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Abstract Feature selection aims at reducing the number of features in many applications.
Existing feature selection approaches mainly deals with classification problems with contin-
uous or discrete attributes. However, data usually come with mixed attributes in real-world
applications. In this paper, a hybrid feature selection (HFS) scheme is proposed to deal
with mixed attributes data. Firstly, a new correlation measure between mixed attributes is
defined by giving a model for calculating mutual information between continuous and dis-
crete attributes; secondly, the features are evaluated by a filter model with the new correlation
measure; finally, feature selection is done by optimizing the parameter in the filter model with
estimation accuracy criterion. Experimental results show that HFS acquires better stability
and estimation accuracy.

Keywords Feature selection · Mixed attributes · Mutual information · Filter · wrapper ·
Case-based reasoning

1 Introduction

Feature selection (also known as variable selection or attribute selection) plays an important
role in machine learning and pattern recognition (Hu et al. 2010; Guyon and Elisseeff 2003). It
is to select some most effective features from the original feature set to reduce the dimension
of the feature space according to certain criteria (Sheng 2000). By feature selection, some
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146 H. Liu et al.

irrelevant or redundant features are removed, thereby reducing the computational complexity,
improving the estimation accuracy of the learning model and facilitating the intelligibility of
the model (Amiri et al. 2011; Cakır et al. 2011).

A great number of feature selection approaches have been developed in recent years.
Two key issues in constructing a feature selection approach are the search strategy and the
evaluating criteria (Yao et al. 2012; Mao et al. 2007). According to the search strategy, global
(Somol et al. 2004), heuristic (Dash and Liu 2003) and random (Oh et al. 2004) strategies were
introduced in the literatures. An overall review on this issue is presented in Monirul Kabir et al.
(2011). With respect to the evaluation criteria, feature selection approaches can be classified
into three categories (Monirul Kabir et al. 2011): the filter, the wrapper and the hybrid
approach. The wrapper approach (Hsu et al. 2002; Verikas and Bacauskiene 2002; Wang et al.
2008; Zhu et al. 2007) assesses feature subset with the training accuracy of the learning model.
The filter approach (Ke et al. 2008; Sun 2007;Fleuret 2004) assesses features with statistical
properties of the training data, and is independent from the learning model. In the hybrid
approach (Hu et al. 2006; Hsu et al. 2011; Yang et al. 2011), features are first filtered, and
then determined by the wrapper model. It is often found that, the hybrid approach is capable
of locating a good solution, while a single technique often traps into an immature solution.

In another view of point, feature selection can also be classified into discrete and continu-
ous approaches. Discrete approaches consider that all features take values in a finite set, while
continous approaches assume that samples are described with a set of numerical variables.
In a whole, existing feature selection approaches are mainly designed for classification prob-
lems with discrete or continuous attributes (Liu and Yu 2005; Dash and Liu 1997). However,
actual data usually tend to have mixed attributes. For example in Software cost estimation,
the data collected include both discrete and continuous attributes.

For mixed attributes data, existing approaches consist of two categories. One approach is
to perform a discretization for continuous attribute (Ferreira and Figueiredo 2011), but the
discretization brings an inevitable loss of information. Another approach is to do the gran-
ulation of mixed attributes (Hu et al. 2008a). In Hu et al. (2008b), the granulation approach
is summarized, and neighborhood rough set is used to handle mixed attributes. Farther, the
neighborhood mutual information is defined in (Hua et al. 2011) to do feature selection
for high-dimensional mixed attributes data. However, the shortcoming of the granulation
approach lies in that its scale parameter is not easy to determine, which leads to instability.

To deal with mixed attributes data, a hybrid feature selection scheme is constructed in
this work. The rest of this paper is organized as follows. In Sect. 2, related works on feature
selection for mixed attributes data are studied. In Sect. 3, a new correlation measure which is to
be used in the filter model is defined based on mutual information, by solving the calculation
of mutual information between mixed attributes. Section 4 gives a hybrid feature selection
scheme: the features are first filtered with a filter model, and then the final feature subset is
determined by a wrapper model. Section 5 describes the evaluation metrics and datasets used
in our study. Experiments and results are presented in Sect. 6. Finally, conclusions and future
works are given in Sect. 7.

2 Related works

In this section, related works on the search strategy and evaluating criteria in feature selection
are discussed with respect to the processing of mixed attributes.

According to the search strategy, feature selection can be categorized into three categories:
the global search, the random search and the heuristic search (Sun et al. 2004; Muni et al.
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2006). Global search strategy can find the best feature subset corresponding to its evaluating
criteria, with the number of features to be selected known in advance. However, the difficulty
is that the number is hard to be determined in advance, and the computing complexity is too
high with a searching space O(2N )(where N is the number of original features) (Somol et al.
2004; Liu and Sun 2007). Random search strategies, such as genetic algorithm (Ooi and Tan
2003) and ant colony optimization (Ke et al. 2008), find an approximation of the optimum
solution in the whole search space. But they bear high uncertainty, and their parameters take a
great influence on the results. Heuristic search strategies include sequential forward selection
(SFS) (Guan et al. 2004), sequential backward selection (SBS) (Abe 2005) and so on. They
obtain high computing efficiency at the cost of global optimal solution. In Peng et al. (2005),
a fast feature selection scheme is designed, where the minimal redundancy and maximal
relevance (mRMR) criteria are used to improve the feature selection performance. In our
work, the idea of mRMR criteria is adopted and improved to match with the characteristic
of mixed attributes data.

According to the evaluating criteria, feature selection can be categorized into three cate-
gories: the filter, the wrapper and the hybrid approach. The filter model gets higher calculating
speed by assessing features with statistical properties of the training data, without any learn-
ing model assumed between outputs and inputs of the data. In the framework of feature
selection given by Yu and Liu (2004), the target is to maximize the correlation between
selected features and the decision variable, and minimize the correlation between selected
features. Therefore, how to measure the correlation between features is a crucial point in a
filter model. It relies on various measures of the general characteristics of the training data,
such as distance, information, dependency, and consistency (Liu and Motoda 1998). Among
these measures, mutual information (Kwak and Choi 2002) is mostly used because it does
not require to assume knowing the sample distribution, does not need to transform the data,
and can measure the degree of uncertainty between features in a quantified form. However,
the mutual information-based correlation measure can only be defined between continuous
variables or discrete variables. Kwak and Choi (2002) proposed a method for calculating
mutual information between mixed attributes, with an assumption that all samples having
the same probability of occurrence. In our work, a new method for calculating mutual infor-
mation between mixed attributes is proposed with this assumption removed. Then, a new
correlation measure is defined based on mutual information.

The wrapper approach assesses feature subset with the training accuracy of the learning
model, and usually yields high fitting accuracy at the cost of high computational complexity. In
Hsu (2004), the genetic algorithm is used to find a feature subset with the smallest classifying
error rate of decision tree. In Chiang and Pell (2004), the Fisher discriminant analysis is
combined with the genetic algorithm to identify the pivotal variables in the failure process
of chemical engineering. In Guyon et al. (2002), the importance of features is measured
by the classification performance of support vector machine, based on which a classifier is
constituted. In Michalak and Kwasnicka (2006), a wrapper model is constituted based on a
two-pronged correlation strategy. In Monirul Kabir et al. (2010), the neural networks is used
to present a wrapper feature selection algorithm. All the above models are focused on the
classification problem, in which the target is to improve the classification accuracy. However,
when the decision variable is continuous, the wrapper model is to be re-designed. To deal
with mixed attributes, the case-based reasoning (CBR) approach is adopted in this paper.
CBR is a well-established methodology with broad applications and is good at dealing with
mixed attributes data. The fundamental principle of CBR is when provided a new project,
the most similar historical projects are selected to estimate the new project using similarity
measure.
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The hybrid approach attempts to take advantage of the filter and wrapper approaches,
while a single technique often traps into an immature solution. Therefore, a hybrid feature
selection scheme is proposed in this paper.

3 The correlation measure based on mutual information

3.1 The calculation of mutual information between mixed attributes

3.1.1 Entropy and mutual information

In information theory, entropy is a measure to describe the uncertainty of a random variable.
Let X be a discrete random variable with a range of �, and the probability distribution
function is p(x) = P{X = x}, then the entropy of X is defined as:

H(X) = −
∑

X∈�
p(x) log p(x) (1)

For two discrete random variables X and Y (the range of Y being �), let their joint probability
density function be p(x, y), then the joint entropy of X and Y is defined as:

H(X, Y ) = −
∑

x∈�

∑

y∈�
p(x, y) log p(x, y) (2)

When X is known, the conditional entropy of Y is defined as:

H(Y |X ) =
∑

x∈�
p(x)H(Y |x ) = −

∑

x∈�

∑

y∈�
p(x, y) log p(y |x ) (3)

Therefore, the relationship between joint entropy and conditional entropy is:

H(X, Y ) = H(X)+ H(Y |X ) = H(Y )+ H(X |Y ) (4)

Mutual information defines the shared information between two random variables:

I (X, Y ) =
∑

x∈�

∑

y∈�
p(x, y) log

p(x, y)

p(x)p(y)
(5)

in which p(x) = ∑
y∈� p(x, y), p(y) = ∑

x∈� p(x, y). The more information shared
between X and Y , the larger is I (X, Y ). When I (X, Y ) = 0, X and Y are independent.

By the above definition, the relationship between entropy, conditional entropy, joint
entropy and mutual information is:

I (X, Y ) = H(X)− H(X |Y ) = H(Y )− H(Y |X ) = H(X)+ H(Y )− H(X, Y ) (6)

The relationship between the above four is illustrated in Fig. 1.
When X and Y are continuous, the entropy, conditional entropy, joint entropy and mutual

information are, respectively, defined as:

H(X) = −
∫

p(x) log p(x)dx (7)

H(Y |X ) = −
∫ ∫

p(x, y) log p(y |x )dxdy (8)
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Fig. 1 Relationships between
entropy, mutual information, joint
entropy, and conditional entropy

H(X|Y) H(Y|X)I(X, Y)

H(X,Y)

H(X) H(Y)

H(X, Y ) = −
∫ ∫

p(x, y) log p(x, y)dxdy (9)

I (X, Y ) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (10)

in which p(x) = ∫
y p(x, y)dy, p(y) = ∫

x p(x, y)dx

3.1.2 The calculation of mutual information between continuous attributes

For two discrete variables, the mutual information can be calculated with Eq. (5), after
their joint distribution and marginal distribution are estimated. However, when X and Y are
continuous, it is practically impossible to find exact integration in Eq. (10). Therefore, the
approximation estimators are proposed. Existing methods include the histogram method, the
kernel density method and neighbor method (Schaffernicht et al. 2010). Paper (Schaffernicht
et al. 2010) came up with the Gaussian kernel density method by comparing the above
methods on different datasets. Therefore, the mutual information is estimated with the kernel
density method in this paper for continuous variables.

Let X = {x1, x2, . . . , xn} be a dataset with n d-dimensional samples. The approximate
of the density function has the following form:

p̂(x) = 1

n

n∑

i=1

δ(x − xi , h), (11)

where δ(·) is the Parzen window function, h is the window width. Parzen has proven that
with proper chosen δ(·) and h, the estimation p̂(x) can converge to the true density p(x)

when n tends to infinity. Usually, δ(·)is chosen as the Gaussian window:

δ(z) = 1

(2π)d/2hd |∑ |1/2 exp

(
− z

∑−1 z

2h2

)
, (12)

where z = x − xi ,
∑

is the covariance of z. The window width is practically set as h =(
4

d+2

)1/(d+4)

n−
1

d+4 .

The mutual information between X and Y can be estimated with Eqs. (10–12) and d = 2.
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3.1.3 The calculation of mutual information between mixed attributes

Let X be a continuous variable with a range of �, and Y be a discrete variable with a range
of {y1, y2, . . . , ym}, By Eq. (6), the mutual information is represented as follows:

I (X, Y ) = H(X)− H(X |Y ) = H(X)−
m∑

i=1

p(yi )H(X |yi ) (13)

In Eq. (13), we need to calculate H(X) and H(X |yi ). To calculate H(X), the density
function p(x) of X is estimated using Eq. (11):

p̂(x) = 1

n

n∑

i=1

δ(x − xi , hY ), (14)

where hY =
( 4

3

)1/(4)
n− 1

4 .
Replace the integration with a summation of the sample points, and the estimation of

H(X) is received as:

Ĥ(X) = −
n∑

i=1

p̂(xi ) log p̂(xi ) (15)

To calculate H(X |yi ), we have

H(X |yi ) =
∫

x

p(x |yi ) log p(x |yi )dx (16)

Let nk be the number of examples with Y = ykand Ik be the set of indices of the samples
with Y = yk , then the estimation of p(x |yi ) is

p̂(x |yi ) = 1

nk

∑

i∈Ik

δ(x − xi , hk), (17)

where hk = ( 4
3 )1/(4)n

− 1
4

k . Replace the integration with a summation of the sample points in
Eq. (16), and the estimation of H(X) is received as

Ĥ(X |yi ) = −
∑

i∈Ik

p̂(x |yi ) log p̂(x |yi ) (18)

Let the estimation of p(yi ) be p̂(yi ) = ni/n, then the mutual information is:

Î (X, Y ) = −
n∑

i=1

p̂(xi ) log p̂(xi )+ 1

n

m∑

i=1

⎡

⎣ni

∑

i∈Ik

p̂(x |yi ) log p̂(x |yi )

⎤

⎦ (19)

3.2 The correlation measure

For two random variables X and Y , the correlation measure is defined as the mutual informa-
tion in paper (Ooi and Tan 2003), based on which a maximum correlation minimum redun-
dancy algorithm is given. However, experiments show that this correlation measure tends to
choose features with more values. Therefore, by normalizing the correlation measure into
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[0, 1], a new correlation measure C(X, Y ) is defined as:

C(X, Y ) = 1

2

[
I (X, Y )

H(X)
+ I (X, Y )

H(Y )

]
(20)

Obviously, the above definition meets the symmetry, with the range of C(X, Y ) being [0, 1]
where C(X, Y ) = 1 means knowing any of X or Y , the other is determined, and C(X, Y ) = 0
means X and Y are independent from each other.

4 A hybrid feature selection scheme for mixed attributes data

In this section, a hybrid feature selection scheme is proposed taking advantages of both the
filter and the wrapper model. In this scheme, N features are firstly filtered, and then the
number N is optimized by minimizing the estimation accuracy of the CBR.

4.1 Filter feature selection for mixed attributes data

In filter feature selection based on information criteria, the primary issue is to find a feature
subset as more correlative as possible with the decision variable, and meanwhile the corre-
lation between features in the subset is as small as possible. However, in high dimensional
space, to estimate the probability density is difficult and slow. Therefore, the algorithm of
mRMR algorithm gave an evaluation criteria based on mutual information (Liu and Sun
2007) to select N features from the original feature set. The algorithm is as follows:

(1) (Initialization) Set F ←′ whole feature set′, S←′ empty set′, y ←′ decision variable’.
(2) ∀ fi ∈ F , compute I ( fi , y).
(3) Find the feature fi that maximizes I ( fi , y), set F ← F\{ fi }, S← { fi }.
(4) Repeat until desired number N of features is selected.

(a) ∀ fi ∈ F , fs ∈ S, compute I ( fi , fs), if it is not yet available.
(b) Choose the feature fi ∈ F that maximizesJ ( fi ) = I ( fi , y) − 1

|S|
∑

s∈S I ( fi , fs);
set F ← F\{ fi }, S← S ∪ { fi }.

(5) Output the subset S containing N selected features.

However, mRMR based on J ( fi ) tends to select features with more values. There-
fore, we replace J ( fi ) = I ( fi , y) − 1

|S|
∑

s∈S I ( fi , fs) in (b) as J ( fi ) = I ( fi , y) −
1
|S|

∑
s∈S C( fi , fs), and denote the new algorithm as C-mRMR.

4.2 Determination of the filter’s parameter based on CBR

In the C-mRMR algorithm, the parameter N is to be determined. In this study, it is determined
by optimizing the estimation accuracy of the CBR. The CBR estimates the target case by
similar historical cases, and usually consists of three sub-problems (Li et al. 2009): similarity
measure, number of analogies and analogy adaptation.

4.2.1 Similarity measure

Similarity measure describes the level of similarity between different samples. Several simi-
larity functions have been proposed, however, the measures used in this study are the Euclid-
ean distance, and the Manhattan distance, since they have been reported with good results in
software cost estimation studies (Chiu and Huang 2007).
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The Euclidean distance measures the Euclidean distance d(p, p′) between two samples
after the continuous features have been normalized:

d(p, p′) =
√√√√

d∑

i=1

wi Dis( fi , f ′i ) (21)

Dis
(

fi , f ′i
) =

⎧
⎨

⎩

(
fi − f ′

)2
, fi and f ′ are numeric or ordinal

1, fi and f ′ are nominal and fi = f ′
0, fi and f ′ are nominal and fi �= f ′

(22)

The Manhattan distance is the sum of the absolute distances for each pair of features:

d(p, p′) =
d∑

i=1

wi Dis( fi , f ′i ) (23)

Dis
(

fi , f ′i
) =

⎧
⎨

⎩

∣∣ fi − f ′
∣∣ , fi and f ′ are numeric or ordinal

1, fi and f ′ are nominal and fi = f ′
0, fi and f ′ are nominal and fi �= f ′

, (24)

where p1 and p′ denote the samples, fi and f ′i denote the i thfeature value of p1 and p′,
wi = {0, 1} is the weight of the i thfeature, where wi = 1 means the i thfeature is selected
and wi = 0 means the i thfeature is not selected, d is the total number of features.

4.2.2 Number of analogies

The number of analogies refers to the number of most similar samples that will be used to
generate the estimation. K = 1 means the closest analogy. However, in this study K =
{1, 2, 3, 4, 5} are considered since it could cover most of the suggested numbers (Jørgensen
et al. 2003).

4.2.3 Analogy adaptation

After the analogies are selected, the final estimation for the new sample is determined by
computing certain statistic based on the selected samples. The adaptation techniques used
in this study are the closet analogy, the mean of closet analogies and the inverse distance
weighted mean.

The mean is the average of the costs of K (K > 1) analogies. It is a classical measure of
central tendency and treats all analogies as being equally influential on the cost estimates.
The median is the median of the costs of K (K > 1) analogies. It is another measure of
central tendency and a more robust statistic when the number of analogies increases.

The inverse distance weighted mean allows more similar analogies to have more influence
than less similar ones. The formula for weighed mean is shown in (25):

ωk = 1/(δ + d(p, pk))∑K
i=1 1/(δ + d(p, pi ))

, (25)

where K is the number of analogies, pk represents the kth closet analogy with the new sample
p, d(p, pk) is the distance measure between pk and p, δ is a small constant and in our study
δ is set to 0.001.
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5 Evaluation criteria and data sets

5.1 Evaluation criteria

To evaluate the performance of the method in this study, it is compared with existing methods
on the feature selection results and the estimation accuracies. On the estimation accuracy,
three evaluation criteria are used out of the majorities of existing studies, which are the mean
magnitude of relative error (MMRE), the median magnitude of relative error (MdMRE) and
the PRED(0.25). The MMRE is defined as below:

MMRE = 1

n
×

n∑

i=1

MREi (26)

M REi =
∣∣∣Ei − Êi

∣∣∣
Ei

, (27)

where n denotes the number of samples, Ei denotes the actual effort of the i th sample, Êi

denotes the estimated effort of the i th sample. Small MMRE value indicates the low level of
estimation error. However, this metric is unbalanced and penalizes overestimation more than
underestimation.

The MdMRE is the median of all MREs:

MdMRE = median (MRE) (28)

MdMRE is an aggregate measure which is less sensitive extreme values. It exhibits a similar
pattern to MMRE, but is more likely to select the true model especially in the underestimation
cases.

The PRED(0.25) is the percentage of estimations that fall within 25% of actual value:

PRED(0.25) = 1

n
×

n∑

i=1

I {M REi ≤ 0.25} (29)

5.2 Data sets description

To conveniently compare with other methods, two representative datasets (the Desharnais
dataset and the Maxwell dataset) are used for experiments, which have been used by many
recent research works, such as Li et al. (2009), Mair et al. (2000), Maxwell (2002), Sentas
et al. (2005).

The Desharnais dataset contains two discrete variables (‘YearEnd’ and ‘Language’) and
nine continuous variables (the rest variables), while the discrete variables can be further
classified into one nominal variable and one ordinal variable. The decision variable ‘Effort’
is continuous. This dataset contains a total of 81 samples, and 4 out of 81 samples are excluded
due to the missing of feature values. A more detailed description of all features is shown in
Table 1.

The Maxwell dataset with 62 samples from one of the biggest commercial banks in Finland
is a relative new software projects dataset. The features are described in Table 2. There are
3 continuous variables (‘Duration’, ‘Size’ and ‘Effort’) and 24 discrete variables (the rest
variables), while the discrete variables can be further classified into 5 nominal variables and
19 ordinal variables. The decision variable ‘Effort’ is continuous. The variable ‘Time’ is
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Table 1 Feature definition in Desharnais dataset

ID Features Full name Description

1 TeamExp Team experience Numerical in years

2 ManagerExp Manager’s experience Numerical in years

3 YearEnd Year of end Nominal in year

4 Length Actual project schedule Numerical in months

5 Language programming languages Ordinal: {1, 2, 3}

6 Transactions Transactions Numerical in function points

7 Entities Entities Numerical in function points

8 PointsNonAdjust Unadjusted function points Numerical in function points

9 Adjustment Adjustment factor Numerical

10 PointsAjust Adjusted function points Numerical in function points

11 Effort Development effort Numerical in person-hours

Table 2 Feature definition in Maxwell dataset

ID Features Full name Description

1 Syear Starting year Ordinal in year

2 App Application type Nominal in {1, 2, 3, 4, 5}

3 Har Hardware platform Nominal in {1, 2, 3, 4, 5}

4 Dba Database Nominal in {1, 2, 3, 4,}

5 Ifc User interface Nominal in {1, 2}

6 Source Where developed Nominal in {1, 2}

7 Telonuse Telon use Nominal in {0, 1}

8 Nlan Number of languages Ordinal in {1, 2, 3, 4,}

9 T01 Customer participation Ordinal:

10 T02 Development environment adequacy 1 = Very low

11 T03 Staff availability 2 = Low

12 T04 Standards use 3 = Nominal

13 T05 Methods use 4 = High

14 T06 Tools use 5 = Very high

15 T07 Software’s logical complexity

16 T08 Requirements volatility

17 T09 Quality requirements

18 T10 Efficiency requirements

19 T11 Installation requirements

20 T12 Staff analysis skills

21 T13 Staff application knowledge

22 T14 Staff tool skills

23 T15 Staff team skills

24 Duration Duration Numerical in months

25 Size Application size Numerical in function points

26 Time Time Ordinal, Time = Syear-1985 +1

27 Effort Effort Numerical in hours

123



A hybrid feature selection scheme 155

eliminated due to its same meaning as the variable ‘Syear’. As the dataset only contains one
sample with the variables ‘subapp’ and ‘subhar’ at the value ‘4’, respectively, by following
(Maxwell 2002), two new variables ‘subapp’ and ‘subhar’ are used instead of the variables
‘app’ and ‘har’, while new variables are subsets of the original ones. That is, subapp =
{1,2,3,5}, subhar = {1,2,3,5}.

6 Experiments

To validate the proposed HFS, the feature selection results and the estimation accuracy of
HFS are compared with published works based on the above two datasets.

6.1 The results on Desharnais dataset

6.1.1 Analysis of feature selection

To conduct the feature selection, the parameters (similarity measure, number of analogies and
analogy adaptation) of HFS are firstly to be determined. Consulting Mair et al. (2000), 87%
samples are selected as the training set, and the rest 13% as the testing set. Table 3 summarizes
the results with considerations of different parameter configurations: two distance measures
(Euclidean distance and Manhattan distance), five K values (1, 2, 3, 4 and 5), and four
adaptation techniques [closest analogy (CA), mean, inverse distance weighted mean (IWM),
and median].

The results show that, in general, the choice of different distance measures has an insignif-
icant influence on the estimation accuracy. As to the adaptation, the ‘Median’ is steadier than
the others, and gets slightly better results than ‘Mean’ and ‘IWM’ when K = 4 and K = 5.
The choice of K values has some influence on the accuracies. The best configuration on the
training set is ‘the Manhattan distance’, ‘K = 4’ and ‘Median’.

Figure 1 shows a histogram for the mutual information values of each feature f and
the decision variable y. When using ‘the Manhattan distance’, ‘K = 4’ and ‘Median’, the
selected features in turn are ‘PointsAjust’, ‘Entities’, ‘Transactions’, ‘PointsNonAdjust’ and
‘Language’, which are the 10th, 7th, 6th, 8th and 5th variable in Fig. 2 (Table 1). From the
meaning of variables, knowing any two of ‘PointsAjust’, ‘PointsNonAdjust’ and ‘Adjust-
ment’, the third can be determined, therefore C-mRMR algorithm choose ‘PointsAjust’ and
‘PointsNonAdjust’ for their greater mutual information. The duration of the project is strongly
correlative with ‘PointsAjust’ and ‘PointsNonAdjust’, so C-mRMR algorithm did not choose
‘Length’. ‘Transactions’ and ‘Entities’ are important informations on the software size, so it
is retained by C-mRMR algorithm. In terms of the same development unit, team and man-
ager experience are relatively fixed, so C-mRMR algorithm did not select ‘TeamExp’ and
‘ManagerExp’. Though the mutual information of ‘language’ with the decision variable is
relatively small, it is relatively independent of other variables, therefore, it is retained.

Next, HFS (using ‘the Manhattan distance’, ‘K = 4’ and ‘Median’) is compared with
NMI in Hua et al. (2011), mRMR in Peng et al. (2005) and MICBR in Li et al. (2009). In
Li et al. (2009), the three-folder cross-validation is used to test the performance of candidate
methods, in which the Desharnais dataset is randomly divided into three different training
splits and three testing splits. By following it, the 87% split (87% in the training set and 13%
in the validating set) is used in this paper.

Results are shown in Table 4, where the scale parameter of NMI is taken as 0.15 as
suggested in Hua et al. (2011), the number of selected features of mRMR in Peng et al. (2005)
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Table 3 Results of different parameters on Desharnais dataset

Distance K value Adaptation Training Testing

MMRE PRED (0.25) MdMMRE MMRE PRED (0.25) MdMMRE

Euclidean K = 1 CA 0.50 0.31 0.44 0.55 0.20 0.46

K = 2 Mean 0.46 0.33 0.42 0.48 0.30 0.43

IWM 0.45 0.32 0.42 0.55 0.30 0.44

K = 3 Mean 0.46 0.35 0.39 0.43 0.30 0.38

IWM 0.45 0.36 0.41 0.44 0.30 0.40

Median 0.44 0.38 0.39 0.48 0.30 0.41

K = 4 Mean 0.43 0.31 0.43 0.40 0.30 0.42

IWM 0.44 0.30 0.44 0.41 0.30 0.40

Median 0.41 0.36 0.35 0.35 0.40 0.34

K = 5 Mean 0.37 0.33 0.45 0.37 0.30 0.42

IWM 0.40 0.29 0.42 0.39 0.40 0.39

Median 0.38 0.31 0.40 0.36 0.40 0.37

Manhattan K = 1 CA 0.51 0.28 0.43 0.55 0.10 0.44

K = 2 Mean 0.47 0.32 0.41 0.52 0.20 0.41

IWM 0.48 0.31 0.42 0.47 0.30 0.40

K = 3 Mean 0.47 0.34 0.43 0.48 0.30 0.39

IWM 0.45 0.32 0.41 0.45 0.30 0.38

Median 0.45 0.34 0.38 0.43 0.30 0.37

K = 4 Mean 0.42 0.34 0.37 0.40 0.40 0.34

IWM 0.41 0.34 0.36 0.38 0.40 0.31

Median 0.37 0.37 0.34 0.34 0.41 0.31

K = 5 Mean 0.40 0.31 0.38 0.37 0.30 0.36

IWM 0.39 0.32 0.41 0.35 0.30 0.40

Median 0.39 0.34 0.39 0.38 0.34 0.37

Fig. 2 MI between features and
decision variable
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is determined by optimizing the estimation accuracy of CBR, and the result of MICBR is
extracted from Li et al. (2009). The symbol ‘1’ denotes that the feature in its corresponding
row is selected by the feature selection method in its corresponding column.

It can be seen from Table 4 that, though the neighborhood mutual information is able
to handle mixed attributes, its scale parameter is not easy to be determined, which leads
to unstable results. The mRMR algorithm is more stable, but its direct use of mutual
information values to measure the correlation leads to the selected features being all con-
tinuous, and all three variables ‘PointsAjust’, ‘PointsNonAdjust’ and ‘Adjustment’ being
selected indicate that it is not good at eliminating redundancy for mixed attributes data.
The MICBR in Li et al. (2009) excluded the variable ‘Language’, so its result is less
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Table 4 Selected features in three data subsets

Datasets: Training set 1 Training set 2 Training set 3

Variables NMI mRMR MICBR HFS NMI mRMR MICBR HFS NMI mRMR MICBR HFS

TeamExp

ManagerExp 1 1

YearEnd

Length 1 1

Language 1 1 1 1 1 1

Transactions 1 1 1 1 1 1 1 1 1 1 1

Entities 1 1 1 1 1 1 1 1 1 1

PointsNonAdjust 1 1 1 1 1 1 1 1 1 1

Adjustment 1 1 1 1 1 1 1 1 1

PointsAjust 1 1 1 1 1 1 1 1 1 1 1 1

Table 5 Comparison of estimation accuracy on the Desharnais dataset

Training set Testing set

MMRE PRED (0.25) MdMMRE MMRE PRED (0.25) MdMMRE

NMI 0.39 0.35 0.40 0.38 0.39 0.37

mRMR 0.41 0.33 0.40 0.40 0.36 0.38

MICBR 0.68 0.32 0.39 0.36 0.40 0.33

HFS 0.37 0.37 0.34 0.34 0.41 0.31

interpretable. In comparison, the proposed HFS in this paper is more stable, better able
to remove redundancy and stronger interpretability.

6.1.2 Analysis of estimation accuracy

In Table 5, the estimation accuracy of HFS is compared with the above three methods with
87% samples being selected as training set and the rest 13% as testing set. The result of HFS
is extracted from Table 3, and the result of MICBR is extracted from Table 6 in Li et al.
(2009) with ‘the Manhattan distance’, ‘K = 4’ and ‘Median’.

It can be seen from Table 5 that the HFS obtains the best results on MMRE, PRED(0.25)
and MdMMRE than the other three methods.

6.2 The results on Maxwell dataset

6.2.1 Analysis of feature selection

Consulting Maxwell (2002) and Sentas et al. (2005), the 50 projects finished before 1992
are used as training set, and the 12 projects finished from 1992 to 1993 are used as testing
set. Feature selection is conducted on the training set with the same configuration used in
Desharnais dataset: ‘the Manhattan distance’, ‘K = 4’ and ‘Median’.
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Fig. 3 MI between features and decision variable

Figure 3 shows a histogram for the mutual information values of each feature f and the
decision variable y. With HFS, the selected features in turn are ‘Size’, ‘Dba’, ‘T12’, ‘Source’
and ‘T15’ and ‘T02’, which are the 25th, 4th, 20th, 6th, 23rd and 10th variable in Fig. 3
(Table 2).

The result of HFS is compared with NMI in 27, mRMR in 35 and MICBR in 46, where
the scale parameter of NMI is taken as 0.1, 0.15 and 0.2, the number of selected features
of mRMR is determined by optimizing the estimation accuracy of CBR, and the result of
MICBR is extracted from Li et al. (2009). The symbol ‘1’ denotes that the feature in its
corresponding row is selected by the feature selection method in its corresponding column.

It can be seen from Table 6 that the scale parameter of NMI in Hua et al. (2011) is not easy
to be determined, which leads to unstable results. The mRMR algorithm in Peng et al. (2005)
is more stable, but it selects both ‘Duration’ and ‘Size’, while the two variables are strongly
correlative with each other. This again indicates that the mRMR is not good at eliminating
redundancy for mixed attributes data. In Li et al. (2009), ‘Time’ and ‘Duration’ are treated as
numerical variables. This leads to the mutual information value between ‘Time’ and ‘Effort’
being different from the mutual information value between ‘Duration’ and ‘Effort’, while
‘Time’ and ‘Duration’ have exactly the same meanings. This indicates that the results of Li
et al. (2009) are less interpretable. In comparison, the proposed HFS in this paper is more
stable, better able to remove redundancy and stronger interpretability.

6.2.2 Analysis of estimation accuracy

In Table 7, the estimation of HFS is compared with the above three methods with the 50
projects finished before 1992 being selected as training set and the 12 projects finished from
1992 to 1993 as testing set. And the result of MICBR is extracted from Table 11 in Li et al.
(2009) with ‘the Euclidean distance’, ‘K = 4’ and ‘Mean’.

It can be seen from Table 5 that the HFS obtains the best MMRE and PRED(0.25) on
training set and the best MMRE and MdMMRE on testing set than the other three methods.

7 Conclusions

Feature selection plays an important role in pattern recognition and machine learning. Tradi-
tional feature selection methods are mainly designed for the handling classification problems
with discrete or continuous features. However, in many practical problems (such as software
cost estimation problem), the collected data often have mixed attributes, with the decision
variable being continuous. To deal with these problems, a hybrid feature selection scheme for
mixed attributes data is proposed which takes advantages of both the filters and the wrappers.
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Table 6 Selected features for
training set of Maxwell dataset

Variables NMI mRMR MICBR HFS

0.1 0.15 0.2

Syear

App 1 1

Har 1

Dba 1 1 1 1

Ifc

Source 1 1

Telonuse

Nlan 1

T01 1 1

T02 1 1 1 1

T03

T04 1

T05

T06

T07 1

T08

T09

T10

T11

T12 1

T13

T14 1

T15 1 1 1 1 1

Duration 1 1 1

Size 1 1 1 1 1

Table 7 Comparison of estimation accuracy on the Maxwell dataset

Training set Testing set

MMRE PRED (0.25) MdMMRE MMRE PRED (0.25) MdMMRE

NMI 0.46 0.33 0.36 0.29 0.44 0.28

mRMR 0.49 0.34 0.37 0.30 0.41 0.31

MICBR 0.51 0.48 0.29 0.28 0.67 0.19

HFS 0.44 0.49 0.33 0.26 0.66 0.18

To do feature selection, a proper correlation measure for features is essential. In this paper,
we first give a method for calculating mutual information between discrete and continuous
variables. Then, we use the mutual information to define a new correlation measure suitable
for mixed attributes data. With this correlation measure, features are filtered with a undefined
parameter N . Finally, a CBR-based wrapper model is proposed to determine the parameter
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N . Examples show that this method is applicable for feature selection of the mixed attributes
data, being more stable, interpretable, and with better estimation accuracy.

However, only the Desharnais dataset is used for experiments in the study, and the future
work could include the application on other datasets such as the ISBSG database.
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