

hi
, θ = π

2
δ, i = 0, 1, 2, . . . , n−1.

Bk(x), k = 0, 1, 2, 3 are the quadratic trigonometric basis functions and Pk, k = 0, 1, 2, 3
are the control points.

The quadratic trigonometric functions defined in (1) have the following properties:

1. End point interpolation: The quadratic trigonometric functions (1) interpolate the first
and last control point, i.e. Si (xi )|θ=0 = P0 and Si (xi+1)|θ= π

2
= P3.

2. Convex hull property: The sum of the basis functions is one, i.e.
∑3

k=0 Bk(x) = 1, also
the basis functions Bk(x), k = 0, 1, 2, 3 are non-negative. Hence the graphical display
of quadratic trigonometric functions (1) is bounded in the convex hull of control points
Pk, k = 0, 1, 2, 3.

3. Invariance under the affine transformation: The quadratic trigonometric functions are
invariant under the affine transformations.
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Let T be an affine transformation defined as: T (X) = AX + T1,

where X is the vector to be transformed, A is the transformation matrix and T1 is the translation
vector.

Applying the affine transformation T to the quadratic trigonometric functions (1), we have

T (Si (x)) = T

(
3∑

k=0

Bk(x)Pk

)
= A

3∑

k=0

Bk(x)Pk + T1. (2)

Since
∑3

k=0 Bk(x) = 1, the expression (2) can be written as:

T (Si (x)) = A
3∑

k=0

Bk(x)Pk +
3∑

k=0

Bk(x)T1 =
3∑

k=0

Bk(x)(APk + T1) =
3∑

k=0

Bk(x)T (Pk).

It can be easily observed that quadratic trigonometric functions (1) behave like Bézier func-
tion, but enjoy four control points instead of three in quadratic structure.

3 GC1 trigonometric functions

On applying the C1-continuity conditions, Si (xi ) = fi , Si (xi+1) = fi+1, S′
i (xi ) =

di , S′
i (xi+1) = di+1, to the quadratic trigonometric functions (1), it takes the form in the

following subinterval [xi , xi+1]:

Si (x) = (1 − Sinθ)2 fi + 2Sinθ(1 − Sinθ)( fi + hi di

π
) + 2Cosθ(1 − Cosθ)

×
(

fi+1 − hi di+1

π

)
+ (1 − Cosθ)2 fi+1. (3)

The quadratic trigonometric functions (3) have fixed values of tangents at the end points of
interval. The flexible tangents are achieved by the following replacement in (3)

di → di

αi
and di+1 → di+1

βi
.

The quadratic trigonometric functions (3) become GC1 quadratic trigonometric functions
as:

Si (x) =
3∑

k=0

Bk(x)Ak, (4)

where

A0 = fi , A1 = fi + hi di

παi
, A2 = fi+1 − hi di+1

πβi
, A3 = fi+1, i = 0, 1, 2, . . . , n − 1.

αi , βi > 0 are the free parameters.

3.1 Error bounds of quadratic trigonometric function

In this section, the interpolation error of GC1 quadratic trigonometric functions (4) is investi-
gated. It is assumed that data are generated from a function f (x) ∈ C3[x0, xn]. The absolute
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interpolation error in the subinterval Ii = [xi , xi+1] is:

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖

xi+1∫

xi

Rx [(x − τ)2+] dτ , (5)

where Rx is known as Peano kernel and (x − τ)2+ is the truncated power function. The integral
involved in (5) is expressed as:

xi+1∫

xi

|Rx [(x − τ)2+]| dτ =
x∫

xi

|r(τ, x)| dτ +
xi+1∫

x

|s(τ, t)| dτ.

For the GC1 quadratic trigonometric function (4), we have

r(τ, x) = (x − τ)2 −
{
(B2 + B3)(xi+1 − τ)2 − 2hi B2(xi+1 − τ)

πβi

}
, (6)

s(τ, x) = −
{
(B2 + B3)(xi+1 − τ)2 − 2hi B2(xi+1 − τ)

πβi

}
. (7)

where Bi (x), i = 0, 1, 2, 3 are the quadratic trigonometric basis functions defined in Sect. 2.
It is observed that, for all θ ∈ [0, π

2 ], r(x, xi ) = 0. Substituting τ = x in (6) and after
some simplification, it takes the form

r(x, x) = −h2
i

{
(B2 + B3)(1 − δ) − 2B2

πβi

}
.

The roots of r(x, x) are: δ = 0, δ = 1, δ = 1 − 2(2−βi )
πβi

. Let 1 − 2(2−βi )
πβi

= δ∗(say).

If βi ∈ [ 4
π+2 , 2], the roots of r(x, x) in [0, 1] are δ = 0, δ = 1, δ∗ = 1 − 2(2−βi )

πβi
. If

βi /∈ [ 4
π+2 , 2], then the roots of r(x, x) in [0, 1] are δ = 0 and δ = 1. It is observed that

s(x, xi+1) = 0. Hence to calculate the roots of s(x, x), it is rearranged as:

s(x, x) = −h2
i

{
(B2 + B3)(1 − δ) − 2B2

πβi

}
.

To compute the roots of r(τ, x), it is rearranged as:

r(τ, x) = (1 − B2 − B3)(x − τ)2 + 2hi

(
B2

πβi
− (B2 + B3)(1 − δ)

)
(x − τ)

+h2
i

(
2B2

πβi
(1 − δ) − (B2 + B3)(1 − δ)2

)
.

The roots of r(τ, x)are

τ ∗
1 = x + hi

(
B − D

A

)
and τ ∗

2 = x + hi

(
B + D

A

)
,
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where

A = (1 − B2 − B3), B =
(

B2

πβi
− (B2 + B3)(1 − δ)

)
,

D =
√(

B2

πβi
− (B2 + B3)(1 − δ)

)2

− (1 − B2 − B3)

(
2B2

πβi
− (B2 + B3)(1 − δ)

)
.

The roots of s(τ, x) are

τ ∗ = xi+1 and τ ∗ = xi+1 − 2hi B2

πβi (B2 + B3)
.

Depending on the values of δ and βi , the following observations are made: If δ ≤ δ∗ and

βi ∈
[

4
π+2 , 2

]
, τ ∗

1 ∈ [xi , x] and τ ∗
2 /∈ [xi , x].

Ifδ ≥ δ∗ and βi ∈
[

4
π+2 , 2

]
, then τ ∗

1 , τ ∗
2 ∈ [xi , x] .

If 0 ≤ δ ≤ 1 and βi > 2, τ ∗
1 ∈ [xi , x] and τ ∗

2 /∈ [xi , x].
If 0 ≤ δ ≤ 1 and βi < 4

π+2 , τ ∗
1 , τ ∗

2 ∈ [xi , x] .

If δ ≤ δ∗ and βi ∈
[

4
π+2 , 2

]
, τ ∗ ∈ [

x, xi+1
]

If δ ≥ δ∗ and βi ∈
[

4
π+2 , 2

]
, τ ∗ /∈ [

x, xi+1
]
.

If 0 ≤ δ ≤ 1 and βi > 2, τ ∗ /∈ [
x, xi+1

]
.

If 0 ≤ δ ≤ 1 and βi < 4
π+2 , τ ∗ /∈ [

x, xi+1
]
. The above discussion provides the different

values of absolute error depending on the choice of δ and βi .

Case 1: For 0 ≤ δ ≤ δ∗, βi ∈ [ 4
π+2 , 2], the absolute error in Ii = [xi , xi+1] is

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖h3

i ω1(αi , βi , δ),

where

ω1 =
x∫

xi

|r(τ, x)| dτ +
xi+1∫

x

|s(τ, x)| dτ

= −
τ∗

1∫

xi

r(τ, x) dτ +
x∫

τ∗
1

r(τ, x) dτ −
τ∗∫

x

s(τ, x) dτ +
xi+1∫

τ∗
s(τ, x) dτ

=
{

−2(1 − B2 − B3)

3

(
B − D

A

)3

+ 2

(
B2

πβi
− (B2 + B3)(1 − δ)

)(
B − D

A

)2

−2

(
2B2

πβi
(1 − δ) − (B2 + B3)(1 − δ)2

) (
B − D

A

)
− (1 − B2 − B3)

3
δ3

−
(

B2

πβi
− (B2 + B3)(1 − δ)

)
δ2 −

(
2B2

πβi
(1 − δ) − (B2 + B3)(1 − δ)2

)
δ

+ 8B3
2

3(πβi )3(B2 + B3)2 − B2

πβi
(1 − δ)2 +

(
B2 + B3

3

)
(1 − δ)3

}
.
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Case 2: For δ∗ ≤ δ ≤ 1, βi ∈ [ 4
π+2 , 2], we have

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖h3

i ω2(αi , βi , δ),

where

ω2 =
x∫

xi

|r(τ, x)| dτ +
xi+1∫

x

|s(τ, x)| dτ

=
τ∗

1∫

xi

r(τ, x) dτ −
τ∗

2∫

τ∗
1

r(τ, x) dτ +
x∫

τ∗
2

r(τ, x) dτ +
xi+1∫

x

s(τ, x) dτ

=
{

2(1 − B2 − B3)

3

(
B − D

A

)3

− 2

(
B2

πβi
− (B2 + B3)(1 − δ)

)(
B − D

A

)2

+
(

2B2

πβi
(1 − δ) − (B2 + B3)(1 − δ)2

) (
B − D

A

)
− 2(1 − B2 − B3)

3

(
B + D

A

)3

+2

(
B2

πβi
− (B2 + B3)(1 − δ)

) (
B + D

A

)2

+
(

1 − B2 − B3

βi

)
δ3

−2

(
2B2

πβi
(1−δ)−(B2+B3)(1−δ)2

)(
B + D

βi

)
+

(
B2

πβi
−(B2 + B3)(1 − δ)

)
δ2

+
(

2B2

πβi
(1−δ)−(B2+B3)(1−δ)2

)
δ+(1−δ)2

(
3B2−πβi (B2 + B3)(1 − δ)

3πβi

)}
.

Case 3: For 0 ≤ δ ≤ 1, βi > 2, we have

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖h3

i ω3(αi , βi , δ), ω3(αi , βi , δ) = ω1(αi , βi , δ).

Case 4: For 0 ≤ δ ≤ 1, βi < 4
π+2 ,we have

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖h3

i ω4(αi , βi , δ), ω4(αi , βi , δ) = ω2(αi , βi , δ).

Theorem 1 The error of GC1 quadratic trigonometric function (4) in each subinterval
Ii = [xi , xi+1] for f (x) ∈ C3[x0, xn] is

| f (x) − Si (x)| ≤ 1

2
‖ f (3)(τ )‖h3

i ci , ci = max
0≤δ≤1

ω(αi , βi , δ),

ω(αi , βi , δ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max ω1(αi , βi , δ) 0 ≤ δ ≤ δ∗ 4
π+2 ≤ βi ≤ 2

max ω2(αi , βi , δ) δ∗ ≤ δ ≤ 1 4
π+2 ≤ βi ≤ 2

max ω3(αi , βi , δ) 0 ≤ δ ≤ 1 βi > 2

max ω4(αi , βi , δ) 0 ≤ δ ≤ 1 βi < 4
π+2
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4 Shape-preserving curve interpolation

In this section, the three shape properties, positivity, monotonicity and convexity, of 2D data
are discussed. Constraints are developed on free parameters αi and βi in the description of
GC1 quadratic trigonometric function to preserve the shape of data.

4.1 Positive curve interpolation

Let {(xi , fi ), i = 0, 1, 2, . . . , n} be the positive data defined over the interval [a, b] with
partition a = x0 < x1 < x2 < · · · < xn = b, fi > 0, i = 0, 1, 2, . . . , n.

The GC1 quadratic trigonometric functions (4) preserve the positivity if

Si (x) > 0, ∀x ∈ [xi , xi+1], i = 0, 1, 2, . . . , n − 1.

Si (x) has one of the following graphical representations:

I. Si (x) is either increasing or decreasing ∀ x ∈ [xi , xi+1]. Extrema lie at the end points
of the interval [xi , xi+1]. In this case, if minima lie at one of the end points then maxima
will lie at the other.

II. Si (x) is concave over the whole interval [xi , xi+1]. In this case, minima lie at the end
points of the curve.

III. Si (x) is convex over the whole interval[xi , xi+1]. In this case, local minima lie in the
interior, i.e. at points x ∈ (xi , xi+1).

IV. There are inflection points in the interval (xi , xi+1) (function changes it concavity). In
this case, local extrema lie at the points x ∈ (xi , xi+1).

In case (I) and (II),Si (x) is positive ∀x ∈ [xi , xi+1] if Si (x) > 0 at the end points of the
interval [xi , xi+1]. SinceSi (xi ) = fi and Si (xi+1) = fi+1, then Si (x) > 0, ∀x ∈ [xi , xi+1].

In cases (III) and (IV), we shall determine the critical points of (4). These critical points will
be points of relative minima or maxima. We shall determine constraints on free parameters
αi and βi to ensure the positivity of quadratic trigonometric function at all extrema.

To determine the critical points of Si (x), it is more convenient to express Si (x) as a
function of two variables. Let u = Sinθand v = Cosθ, (4) takes the form:

Si (u, v) = (1 − u)2 A0 + 2u(1 − u)A1 + 2v(1 − v)A2 + (1 − v)2 A3. (8)

The critical points of Si (u, v) are obtained from ∂Si (u,v)
∂u = 0 and ∂Si (u,v)

∂v
= 0.

The critical points are u∗ = A0−A1
A0−2A1

and v∗ = A3−A2
A3−2A2

.

Since Sinθ, Cosθ ∈ [0, 1], we shall determine the values of free parameters αi and βi for
which u∗, v∗ ∈ [0, 1]. If u∗ = 0, then v∗ = 1 and vice versa. In either case Si (u, v) = 0.

Hence, we shall verify the range of αi and βi for which u∗, v∗ ∈ (0, 1).

u∗ > 0 if either of the following possibilities is true:

(a) If A0 − A1 > 0 and A0 − 2A1 > 0, then αi <
−2hi di

π fi
.

(b) A0 − A1 < 0 and A0 − 2A1 < 0, then αi >
−2hi di

π fi
.

u∗ < 1, then the possible cases are:

(a) A1 < 0 provided that A0 − 2A1 > 0. It is true only if αi <
−hi di
π fi

.

(b) A1 > 0 provided that A0 − 2A1 < 0. It is true only if αi >
−hi di
π fi

.

Thus, it can be concluded that u∗ ∈ (0, 1) if

(i) αi < Min{−hi di
π fi

,
−2hi di

π fi
}, when di < 0.
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Shape-preserving trigonometric functions 419

(ii) αi > Max{−hi di
π fi

,
−2hi di

π fi
}, when di > 0.

In a similar way, it can be observed that v∗ ∈ (0, 1) if

(i) βi < Min{ hi di+1
π fi+1

,
2hi di+1
π fi+1

}, when di+1 > 0.

(ii) βi > Max{ hi di+1
π fi+1

,
2hi di+1
π fi+1

}, when di+1 < 0.

After substituting the values of u∗ and v∗, (8) becomes as follows:

Si (u∗, v∗) =
(

A1

A0 − 2A1

)2

(2A1 − A0) +
(

A2

A3 − 2A2

)2

(2A2 − A3). (9)

From (9), it is clear that Si (u∗, v∗) > 0 if 2A1 − A0 > 0 and 2A2 − A3 > 0.2A1 − A0 > 0
and 2A2 − A3 > 0 if

αi > Max

{−hi di

π fi
,
−2hi di

π fi

}
and βi > Max

{
hi di+1

π fi+1
,

2hi di+1

π fi+1

}
.

All the above discussion can also be summarized as:

Theorem 2 The piecewise GC1 quadratic trigonometric interpolant Si (x), defined over
the interval [a, b] in (4), is positive if parameters αi and βi in each subinterval satisfy the
following conditions

αi > Max

{
0,

−hi di

π fi
,
−2hi di

π fi

}
βi >

{
0,

hi di+1

π fi+1
,

2hi di

π fi+1

}
.

The above constraints can be rearranged as:

αi = li + Max

{
0,

−hi di

π fi
,
−2hi di

π fi

}
βi = mi +

{
0,

hi di+1

π fi+1
,

2hi di

π fi+1

}
, li > 0, mi > 0.

4.2 Monotone curve interpolation

Let {(xi , fi ), i = 0, 1, 2, . . . , n} be the monotone data defined over the interval [a, b]. The
necessary conditions for the monotonicity of data are

(i) 
i = 0 then di = 0 and di+1 = 0;
(ii) 
i 
= 0 then sgn(di ) = sgn(di+1) = sgn(
i ).

In this section, we assume that the data under consideration is monotonically increasing
(
i > 0, di > 0, di+1 > 0). The monotonically decreasing data(
i < 0, di < 0, di+1 < 0)

can be treated in a similar way.
The piecewise quadratic trigonometric functions (4) are monotone if

S′
i (x) > 0, ∀x ∈ [xi , xi+1],

where

S′
i (x) = (1 − Sinθ)Cosθ C0 + SinθCosθ C1 + (1 − Cosθ)Sinθ C2,

C0 = di

αi
, C1 = π 
i −

(
di

αi
+ di+1

βi

)
, C2 = di+1

βi
.

S′
i (x) also have any one of the graphical representations (I)–(IV) discussed in Sect. 4.1.
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In case (I)–(II), S′
i (x) is either increasing or decreasing or concave over the whole domain.

The monotonicity can be established by assuring the positive value of S′
i (x) at the end points

of the interval. Since S′
i (xi ) = di

αi
, S′

i (xi+1) = di+1
βi

, S′
i (x) is positive over the whole domain.

In case (III)–(IV), S′
i (x) is convex over the whole domain or has inflection points in the

interval; then we shall determine the critical points of S′
i (x). The constraints will be derived

on αi and βi to assure a positive value of S′
i (x) at the critical points. In this case, S′

i (x) will
be positive if the minimum value of S′

i (x) is positive in the whole interval.

S′
i (u, v) = (1 − u)vC0 + uvC1 + (1 − v)uC2, (10)

where u = Sinθ, v = Cosθ.

The critical point of S′
i (u, v) is (u∗, v∗) =

(
C0

C0+C2−C1
, C2

C0+C2−C1

)
.

(a) u∗ > 0 and v∗ > 0, if C0 + C2 − C1 > 0 where C0 + C2 − C1 = −π
i + 2di
αi

+
2di+1

βi
. C0 + C2 − C1 > 0 if αi <

4di
π
i

and βi <
4di+1
π
i

.

(b) u∗ < 1 and v∗ < 1 if C0
C0+C2−C1

< 1 or C2 − C1 > 0, where C2 − C1 = −π
i + di
αi

+
2di+1

βi
. C2 − C1 > 0 if αi <

2di
π
i

and βi <
4di+1
π
i

.

From the above discussion it can be concluded that u∗, v∗ ∈ (0, 1) if

αi < Min

{
2di

π
i
,

4di

π
i

}
and βi < Min

{
2di+1

π
i
,

4di+1

π
i

}
.

S′
i (u∗, v∗) = C0C1

(C0 + C2 − C1)
, (11)

S′
i (u∗, v∗) > 0 if C0 + C2 − C1 > 0.

All the above discussions can be summarized as:

Theorem 3 The piecewise GC1 quadratic trigonometric interpolant Si (x), defined over the
interval [a, b], in (4), is monotone if the parameter αi and βi in each subinterval Ii =
[xi , xi+1] satisfy the following conditions:

αi < Min

{
2di

π
i
,

4di

π
i

}
and βi < Min

{
2di+1

π
i
,

4di+1

π
i

}
.

The above constraints can be rearranged as:

αi = ci + Min

{
2di

π
i
,

4di

π
i

}
, βi = di + Min

{
2di+1

π
i
,

4di+1

π
i

}
,

for any real number ci , di < 0.

4.3 Convex curve interpolation

Let {(xi , fi ), i = 0, 1, 2, . . . , n} be the convex data defined over the interval [a, b]. The
necessary conditions for the convexity of data are

di ≤ di+1, 
i ≤ 
i+1 and di ≤ 
i ≤ di+1.

The piecewise GC1 quadratic trigonometric functions defined in (4) are convex if

S′′
i (x) > 0, ∀x ∈ [xi , xi+1],
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where

S′′
i (x) = π

2hi
[Cos2θ D0 + Sin2θ D1 − Sinθ C0 + Cosθ C1], (12)

with D0 = C1 − C0 − C2 and D1 = C0 + C2 − C1.

Si (x) will be convex in the whole interval [xi , xi+1], if S′′
i (x) is positive at local minimas.

Compute theoretical points of S′′
i (x) and derive the constraints on the free parameters αi

and βi , such that the value of S′′
i (x) is positive at the critical points. S′′

i (x) is written as:

S′′
i (u, v) = v2 D0 + u2 D1 − uC0 + vC1, (13)

where u = Sinθ and v = Cosθ.

The critical points of S′′
i (u, v) are u∗ = C0

2D1
and v∗ = −C2

2D0
.

(a) u∗ > 0 if either (C0 > 0 and D0 > 0) or (C0 < 0 and D0 < 0), where C0 = di
αi

and

D0 = π
i − 2(
di
αi

+ di+1
βi

). C0 > 0 and D0 > 0, if αi >
4di
π
i

and βi >
4di+1
π
i

. C0 < 0

and D0 < 0, if αi <
4di
π
i

and βi <
4di+1
π
i

.

(b) u∗ < 1 if either (C0 < 2D0 and D0 > 0) or (C0 > 2D0 and D0 < 0).C0 < 2D0

and D0 > 0, if αi >
3di
π
i

and βi >
4di+1
π
i

. C0 > 2D0 and D0 < 0, if αi <
3di
π
i

and

βi <
4di+1
π
i

.

Thus u∗ ∈ (0, 1) if

(i) αi > Max
{

3di
π
i

,
4di
π
i

}
and βi >

4di+1
π
i

, when di > 0.

(ii) αi < Min
{

3di
π
i

,
4di
π
i

}
and βi <

4di+1
π
i

, when di < 0.

(a) v∗ > 0, if (C2 > 0 and D1 < 0) or (C2 < 0 and D1 > 0).C2 > 0 and D1 < 0, if
αi <

4di
π
i

and βi <
4di+1
π
i

.C2 < 0 and D1 > 0, if αi >
4di
π
i

and βi >
4di+1
π
i

.
(d) v∗ < 1, if (−C2 < 2D1 and D1 > 0) or (−C2 > 2D1 and D1 < 0). −C2 < 2D1 and

D1 > 0, if αi <
4di
π
i

and βi <
5di+1
π
i

. − C2 > 2D1 and D1 < 0, if αi >
4di
π
i

and

βi >
5di+1
π
i

.

Thus, v∗ ∈ (0, 1) if

(i) αi = 4di
π
i

and 5di+1
π
i

< βi <
4di+1
π
i

, when di+1 < 0.

(ii) αi = 4di
π
i

and 4di+1
π
i

< βi <
5di+1
π
i

, when di+1 < 0.

S′′
i (x)(u∗, v∗) = C2

0

4D2
1

(D0) + C2
2

4

(−1

D1

)
+ C2

0

2(−D1)
.

S′′
i (u∗, v∗) > 0 if

D0 > 0 and − D1 > 0.

D0 > 0 and −D1 > 0 if

αi = 4di

π
i
and βi = 4di+1

π
i
, 
i 
= 0.

All the above discussions can be summarized as follows:
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Theorem 4 The piecewise GC1 quadratic trigonometric interpolant Si (x), defined over the
interval [a, b], in (4), is convex if the parameter αi and βi in each subinterval Ii = [xi , xi+1]
satisfy the following conditions:

αi = 4di

π
i
and βi = 4di+1

π
i
, 
i 
= 0.

5 Numerical examples

In this section, the shape-preserving trigonometric schemes developed in Sect. 4 are imple-
mented on some positive, monotone and convex data sets.

A positive data set is taken in Table 1. The positive data in Table 1 is interpolated in Figs. 1
and 2 by GC1 quadratic trigonometric function (4) for arbitrary values of free parameters
(αi = 1, βi = 1.5). It is clear from Fig. 2 that GC1 quadratic trigonometric function (4)
fails to preserve the shape of positive data taken in Table 1 for arbitrary chosen values of
parameters. The positive curve in Fig. 3 is produced by interpolating the same data by the
positive curve interpolation scheme developed in Sect. 4.1.

Other positive data sets are taken in Tables 2 and 3. Figures 4 and 6 are produced by
interpolating the positive data in Tables 2 and 3 for arbitrary values of parameters. The GC1

quadratic trigonometric function (4) does not preserve the shape of positive data in Figs. 4
and 6 for randomly chosen values of parameters. Positive curves in Figs. 5 and 7 are produced
by interpolating the positive data of Tables 2 and 3 by the positive curve interpolation scheme
developed in Sect. 4.1.

Three monotone data sets are taken in Tables 4, 5 and 6. The monotone data of Table
4 is interpolated by GC1 quadratic trigonometric function (4) in Fig. 8 for arbitrary values

Table 1 A positive data set x 1 2 3 4 5

f 11 10 0.4 0.3 0.5

Fig. 1 Quadratic trigonometric curve and its control polygon
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Fig. 2 GC1 quadratic
trigonometric functions
(αi = 1, βi = 1.5)

Fig. 3 Positive GC1 quadratic
trigonometric functions

Table 2 A positive data set x 1 2 3 4 5 6 7 9

f 4.5 90.5 5 900 1,200 1,015 450 750

Table 3 A positive data set x 2 4 6 8 10 12 14 16 18

f 0.5 1 1.1 9.5 10 9.5 1.1 1 0.5

of parameters (αi = 0.5, βi = 5). It is clear from Fig. 8 that GC1 quadratic trigonometric
function (4) fails to preserve the shape of monotone data for randomly chosen parameters.
The monotone curve in Fig. 9 is produced by interpolating the same data by the monotone
curve interpolation scheme developed in Sect. 4.2. The monotone data sets of Tables 5 and 6
are interpolated in Figs. 10 and 12 by GC1 quadratic trigonometric function (4) for random
values of parameters. It is clear from Figs. 10 and 12 that the trigonometric interpolant (4)
does not preserve the monotone shape of the data. The monotone curves in Figs. 11 and
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Fig. 4 GC1 quadratic
trigonometric functions
(αi = 1, βi = 1.5)

Fig. 5 Positive GC1 quadratic
trigonometric functions

Fig. 6 GC1 quadratic
trigonometric functions
(αi = 0.6, βi = 2.25)
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Fig. 7 Positive GC1 quadratic
trigonometric functions

Table 4 A monotone data set x 0 6 10 19.5 22 25

f 0 15 15 15.5 16 17

Table 5 A monotone data set x 0 1 1.2 1.5 1.7 2

f 0.5 2 2.3 2.3 2.3 2.3

Table 6 A monotone data set x 2 6 7 9 13

f 1.5 2 2.5 3 22

Fig. 8 GC1 quadratic
trigonometric functions
(αi = 0.5, βi = 5)

13 are produced by interpolating the monotone data of Tables 5 and 6 by the monotone
curve interpolation scheme of Sect. 4.2. Hence, the monotone curve interpolation scheme
developed in Sect. 4.2 preserves the shape of the monotone data.
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Fig. 9 Monotone GC1 quadratic
trigonometric functions

Fig. 10 GC1 quadratic
trigonometric functions
(αi = 0.25, βi = 1.5)

Fig. 11 Monotone GC1

quadratic trignometric functions
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Fig. 12 GC1 quadratic
trigonometric functions
(αi = 0.9, βi = 15)

Fig. 13 Monotone GC1

quadratic trigonometric functions

Table 7 A convex data set

x −4.5 −4 −3.5 −3 −2.5 −2 2 2.5 3 3.5 4 4.5

f 410.06 256 150.06 81 39.06 16 16 81 39.06 81 150.06 410.06

The convex data sets are taken in Tables 7, 8 and 9. Figures 14, 16 and 18 are produced by
interpolating the convex data in Tables 7, 8 and 9, respectively, by GC1 quadratic trigono-
metric functions (4) for arbitrary values of free parameters αi and βi . It is clear from these
figures that GC1 quadratic trigonometric functions failed to preserve the shape of the convex
data. The convex trigonometric curves in Figs. 15, 17 and 19 are drawn with the convex data
in Tables 7, 8 and 9, respectively, using the convex curve interpolation scheme developed in
Sect. 4.3.
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Table 8 A convex data set x f x f

−13.5 1,103,240,377 −8.0 16,777,216

−13.0 815,730,721 −6.0 1,679,616

−12.5 596,046,447.8 −5.0 390,625

−12.0 429,981,696 −3.0 6,561

−11.0 241,358,881 −2.0 256

−10.0 100,000,000 −1.0 1

−9.0 43,046,721 – –

Table 9 A convex data set x 3 4 5 7

f 7 0.4 0.4 2.5

Fig. 14 GC1 quadratic
trigonometric functions
(αi = 0.8, βi = 2.5)

Fig. 15 Convex GC1 quadratic
trigonometric functions

123



Shape-preserving trigonometric functions 429

Fig. 16 GC1 quadratic
trigonometric functions
(αi = 0.7, βi = 1)

Fig. 17 Convex GC1 quadratic
trigonometric functions

Fig. 18 GC1 quadratic
trigonometric functions
(αi = 1, βi = 0.5)
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Fig. 19 Convex GC1 quadratic
trigonometric functions

6 Conclusion

This paper gives an alternative approach to preserve the shape of data using a trigonometric
interpolant. Constraints are derived on free parameters to preserve the shape of the data. The
order of approximation of the proposed interpolant is O(h3

i ). The interpolated curves are
unique for the given data and parameters. The degree of interpolant is identical for all data
and the interpolant is equally fruitful for uniform as well as nonuniform data. The derivatives
at the knots can be computed from any efficient numerical scheme. In the proposed schemes,
the derivatives are calculated by arithmetic mean approximation techniques.
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