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Abstract
Fluidization is a crucial technique for converting stochastic Petri nets (SPNs) into continuous Petri nets (CPNs) to overcome
the challenge of combinatorial state explosion, which results in prolonged computational time for steady-state probability
estimates. The ultimate aim is to obtain a precise continuous model that captures the behavior of the SPN. However, flu-
idization’s continuous behavior is distinct from typical stochastic systems. In this study, we conducted an in-depth analysis
of fluidization in single and multiple regions. We considered different approaches, including piecewise linear and adaptive
techniques, and added sufficient conditions to both approaches to achieve superior convergence between the two models.
Our results are interpreted and compared. The adaptive approach, which utilizes a nonlinear adaptive law to minimize errors
caused by average throughput and average marking variations, achieved excellent convergence compared to the piecewise
linear approach, which involves several steps, such as subdividing marking trajectories into multiple phases and intermediate
points. Overall, this study highlights the effectiveness of the adaptive approach in enhancing convergence in CPNs.

Keywords Reliability analysis · Markov model · Combinatorial explosion · Stochastic Petri nets · Fluidization · Continuous
Petri nets · Adaptive approach · Piecewise linear approach

1 Introduction

The decision-making process to ensure reliability is criti-
cal in both complex engineering systems, such as power
plants, offshore oil platforms, chemical production factories,
and public transportation networks, as well as in large-scale
environments involving multiple stakeholders, such as water
distribution networks, regional power grids, and railway and
air transportation systems. Reliability analysis of intricate
dynamical systems usually employs stochastic discrete event
models like Markov models and stochastic Petri nets (SPNs)
(Bobbio et al., 1998; El-Moumen et al., 2023). Consequently,
it becomes imperative to tailor existing techniques and tools
to suit the specificities of these systems. Nonetheless, con-
ventional analytical methods, such as the Markov model (El
Moumen et al., 2023b), are no longer viable for systems
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that comprise a multitude of interdependent components.
The combinatorial explosion problem of state numbers in
discrete event systems poses a significant challenge for reli-
ability analysis and dynamic system synthesis (Pinto et al.,
2021; Vázquez-Serrano et al., 2021). The exponential growth
in the number of states results in a highly complex calcula-
tion of the marking graph for the Markov model, which in
turn makes the Markov analysis impractical (Ribeiro et al.,
2018). Instead, SPNs are used as an estimator for theMarkov
model (Vázquez et al., 2008). The main advantage of this
estimator is that it eliminates the need to determine the mark-
ing graph required by the Markov model method (Kalaiarasi
et al., 2017; Moumen et al., 2022). However, this approach
results in a longer convergence time to reach steady-state
probabilities (del Foyo & Silva, 2017; Moumen et al., 2022).
In general, this phenomenon is because information through-
put is discrete (Bobbio et al., 1998; Florin et al., 1991). Most
solutions to this problem aim to approximate SPNs with con-
tinuous approaches.

The continuous Petri net (CPN) is an extension of the
SPN aimed at finding an acceptable continuous approxima-
tion of the discrete behavior of the latter. TheCPNhas several
advantages over its discrete counterpart, including the ability
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to model continuous changes and time-dependent behaviors,
and the ability to handle a large amount of information. To
achieve this, several researchers have studied the fluidization
of the SPN by the CPN (El Moumen et al., 2023a; Lefebvre
et al., 2009; Recalde et al., 1999; Vazquez & Silva, 2009).
Fluidization refers to the process of converting an SPN based
on discrete events into a CPN based on deterministic con-
tinuous time (Recalde et al., 1999). The main goal of this
conversion is to obtain a continuous behavior that approxi-
mates the behavior of systems modeled by SPNs, which will
allow for amore accurate and exact analysis of these systems.

The process of fluidization involves adding continuous
variables and differential equations to describe the evolution
of the markings in each place of the SPN. This technique
requires the use of control theory and numerical analysis to
obtain performance calculations such as steady-state behav-
ior of average markings and fast response time. However,
fluidization can be challenging as it necessitates defining a
continuous representationof the underlying systemdynamics
while preserving the stochastic behavioral structural proper-
ties (El-Moumen et al., 2023; Vazquez & Silva, 2009). It
also involves solving information loss problems during the
fluidization process and ensuring the coherence of the result-
ing continuous model.

Fluidization of SPNs can result in unexpected outcomes
where the structural and behavioral properties may not be
identical ((Lefebvre et al., 2009; Recalde et al., 1999). For
instance, a PN can be live as a discrete system but non-live
after fluidization (Vazquez & Silva, 2015), and a discretized
bounded system can become non-boundary after fluidization
(El Moumen et al., 2023a). The average throughput of the
CPN may not always be an upper bound on that of the SPN
(El Moumen et al., 2023a). While some methods exist for
finding steady-state majors for CPN and SPN by solving lin-
ear programming problems (Giua & Silva, 2018); (David,
1993), no direct comparison exists between the two obtained
majors (discrete and continuous). Additionally, the equilib-
rium points of SPN cannot be approximated directly by those
of CPN. Standard fluidization under the semantics of infi-
nite servers does not always lead to the same behavior (El
Moumen et al., 2023a). The average markings and asymp-
totic average throughputs of SPN and CPN with similar
structure and initial marking may not be identical in the gen-
eral case (Akchioui, 2018). Researchers (El Akchioui, 2017;
Lefebvre et al., 2009) have developed numerical approaches
to obtain comparable behaviors between different models
in this context. The first approach called "adaptive" (El &
Choukrad, 2016; El Akchioui, 2017), and the second, "piece-
wise linear",were developedby (Akchioui, 2018;Lefebvre&
Leclercq, 2012). The piecewise linear approach is described
in the literature as a numerical method for approximating
solutions to ordinary differential equations using piecewise
linear functions over adaptively chosen time intervals. We

added sufficient conditions, such as subdividing the mark-
ing trajectory into multiple intermediate phases, to ensure
that the continuous fluid model converges to that of the
stochastic model. The adaptive approach is also a numerical
method for approximating solutions to ordinary differen-
tial equations, but it uses a strategy based on minimizing
errors due to variations inmarkings and average throughputs.
We also added conditions to ensure monotonic convergence.
These two approaches solve the problem of the differ-
ence between asymptotic average markings and throughputs
between stochastic and CPN. Finally, a more concise com-
parison and discussion of the results will be established and
analyzed using simulations. The adaptive approach shows
better convergence toward the steady state of stochastic mod-
els compared to the other approach.

The document is organized into four sections. Section 2
presents basic definitions of Petri nets (PNs), SPN and CPN.
Section 3 discusses the limitations of using SPN and stan-
dard fluidization in a single region and multiple regions,
with examples from the literature presented as a case study
to illustrate these problems through numerical simulations.
Section 4 describes two fluidization approaches: the piece-
wise linear and adaptive approaches. The same example is
studied for the application of these two approaches, to com-
pare them, discuss the results, and provide perspectives for
future work.

2 Background

2.1 Petri nets (PNs)

A PN is a robust mathematical model used to represent a
variety of systems operating on discrete variables. Its applica-
tions include the analysis, design, and reliability assessment
of distributed systems, communication protocols, and other
complex systems (Arzola et al., 2020; Rozenberg & Engel-
friet, 1998). The original PN model did not incorporate the
concept of time, which consists of places, arcs, transitions,
and tokens, providing a foundation for modeling various
properties of systems (David & Alla, 1994; Desel & Juhás,
2001; Murata, 1989).

In a formal context, a PN is defined by a quintuple � (P,
T, W, A, M), where (Desel & Juhás, 2001; Esparza, 1998):

– P � {Pi}, i � 1, …, n, constitutes a finite set of n places,
typically depicted as circles.

– T � {Tj}, j � 1, …, q, represents a finite set of q transitions,
often depicted as lines.

– W ⊆ (P × T ) ∪ (T × P), signifies a set of arcs connecting
places and transitions. The incidence matrix W � (WPO −
WPR) ∈ (Z)n×q, with WPR � (wij

PR) ∈ (IN)n×q containing
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values of arcs directed from Pito T j, and WPO � (wij
po) ∈

(IN)n×q containing values of arcs directed from Tj to Pi.
– A: W → {1, 2, 3, …}, signifies the weight associated with
arcs in W .

– M: P → {0, 1, 2, …}, represents the marking, indicating
the number of tokens, often depicted as dots or positive
integers, in each place in Pi.

TimedPNs are a significant extension of conventional PNs
designed to incorporate temporal variables into discrete event
dynamic systems. They encompass the network’s topological
structure, labeling elements with temporal values, and estab-
lishing triggering rules based on time. Various approaches
have been developed to model these timed dependencies,
including deterministic timed transition PNs (Ramchandani,
1974), timed PNs by (Merlin, 1974), which define minimum
and maximal wait times for transitions, deterministic timed
place PNs (Coolahan & Roussopoulos, 1983), and determin-
istic timed arcs PNs (Zhu & Denton, 1988). Among these
approaches, deterministic timed transition PNs, which asso-
ciate time labels with transitions, stand out for their ability to
link timing directly with transitions, providing flexibility for
precise control over transition firing times. They are particu-
larly suitable for evaluating system performance, especially
in scenarios where time management is critical (Marsan,
1990; Seatzu, 2005).

A transition Tj is considered enabled when the current
marking satisfies the enabling conditions. When enabled,
a transition can fire, leading to the transfer of tokens from
input places to output places based on the arc multiplici-
ties. The sequencing of transitions becomes crucial when
multiple transitions are enabled simultaneously. Determin-
ing the firing order is essential in such cases, while others
may be delayed. The evolution of a PN is depicted through
themarking graph, also recognized as the accessibility graph.
Each node within this graph symbolizes a marking, and arcs
illustrate potential transitions between markings, with tran-
sition labels indicating changes in marking. Place markings
are denoted asM(Pi) or simplymi. The initial marking is rep-
resented as MI , and the marking at time t is defined by M(t).
Ej(M(t)), signifies the enabled degree of transition Tj , deter-
mined for marking M(t) according to (Júlvez et al., 2005;
Lefebvre et al., 2010):

E j (M(t)) � min
(

M(Pi )/w
P R
i j

)
, for all Pi ∈ ◦Tj . (1)

where °T j represents the set of places upstream of Tj. For
any Pk ∈ °T j, Pi is a critical place at t (time) for Tj with i �
arg(min (mk(t)/wkj

PR)) (Moumen et al., 2022).
Let Y � {yiP}, iP � 1…, K1, denote the set of P-semi-

flows, and Z � {ziT }, iT � 1…, K_2, denote the set of T-semi-
flows. A P-semi-flow y ∈ (Z+)n, satisfying the relation yT .

W � 0, corresponds to a marking invariant: yT .M � YT .MI

� C, where C is a constant vector. This relation signifies
the conservation of the weighted quantity of markings. A PN
that accommodates one or more P-semi-flows in which all
places occur at least once is termed conservative. Conversely,
a T-semi-flow z ∈ (Z+)q, satisfying the relation W. z � 0,
defines a potential cycle involving repetitive transitionswhile
maintaining the marking invariant. A PN that admits one or
more T-semi-flows inwhich all transitions occur at least once
is referred to as consistent (Lefebvre & Leclercq, 2012).

2.2 Stochastic Petri Nets (SPNs)

The original PN model did not include the concept of time,
leading to limitations in analyzing system performance and
reliability. As a result, the notion of event duration associ-
ated with PN transitions needed to be introduced. Timed PNs
provide the capability to not only depict a logical sequencing
of occurrences but also account for their temporal aspects.
They are useful for modeling systems where activations syn-
chronize with external events and where system dynamics
are influenced by temporal factors (David & Alla, 1994). To
address this need, two main approaches were pursued. The
first approach, timed PN, models event durations determin-
istically or within defined intervals. The second approach,
SPN, represents event durations as random variables (Heiner
et al., 2009; Karamanolis, 1999). Incorporating temporal
information into transitions, timed PNs result in a more com-
prehensive representation. A specific case of timed PNs is
SPN, where the firing times of transitions are considered
random variables.More specifically, a particular case of SPN
involves exponential distributions for firing times (Ajmone
Marsan & Chiola, 1987; Haas & Shedler, 1989), with a
parameter varying according to (round(Ej(M)) × μj), where
Ej(M) represents the enabling degree of transition Tj for a
given marking M, and the function "round(.)" denotes the
integer part of a number. The concept of SPN models was
independently proposed by (Natkin, 1980; Molloy, 1981) in
their respective doctoral dissertations. These models aimed
to integrate formal description, correctness verification, and
performance evaluation in thefieldof applied stochasticmod-
eling (Marsan, 1990). The foundational idea of associating
exponentially distributed random delays with PN transitions,
crucial to SPNs, was prefigured by (Symons, 1980) in his
work on Numerical PNs, offering a historical perspective on
the evolution of these models.

An SPN, denoted as < PN, μ > , associates the underlying
PNwith a firing rate vectorμ � (μj) ∈ (R+)q. Each transition
Tj in the SPN is characterized by a firing rate μj, represent-
ing the likelihood of Tj firing within a small-time interval dt,
given that it has been activated with degree 1 at time t. The
marking process of SPN is described using various elements,
including the PN incidence matrix, the initial marking, the
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firing rates, the firing policy, the server policy, and the exe-
cution policy (Lefebvre et al., 2009; Silva & Recalde, 2002).
These characteristics are all utilized to describe the marking
process of an SPN. The vector of the average throughput and
average marking of an SPN depending on time, are named,
respectively, Xs(t) and Ms(t). SPNs in this work have sat-
isfied the hypotheses (A1–A5) (El Moumen et al., 2023a;
Júlvez et al., 2005):

– (A1) The labeled SPNs are limited by the bounds.
– (A2) The labeled SPNs can be reset.
– (A3) The firing policy follows a race policy, where the
transition with the shortest firing time is considered to be
the one that will fire next.

– (A4) The server policy is infinite, meaning that each transi-
tionTj has aminimal period (dm) determined by a stochas-
tic length characterized by an exponential distributionwith
a parameter that varies according to (round(Ej(M)) × μj).
This policy is characterizedby the influence of the enabling
degree.

– (A5) The execution policy is of the form of "resampling
memory," where at the start of labeling, all transitions that
were previously enabled have their remaining firing time
reset.

These assumptions collectively provide a solid founda-
tion for effectively modeling and analyzing SPN behavior,
specifically concerning howmarkings evolve and the precise
timing of transition firings. When focusing on the aver-
age marking and average throughput of SPNs, SPNs are
configured to encompass an accessibility graph denoted as
A(SPN, MI ) with finite states. This graph’s labeling process
aligns seamlessly with a Markov model that exhibits an iso-
morphism to A(SPN, MI ). Consequently, this configuration
allows us to calculate the asymptotic behavior of the SPN
based on the probability of reaching the steady state within
the Markov model (El-Moumen et al., 2023; Moumen et al.,
2022).

In the context of operational SPNs adhering to the afore-
mentioned assumptions and operating within a finite state
space, the SPN presents a marking graph that is isomorphic
to the state space of aMarkovmodel. Within this framework,
determining the SPN’s steady state becomes feasible by eval-
uating the probabilities associated with the Markov model
states. The vector of steady-state probabilities is defined by
the solution of (El & Choukrad, 2016):

�S · A(μ) � 0 and �S · 1N � 1. (2)

withPS � (πSk)1 × N , the vector of steady-state probabilities
of theMarkovmodel related to N states. A(μ), as theMarkov
model generator associated with the SPN, is a square matrix
of dimension N × N ,N being the finite number of states of

the linked Markov model and 1N � (1,….,1)T represents a
vector of dimension N whose all components are equal to 1.

Let Xs � (xsj ∈ (R+)q) represent the average throughput
vector of SPN and MS � (mSi) ∈ (R+)n represent the average
markings vector of SPN. As a consequence, from the vector
PS , we will deduce the average throughputs of transitions as
well as the average markings of places as (Lefebvre et al.,
2010):

xs j � μ j ·
N∑

k�1

(
E j (Mk) · πk

)
. (3)

msi �
N∑

k�1

mki · πk . (4)

where MK � (mki) ∈ (R+)n signifies the vector of marking
matching the state k of the Markov model. When it comes to
the ergodic Markov Model, this method gives an analytical
solution of the steady state of the SPN, but it necessitates
computing the transition matrix A(μ) (Lefebvre et al., 2009;
Vazquez & Silva, 2015), as a result, the SPNs accessibil-
ity graph A(SPN, MI ) is isomorphic to the Markov model
(Vázquez et al., 2008). N rises exponentially. For large-scale
systems, the calculation time and storage needs to evalu-
ate A(SPN, MI ) become more relevant. In this case, for the
Markov model, SPN can be thought of as a stochastic esti-
mator. The benefit of this estimator is that it eliminates the
need to determine A(SPN, MI ), but, the stochastic estimator
is slow to converge, especially for rare events.

In the realm of SPNs, analysis involves the exploration
of two distinct yet mutually reinforcing aspects. The first
aspect delves into the preservation properties within a PN,
derived from P-semi flows and T-semi flows, providing
valuable insights into system behavior. The second aspect
focuses on the analysis of a continuous-time, discrete-state
space Markov process, commonly recognized as a bounded
PN (Marsan, 1990; Silva & Recalde, 2002). These two
complementary methods together enable a comprehensive
exploration of system dynamics within the domain of SPNs.
This frameworknot only facilitates the simulationof complex
systems but also offers a practical alternative to state graph-
based Markov analysis, especially for large systems where
the combinatorial explosion can render traditional methods
impractical (Kuntz et al., 2021). Furthermore, SPNs serve
as estimators of Markov models, assisting in the comparison
and evaluation of system performance indicators.

To facilitate the determination of system performance
indicators and the comparison of the random behavior of
the SPN with that of a homogeneous Markov model with a
finite state space, the algorithm of the stochastic estimator is
depicted in Fig. 1 (El Moumen et al., 2023a).
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Fig. 1 Steady state by SPNs algorithm

2.3 Timed Continuous Petri Nets (CPNs)

Timed continuous Petri nets (TCPNs) represent an exten-
sion of PN designed for modeling and analyzing dynamic
systems that evolve over time. They are utilized to capture
systems that exhibit both temporal and continuous charac-
teristics, making them particularly well-suited for modeling
reactive systems in fields such as industrial automation, com-
munication, and robotics (El Moumen et al., 2023a). TCPNs
combine the features of PNs, timed systems, and continuous
systems to accurately depict the dynamic behavior of sys-
tems (Silva & Recalde, 2002). While TCPNs are commonly
denoted as CPNs, they have been deliberately developed to
provide continuous approximations of the discrete behaviors
of PNs. CPNs are distinguished by their consistent maximal
firing speeds and employ an infinite server semantic to facil-
itate a seamless transition between discrete and continuous
modeling paradigms. The marking of each place is repre-
sented as a continuous, non-negative real-valued function of
time, as described by (Lefebvre et al., 2010; Seatzu, 2005;
Silva &Recalde, 2004). A CPN is formally defined as <PNs,
Xmax > , where Xmax � diag(xmaxj) ∈ (R+)q×q is the diagonal
matrix of the maximal firing speeds xmaxj, with j � 1,..,q.

Let Mc(t) � (mci) ∈ (R+)n be the vector representing the
continuous markings mci(t) of place Pi, with i � 1,..,n. Like-
wise, let Xc(t) � (xcj) ∈ (R+)q be the vector representing the
continuous throughputs of transition Tj. The evolution of the
marking in CPN can be described by (Lefebvre et al., 2010):

d Mc
/

dt � W · XC (t), Mc(0) � MI . (5)

Fig. 2 Manufacturing system

The equation governing the instantaneous velocity of the
transition Tj is given by (Lefebvre & Leclercq, 2012):

xcj � xmax j · E j (Mc(t)). (6)

3 SPNs and CPNs: Problem Statements

3.1 Complexity of the Reachability Graph for SPN

As an example, we will consider the example modeled by
(Júlvez et al., 2005) presented in Fig. 2. This PN is used to
model a manufacturing system with 5 machineries (T1–T5),
and 3 resources limited tools (P1–P3). In this PN model, the
vector of the parameters of the transitions μ and the initial
marking MI, are given by, μ � (1,1,1,1,1)T , MI � k(6, 6, 2,
0, 3, 0, 3, 0, 0)T where k ∈ IN .

Table 1 shows the variation in the number of states N and
the computation time required to calculate the reachability
graph, based on the parameter k (Silva &Recalde, 2002).We
consider two cases: the first has M(P3) � 2, and the second
has M(P3) � 4. These cases clearly illustrate the complexity
associated with the reachability graph.

Table 1 indicates that as the parameter k increases,
particularly when the marking of place P3 increases, the
number of states in the marking graph increases exponen-
tially (Akchioui, 2018; Murata, 1989). Although the SPN
does not need to compute the marking graph, the increase in
the number of states leads to a longer computation time.

Consider the SPN described in Fig. 3 (Lefebvre &
Leclercq, 2012) that contains two joint synchronizations inT1

and T2 with initial marking MI � (5, 0, 0, 0, 4)T and firing
rate μ with μ � (3 1 1 10)T . This PN has a single firing
invariant defined by the T-semi flow z1 � (1 1 1 1)T and two
marking invariants defined by the P-semi flows y1 � (0 0 0
1 1)T , and y2 � (1 1 2 1 0)T .

Figure 4 illustrates the evolution of the estimated marking
of placeP1 in blue and the averagemarking in red, as obtained
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Table 1 Number of states and
calculation time of the
reachability graph in function of
k

k Number of states (N) Calculation time (s)

m(P3) � 2 m(P3) � 4 m(P3) � 2 m(P3) � 4

1 96 205 0.084 0.113

2 735 1885 2.141 8.304

3 2800 7796 20.104 164.665

4 7605 22187 150.462 1321.804

5 16826 50801 1018.708 6959.009

Fig. 3 Non-ordinary SPN with two joins and MI � (5 0 0 0 4)T

Fig. 4 Markings evolution Ms1 (t) of SPN in function of time for exam-
ple of Fig. 3

by the SPN simulator using the firing rate μ � (3 1 1 10)T

shown in Fig. 3.
Simulation using SPNs leads to longer calculation times

to reach a steady-state behavior, especially when the ini-
tial marking generates a large number of states. Therefore,
we can explore a solution to expedite this calculation time
by employing CPN simulation to estimate the evolution of
average markings and throughputs. Unfortunately, SPNs and
CPNs exhibit different asymptotic behaviors.

3.2 Standard Approximation of SPNs

The standard approximation of SPNs by CPNs involves
replacing the input and output arcs of each place with con-
tinuous arcs to model uncertain dynamic systems using
differential equations (Júlvez et al., 2005; Vázquez et al.,
2008). However, this approach often results in structural
and behavioral differences between the two models (Benaya
et al., 2018; Silva&Recalde, 2004). For example, a PNcanbe
live as a discrete model but non-live after fluidization (Lefeb-
vre & Leclercq, 2012; Navarro-Gutiérrez et al., 2022), and a
discretized bounded system can become non-bounded after
fluidization (Horton et al., n.d.). The average throughput of
the CPN is not always an upper bound on that of the SPN
(Recalde et al., 1999). While there are methods for finding
steady-state majors for both CPN and SPN, obtained through
solving linear programming problems (Lefebvre et al., 2009;
Seatzu, 2005; Vazquez & Silva, 2009), there is no direct
comparison between the two majors, discrete and continu-
ous. Additionally, equilibrium points of the SPN cannot be
directly approximated by those of the CPN due to differences
in behavior resulting from standard fluidization approaches.
As a result, the average markings and asymptotic average
throughput of SPN and CPN with similar structures and ini-
tial markingsmay not be identical in general. To interpret this
issue, we will provide a concrete example and ensure that we
are in the same context as the problem. Then, we will estab-
lish a proof base to reach the actual solution. This approach
will enable us to gain a better understanding of the situation
and propose an effective solution to resolve the issue, which
involves finding a direct convergence solution between the
two models.

Consider the example presented in Fig. 3. Table 2 presents
the results of the standard approximation under the infinite
server semantics.

Figure 5 shows the simulation of SPN of Fig. 3 with
standard approximation (xmaxj � μj), we only consider the
marking of the places P1, P4 and P5.

Figure 5 displays the evolution of markings by SPN and
CPN from Fig. 3, enabling a comparison between the two
models. In this context, CPN simulation is conducted under
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Table 2 Markings and
throughputs of stochastic and
continuous behaviors in Fig. 3

μ � (3, 1, 1, 10)T m1 m2 m3 m4 m5 x1,..,4

SPN 1 0.8 0.1 3 1 0.80

CPN 0.5 0.5 0.1 3.8 0.2 0.54

Fig. 5 Markings evolutionMc(t) andMs(t) of CPN and SPN in function
of time for example of Fig. 3

the infinite server semantics with xmaxj � μj. Figure 5 clearly
illustrates that the behaviors of continuous and stochastic
average markings are distinct. This discrepancy arises due to
the presence of weighted arcs and synchronization, leading
to the emergence of multiple distinct regions, as indicated by
the "min(..)" function in the activation degree expression. It
is worth noting that the standard approximation method does
not guarantee identical behavior between SPNs and CPNs
(Silva & Recalde, 2004).

3.3 Region in the Reachability Graph for CPN

In this section, we delve deeper into the concept of regions,
which play a pivotal role in our analyses. The notion of the
region appears because of the "min(..)" function in the acti-
vation degree expression (El Akchioui, 2017; Lefebvre et al.,
2010). These regions are vital for understanding the behav-
ior of our model and its various configurations. The marking
area is separated into k regions LK (Akchioui, 2018) (some
regions may remain empty). Each LK region is defined by
its unique combination or configuration (El Moumen et al.,
2023a), which is also referred to as the PT-sum(LK ) � {(Pi,
T j)}. The PT-sum for a given LK can be expressed as {(Pi,
T j)}, where Pi represents the critical place of Tj within LK

(Silva & Recalde, 2002). The number of configurations is
closely tied to the number of synchronizations and the count
of places leading to synchronization transitions, denoted as
K �|°T1| x … x |°Tq|. The PT-sum (Lk), is formally defined

as the sum of all combinations (Pi, T j), specified below:

PT − sum(L K ) �
[(

Pi , Tj
)
s · m · ∀Mc(t) ∈ L K , xcj (t)

� xmax j (t) · mci (t)
/

wP R
i j

]
. (7)

Each LK region is uniquely characterized by a matrix con-
straint Lk � (lij

k) ∈ (R+)qxn, where i � 1,…, q, k � 1,…,K
and j � 1,…, n. The constraints within Lk are as follows:

– for all Tj ∈ T , lji
k(k,j) � 1/wi(k,j)j

PR,
– Otherwise, lji

k � 0.

Consequently, within each LK , we can represent the max-
imal firing speeds vector as Xc(t) � Xmax. LK . Mc(t), as
follows:

d Mc(t)
/

dt � W · Xmax · L K · Mc(t), ∀Mc(t) ∈ L K . (8)

Consider the PN illustrated in Fig. 3, which is a non-
ordinary PN that contains two joint synchronizations in T1

and T2 with μ � (3, 1, 1, 10)T and MI � (5 0 0 0 4)T . The
existence of synchronizations leads to the presence of multi-
ple distinct regions, with the number of regions dependent on
the number of synchronizations in the PN. The CPN in Fig. 3
contains two synchronizations, reflected in the choice of
maximal firing speed corresponding to the validation degree
expression. The maximal firing speeds are determined as fol-
lows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Xc1(t) � xmax1 · min
(
mc1(t)

/
2, mc5(t)

)
Xc2(t) � xmax2 · min(mc1(t), mc4(t))
Xc3(t) � xmax3 · mc2(t)
Xc4(t) � xmax4 · mc3(t)

. (9)

The existence of the “min” operator in the calculation of
xc1(t) and xc2(t), leads to the existence of four regions L1 to
L4. Each region is linked to a PT-sum(LK ) (Silva & Recalde,
2002), k � 1,..,4. Table 3 summarizes the results obtained
from each region LK .

Note that P1 is a critical place for both transitions T1 and
T2; therefore, L1 is a critical region. The speeds of the two
transitions (T1, T2), depend on the same place P1. The fol-
lowing constraint matrix serves as indicators for the regions
L1 toL4:
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Table 3 Regions and configurations for the CPN in Fig. 3

Regions Configurations

L1 {(P1, T1), (P1, T2), (P2, T3), (P3, T4)}

L2 {(P1, T1), (P4, T2), (P2, T3), (P3, T4)}

L3 {(P5, T1), (P1, T2), (P2, T3), (P3, T4)}

L4 {(P5, T1), (P4, T2), (P2, T3), (P3, T4)}

L1 �

⎡
⎢⎢⎢⎣

1/2 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎦L3 �

⎡
⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎦

L2 �

⎡
⎢⎢⎢⎣

1/2 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎦L4 �

⎡
⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎦

The region L1 is a critical region reachable from the initial
marking MI . In the following, we subdivide CPN into differ-
ent classes, depending on the nature of the synchronizations.

3.4 Approximation in Multiple Regions
and in the Critical Region

Let us consider the example in Fig. 3, where five SPNs with
different firing rates, namely SPN1 through SPN5, denoted
as β1 to β5, are available. In this study, we have selected
three SPNs from the critical regionL1, namely β2, β3 and
β5, to highlight the pivotal role played by this specific region
in delineating the distinctions between SPNs and CPNs. The
choice of these particular SPNs was made to focus our anal-
ysis on the region that exhibits unique characteristics and
challenges within the context of our study. This selection
allows us to explore and better understand the influence of the
critical region on the differences between SPNs and CPNs.

Table 4 gathers the results of the standard approximation
of SPNs in Fig. 3 in different firing rates under the infinite
server semantics with the same structure and the same MI .

Figures 6 and7 show theprojections in the (m1, m2+2·m3)

plane of the stochastic and continuous average markings,
respectively, in different accessible regions as a function of
five random draws of transition rates and maximal firing
speeds.

The SPN and CPN regions are different. For example,
in Fig. 6, β2, β3, and β5 are located in region L1, but
after fluidization presented in Fig. 7, they move to regionL3.
This difference is due to the more sincere division into sev-
eral regions due to the presence of the "min(..)" function
in the definition of the degree of activation, resulting in the

Table 4 Stochastic and continuous markings and throughputs of the
SPN and CPN in Fig. 3 for different values of Xmaxj � μj

SPN1…4 μ Ms Xs

β1 (3 3 8 9)T (2.4 0.3 0.3 1.6 2.4)T 2.82

β2 (6 2 3 0.5)T (0.6 0.2 1.3 1.6 2.4)T 0.64

β3 (3 1 1 10)T (1 0.8 0.1 3 1)T 0.80

β4 (7 0.5 2 3)T (0.8 0.2 0.1 3.7 0.3)T 0.39

β5 (1, 3, 1, 3)T (1.03 0.8 0.8 3.01 0.98)T 0.80

CPN1…4 Xmax � diag(μ) Mc Xc

β1 diag (3 3 8 9) (2.5 0.5 0.4 1.2 2.8)T 3.71

β2 diag(6 2 3 0.5) (0.1 0.1 0.4 3.9 0.1)T 0.21

β3 diag (3 1 1 10) (0.5 0.5 0.1 3.8 0.2)T 0.54

β4 diag (7 0.5 2 3) (0.7 0.2 0.1 3.9 0.1)T 0.3

β5 diag (1, 3, 1, 3) (0.53 0.53 0.05 3.82
0.17)T

0.53

Fig. 6 Marking Ms(t) for different firing rates of the SPN for example
of Fig. 3

CPNs behavior being piecewise linear (Lefebvre&Leclercq,
2012). Note that in Fig. 6, SPN β1 and β4 are located out-
side of the critical region L1. According to fluidization, in
Fig. 7 they remain in the same region as the SPNs. However,
other SPNs such as β2, β3, and β5 do not remain in the same
region as the SPNs. This shows that the critical region plays
an important role in this difference. These results show that
the standard approximation of SPNs by CPNs with multiple
regions and particularly the critical region does not lead to the
same behavior of the asymptotic average marking and that
the behavior of SPNs is not always accurately approximated
by CPNs.

To overcome this problem, two numerical approaches of
fluidization have been studied in (El Moumen et al., 2023a;
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Fig. 7 Marking Mc(t) for different maximal firing speeds of the CPN
for example of Fig. 3

Júlvez et al., 2005; Lefebvre & Leclercq, 2012; Lefebvre
et al., 2009) to obtain a CPN whose average behavior in
steady state is equivalent to the average behavior of a given
SPN, under the semantics of the infinite server.Wewill apply
these approaches to the previous example, Fig. 3, to compare
and discuss them.

4 Numerical Approaches to Fluidization
and Comparison

Fluidization is an interesting alternative for estimating the
asymptotic behavior of stochastic processes using CPNs.
The synchronization is a key element of this approxima-
tion. Specifically, the presence of multiple regions, and
particularly the existence of critical regions, complicates
the standard approximation of the SPNs. In this section,
we investigate two different approximation approaches: the
piecewise linear approach (Lefebvre & Leclercq, 2012) and
the adaptive approach ( El Akchioui, 2017; ElMoumen et al.,
2023a). The piecewise linear approach is described in the lit-
erature as a numerical method for approximating solutions to
ordinary differential equations using piecewise linear func-
tions over adaptively chosen time intervals. We have shown
that fluidization is not guaranteed when the initial marking
exists in the critical region, and therefore we have added suf-
ficient conditions, such as subdividing themarking trajectory
into multiple intermediate phases, to ensure convergence in
all regions, especially in the critical region. The adaptive
approach is also a numerical method that compensates for
errors due to variations in marking and throughput rates and
necessary conditions will be added to ensure monotone con-
vergence. Both of these approaches solve the problem of
the difference between asymptoticmarkings and throughputs

between stochastic and CPNmodels. Finally, a more concise
comparison and discussion of results will be established and
analyzed using simulations.

The first one is characterized by maximal firing speeds
of transitions defined and different in each region, allowing
us to define a new piecewise linear CPN. The second one is
characterized by maximal firing speeds of transitions modi-
fied by a nonlinear adaptive law, based on minimizing errors
due to variations of marking and average firing throughput.
Finally, wewill apply these approaches to the previous exam-
ple shown in Fig. 3. We will choose the case of SPN β3,
from the critical region L1 as our case for comparison and
discussion of these two approaches is grounded in its sig-
nificance within the context of the study. This choice allows
us to effectively illustrate the implications and outcomes of
applying these two distinct approaches in a region known for
its critical characteristics.

4.1 Piecewise Linear Approach (CPN-PW)

The piecewise linear approach is a modeling tool that divides
the approximation of markings into several phases, making
it suitable for systems with multiple phases. The maximal
firing speed is defined as a piecewise continuous function,
allowing the CPN to converge to the stochastic marking.
Sufficient conditions are established for the fluid model to
converge to the stochastic average marking in both the single
region and multiple region cases. Convergence is guaranteed
for the single region, but for themultiple region case, particu-
larly the critical region, sufficient conditions are established.
This results in the definition of a new piecewise linear CPN
(Lefebvre & Leclercq, 2012), where the marking evolves in
each region and has different maximal firing speeds of tran-
sitions from other regions.

Definition 1 Equivalent average marking.
Let us consider a CPN. Let Mc be the vector of markings

and Xc the vector of stationary state speeds. Xc verifies:

W · Xc � 0 with Xc > 0. (10)

In the LK region, (8) can be rewritten, aiding in the char-
acterization of the stationary state of the CPN as:

W · Xmax · Lk · Mc � 0. (11)

The system of equations obtained from (11) is however
insufficient to determine Xmax. When considering the mark-
ing invariants, we derive the compatible system as:

(
W · Xmax · Lk

Y T

)

︸ ︷︷ ︸
S(Xmax)

·Mc �
(

0
Y T · MI

)

︸ ︷︷ ︸
C

. (12)
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In the case where the determination of the steady-state
marking has a unique non-negative solution, the expression
of the marking as a function of Xmax can be obtained as:

Mc � f (Xmax). (13)

The function f depends on the maximal firing speeds and
can be obtained by the resolution of the (12) provided that the
matrix (LK

T . Xmax. WT |Y)T is of full rank in columns (i.e.,
of rankn). In this scenario, the maximal speed matrix can be
determined, and the average throughputs can be calculated
as follows:

Xmax · Lk · Mc � Xc. (14)

Definition 2 Global asymptotic equivalence.
Consider as SPN < MI , μ, Ms > with MI ∈ Lk and a CPN

with the same structure, the same MI and different maximal
firing speeds of SPN firing rates. In each Lk , Mc(t) satisfy
(8). Consequently, when the marking trajectory remains in
the MI region it tends to Mc that satisfies (8). As long as
rank(S(Xmax)) � rank(S(Xmax). C) � q, the system of (12)
becomes invertible, whose solution allows determining the
continuous average marking which verifies (15). As long as
Mc converges to Ms satisfy Mc � Ms, the solution of (12)
also allows computing Mc � f(Xmax). The long-term exact
solution for Mc is as follows:

{
Mc � (ST (Xmax) · S(Xmax))−1 · ST (Xmax)

Ms � (ST (Xmax) · S(Xmax))−1 · ST (Xmax) · C
. (15)

WhenMc(t) andXc(t) converge toMs andXs, respectively,
as t tends to infinity, and if Mc(t) satisfies the condition, then
the rank of S(Xmax) � q, and Xmax satisfies (Lefebvre &
Leclercq, 2012):

{
Xs � Xmax · Lk · (ST (Xmax) · S(Xmax))−1 · ST (Xmax ) · C
Ms � (ST (Xmax ) · S(Xmax ))−1 · ST (Xmax ) · C

.

(16)

In each LK , Xc(t) satisfies Xc(t) � Xmax. LK . Mc(t). In
particular, if Ms ∈ LK , Xs holds:

Xs � Xmax · Lk · Ms . (17)

Definition 3 Piecewise Continuous Petri net (CPN-PW).
A CPN-PW is seen as a combination of several timed

CPN: {CPNk, k � 1,.., K} with CPNk � {P, T, WPO, WPR,
Xmaxk} that evolves only in the region Lk . Xmaxk, k � 1,..,
K represents the matrix of maximal firing speeds defined in
each region (Lefebvre & Leclercq, 2012).

The CPN-PWbehaves like a collection of several CPNs in
a single CPN. The matrixes of maximal firing speeds Xmaxk,

k � 1,…,K of a CPN-PW are calculated for each region Lk .
Each CPN has different maximal firing speeds. The asymp-
totic average markings of a CPN-PW satisfy the form of (11)
in each region Lk . We continue with the example in Fig. 3
to illustrate the global asymptotic equivalence in the β3 SPN
that exists in the Lk critical region.

4.2 Adaptive Approach

The adaptive approach is aimed at adapting all maximal fir-
ing speeds of the CPNs through an adaptive controller. These
speeds are considered time-varying functions and are updated
to ensure the modified CPN converges to the SPN. It corrects
errors in throughput and marking by referring to the asymp-
totic stochastic average throughput and average marking to
be reached. Therefore, the adaptive maximal firing speeds
for the nonlinear CPN (NL-CPN) are defined.

Definition 4 Nonlinear CPN.
A Nonlinear CPN: (NL-CPN) � (P, T, WPR, WPO, Ms,

Xs), is governed by the adaptation law of the maximal firing
speeds. This law constitutes a system of (n + q) differential
equations under the constraint Xmax ≥ 0, as proposed by (El
Akchioui, 2017; Lefebvre et al., 2009):

Ẋmax � η · diag(μ) ·
((

W T
)

· (Ms − Mc(t)) + (Xs − Xc(t))
)
.

(18)

where diag(μ) is the diagonal matrix SPNfiring rates, η is the
adaptation parameter, (Xs−Xc(t)) represents the error related
to the continuous and stochastic average throughput, and the
vector (Ms−Mc(t)) the error due to variations in the stochastic
and continuous average markings.

To determine the variations of the maximal firing speed
associatedwith the transitionTj , we considered the transition
Tj and wj which defines the column j of the W . The varia-
tions of the maximal firing speeds of transition Tj depend
on the places (°T j) and downstream (Tj

°) of the transition in
consideration, in the following different cases:

– If at time t, all placesPi∈°T j, verify msi−mci(t) > 0 and all
placesPk ∈ Tj

°, verifymsk−mck(t) < 0 thenwj
T .(ms–mc(t))

< 0, this leads to decrease the maximal firing speeds xmaxj

of Tj.
– If at time t, all places Pi ∈°T j, verify msi−mci(t) < 0 and all
placesPk ∈ Tj°, verifymsk−mck(t)> 0 thenwj

T .(ms−mc(t))
> 0, this leads to increase the speed xmaxj of Tj.

On the other hand, the direction of variation of the speed
Xmax also depends on the instantaneous firing speed associ-
ated with the transition Tj, in the following cases:
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– If xsj−xcj(t) < 0, the maximal firing speeds xmaxj of Tj

decreases.
– If xsj −xcj(t) > 0, the maximal firing speeds xmaxj of Tj

increases.

But when these previously mentioned criteria are not sat-
isfied concurrently, the convergence is no more monotonous.
Finally, we will illustrate and compare these different
approaches in an example.

4.3 Comparison and Discussion

In this sub-section, we will study the results of the two differ-
ent fluidization approaches presented previously to illustrate
and compare them.

In the first approach studied in this section, the CPN-PW
converges to the stochastic averagemarking in a single region
with no problem, and its continuous path remains in the same
region as the initial marking. In this case, the steady state
converges directly to the stochastic target points. However,
when convergence occurs in multiple regions, a problem of
converging thismodel toward the stochastic target points will
arise. This problem ismanifested by the existence of the criti-
cal region, which directly complicates the fluidization by this
approach. In this case, we subdivide the marking trajectory
into multiple phases and intermediate points to move from
one region to another to achieve convergence in the criti-
cal region. Table 5 gives the modified continuous average
behavior obtained from CPN-PW fluidization of SPN β3 in
Fig. 3.

Table 5 shows that fluidization CPN-PW is not achieved
directly; for this purpose, the marking trajectory is divided
into several phases and intermediate pointsM int tomove from
one region to another, to achieve stochastic marking of β3.
The SPN β3 and the initial marking MI are in two different
regions, to reach β3 from MI , two successive phases appear,
first, to reach the common intersection of the two regions L2

and L1 whose M int � (2.1 0.3 0.3 1. 6 2.4)T , we applied the
constant positive matrix velocity Xmax1 � xmax4.diag(0.3 0.2
0.9 1)T , where xmax4 represents one degree of freedom, in
the second stage we apply the velocity Xmax2 � diag(3.6 1.8
5.1)T to achieve the final value β3 � (1.03 0.80 0.08 3.01
0.98)T (Fig. 8).

In the last approach studied in this section, we proposed
to modify the definition of the parameters that character-
ize the maximal firing speeds of the transitions for the CPN,
usingmultiplicative coefficients applied to themaximal firing
speeds of all transitions. These coefficients are considered as
time dependent functions according to the adaptive law (18).
This law minimizes the errors due to variations in mark-
ings and throughputs over time in order to have a continuous
steady state equivalent to that of the SPN. Table 6 gives the

Fig. 8 Continuous piecewise approximation of the stochastic average
marking of the SPN in Fig. 3

Fig. 9 Evolution of the continuous and stochastic markings of the place
P1 in function of time

modified continuous average behavior obtained by adapting
all the maximal firing speeds of the SPN β3 in Fig. 3.

Each maximal firing speed will be corrected by a mul-
tiplicative factor. Therefore, only the marking of place P1

will be represented. Figure 9 shows the continuous average
marking and the asymptotic stochastic average marking of
the square P1, after the modification of the maximal firing
speeds of CPN in Fig. 3.

Minimizing the errors due to variations in markings and
throughput allows for a new CPN whose average behavior
is equivalent to that of the SPN. The implementation of this
approach requires knowledge of the asymptotic stochastic
behavior β3 � (1.03 0.8 0.08 3.01 0.98)T that is desired to
be achieved.

This approach is the most effective for approximating the
throughput and average markings of the SPN using the CPN.
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Table 5 Modified continuous
behaviors after fluidization by
CPN-PW in Fig. 3

m1 m2 m3 m4 m5 x1,..,4

SPN 1.03 0.80 0.08 3.01 0.98 0.80

CPN 1.08 0.864 0.108 2.88 1.08 0.85

Relative error 0.05 0.064 0.028 0.13 0.1 0.05

Table 6 Modified continuous
behaviors after adaptation of all
maximal firing speeds of CPN in
Fig. 3

m1 m2 m3 m4 m5 x1,2,3,4

SPN 1.03 0.80 0.08 3.01 0.98 0.80

CPN 1.04 0.79 0.08 3.00 1.00 0.79

Relative error 0.01 0.012 0 0.003 0.02 0.01

The first approach requires a critical step to achieve con-
vergence, which involves subdividing the marking trajectory
into multiple phases and intermediate points. This results in
multiple phases for transitioning from the region of the ini-
tial marking to the critical region in the presence of a large
number of synchronizations, or in the presence of multiple
regions and critical regions. On the other hand, the adap-
tive approach minimizes errors caused by variations in the
throughput and average markings, regardless of the initial
marking and the number of synchronizations. This enables it
to achieve behavior identical to that of the SPN.

5 Conclusions

In this work, two approaches were studied and compared
for fluidization, sufficient conditions were added to achieve
identical behavior between the CPN and SPN models. The
piecewise linear approach is useful when the approximation
of markings is divided into several phases and the maximal
firing speeds is defined as a piecewise continuous function.
The adaptive approach, on the other hand, adapts all themax-
imal firing speeds through an adaptive controller to correct
errors in throughput and marking by referring to the asymp-
totic stochastic average throughput and average marking to
be reached. The adaptive approach was found to be better
than the piecewise linear approach for obtaining average
marking and throughput estimates of the SPNs. In future
research, new fluid model semantics will be utilized to study
the approximation of timed CPNs by partially homothetic
SPN approximations, and alternative optimal models will be
investigated to address the shortcomings of directly related
continuous approaches concerning the SPN transition firing
rates.
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