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Abstract
The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different
fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are
chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this
multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is
employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state
matrix is negative definite and a certain inequality between the fractional orders is met, thementioned system is asymptotically
stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that
if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus
of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the
established leader-following consensus protocol.

Keywords Multi-agent systems · Fractional-order systems · Leader-following consensus · Multi-order fractional systems ·
Heterogeneous fractional multi-agent systems

1 Introduction

Nowadays, control engineers have been interested in dif-
ferent fields of distributed control of multi-agent systems
(MAS). Mobile robots (Liu & Jiang, 2013), automatic vehi-
cles (Yang et al., 2017), and sensor networks (Díaz-Ibarra
et al., 2019) have been known as examples of MAS where
distributed control has been employed therein. In distributed
control, the interaction between each system (called an agent)
with other agents and the leader is employed to obtain the
control signals of agents. A variety of goals could be real-
ized using distributed control ofMAS, such as consensus (Ni
& Cheng, 2010), flocking (Olfati-Saber, 2006), and contain-
ment control (Ji et al., 2008).
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When the states of agents track the corresponding leader
states, the leader-following consensus is realized. The leader-
following consensus of MAS has been employed in various
applications, such as mobile sensor networks (Safavi &
Khan, 2015), ship course control systems (Wang et al., 2021),
unmanned aerial vehicles (Trejo et al., 2021), and Pelican
prototype robots (Cai et al., 2020). The leader-following
consensus of MAS has been investigated in various works
(Ni & Cheng, 2010). Matrix and algebraic graph theories
have been employed to derive sufficient conditions for the
leader-following consensus of MAS with directed switch-
ing graphs (Tang, 2015). Some conditions in linear matrix
inequality (LMI) form have been found to ensure the leader-
following consensus of MAS with a switching graph and
communication delay (Guo, 2016; Liu & Liu, 2011). Sun
and Guan (2013) studied the finite-time leader-following
consensus issue for second-order MAS under fixed and
switching graphs. Djaidja and Wu (2016) investigated the
leader-following consensus issue for first-order MAS with
communication delay and measurement noise. The leader-
following consensus problem of nonlinear singular MAS
with intermittent communication under a fixed undirected
graph has been studied (Xie & Mu, 2019). Girejko and
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Malinowska (2019) derived the necessary and sufficient con-
ditions to attain the leader-following consensus for first- and
second-order MAS on an arbitrary time model (called time
scale). The leader-following consensus and formation con-
trol problems with velocity and input constraints have been
solved for second-order MAS (Fu et al., 2019). Lu and Liu
(2019) presented a novel distributed strategy to solve the
leader-following consensus issue for heterogeneous second-
order nonlinear MAS under external disturbances. Huang
et al. (2022) verified the event-triggered leader-following
consensus problem for nonlinear MAS under semi-Markov
switching topology with partially unknown rates. Tan et al.
(2020) studied the leader-following consensus problem of
MAS under switching topologies and communication con-
straints. Zou et al. (2019) verified the mean square practical
leader-following consensus of second-order nonlinear MAS
with noises and unmodeled dynamics. However, this work
and the above are only confined to integer-order systems.

Some physical plants could not be described entirely via
ordinary differential equations. In this case, fractional calcu-
lus could be employed to describe themwith non-integer dif-
ferential equations (Monje et al., 2010). The leader-following
consensus of fractional-ordermulti-agent systems (FOMAS)
has been verified in previous studies. Liu et al. (2018) studied
the distributed consensus problem for FOMAS with double-
integrator agents containing different fractional orders and
nonuniformdelays.However, the same fractional orders have
been considered for all the agents in the mentioned work.
The Mittag–Leffler stability theory and low gain feedback
method have been employed to ensure the robust consensus
of FOMAS under input saturation and external disturbances
(Chen et al., 2018). Adaptive leader-following consensus
and neuro-adaptive leaderless consensus of FOMAS have
been investigated by Ren and Yu (2017) and Mo et al.
(2019), respectively. The leader-following consensus of
second-order FOMASwithout velocity information has been
investigated (Yu et al., 2017). The Hermite–Biehler theorem
has been employed to propose a sample-data-based consen-
sus protocol for second-order FOMAS (Liu et al., 2019). Ye
and Su (2019) solved the leader-following consensus prob-
lem for nonlinear FOMAS with fractional orders between
zero and two. The even-triggered control has been utilized
to study the consensus issue for FOMAS (Ren et al., 2019;
Shi et al., 2019a, 2019b). The leader-following consensus
of discrete-time FOMAS has been verified in the literature
(Shahamatkhah & Tabatabaei, 2018; Wyrwas et al., 2018).
Appropriate state observers for all agents have been designed
to attain the output consensus for the leader-following issue
for heterogeneous nonlinear FOMAS (Wen et al., 2020).
An observer-based strategy has been employed to study the
admissible leader-following consensus problem for FOMAS
with singular agents (Pan et al., 2019). The consensus prob-
lem for input time-delay nonlinear FOMAS and a particular

case of linear fractional-order agents have been studied by
Yang et al. (2019) and Shi et al., (2019a, 2019b), respectively.
Gong et al. (2019) verified the robust adaptive leaderless
and leader-following consensus problems for heterogeneous
FOMAS with different nonlinear dynamics. Ji et al. (2020)
considered the leader-following consensus of FOMAS with
adaptive rules for control gain. The leader-following con-
sensus issue for heterogeneous FOMAS has been verified by
Hu et al., (2020a, 2020b), in which the fractional order of the
leader has been considered different from the corresponding
one for the agents. The leader–follower consensus problem
based on a time-varying gain approach has been investi-
gated for nonlinear time-delayFOMASunder afixeddirected
topology (Li et al., 2021). Hu et al. (2020a, 2020b) designed
an event-triggered control to solve the leader-following
consensus problem for the FOMAS. Leader-following non-
fragile consensus of nonlinear time-delay FOMAS has been
verified by Chen et al. (2022).

In all the published works concentrating on the leader-
following consensus of FOMAS, the same fractional orders
are considered for all the agents. A multi-order fractional-
order system is obtained if different fractional orders are
considered for the agents. This means that the leader-
following consensus issue for this case of FOMAS leads to
stability analysis of a multi-order fractional system. How-
ever, the stability analysis ofmulti-order fractional systems is
difficult (Li&Zhang, 2011; Petras, 2009).Although there are
few published studies about this issue in the literature (Bus-
lowicz, 2012; Deng et al., 2007; Qian et al., 2010), there are
no straightforward and simple criteria to verify the stability of
these systems. Moreover, some works are confined to only
a fractional-order system (FOS) with two different orders
(Brandibur&Kaslik, 2018;Koksal, 2019). Badri andSojoodi
(2019) utilized the Linear Matrix Inequality (LMI) approach
to study the stability of multi-order fractional systems. How-
ever, this method implies some numerical calculations and
does not lead to any explicit criterion.

The current paper studies the stability of a multi-order
fractional system. The idea proposed by Brandibur and
Kaslik (2018) for a FOS with two non-identical orders is
generalized to a multi-order fractional system. Accordingly,
some sufficient explicit conditions are obtained in terms of
fractional orders to ensure the stability of these systems.
Based on this result, the leader-following consensus prob-
lem of FOMAS with different fractional orders is studied.
A virtual leader is considered, and the agents are chosen as
fractional-order integrators with different fractional orders
in the range of (0,1]. It is demonstrated that the leader-
following consensus issue for this kind of FOMAS under
undirected topology is equivalent to the stability analysis
of a multi-order fractional system. Then, it is shown that
the leader-following consensus with positive feedback gains
could be realized under a limitation on the fractional-order
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values. The performance of the presented distributed pro-
tocol is evaluated through numerical examples. This paper
presents sufficient conditions to ensure the asymptotic stabil-
ity of a particular multi-order FOS with an arbitrary number
of different fractional orders. The multi-order FOS differs
from that considered by Brandibur and Kaslik (2018), which
employs a FOS with only two different fractional orders.
Unlike the relevant literature (Buslowicz, 2012; Deng et al.,
2007; Qian et al., 2010), the obtained conditions can be eas-
ily checked without complex numerical calculations. On the
other hand, the obtained conditions are employed to solve the
leader-following problem for multi-order FOMAS, in which
the fractional orders of the agents are completely different.
In the relevant literature for leader-following consensus of
FOMAS, the fractional orders of all agents are the same.
To the best of the authors’ knowledge, this paper is the first
attempt to consider different fractional orders for the agents
in a FOMAS.

Finally, the essential contributions of the present research
are given as follows:

• The asymptotic stability of a particular kind of multi-
order fractional system is studied. Although the stability
of a FOS with two fractional orders has been verified by
Brandibur and Kaslik (2018), the stability analysis of a
FOSwith an arbitrary number of different fractional orders
is complicated. This paper presents a sufficient condi-
tion for the fractional orders to guarantee the asymptotic
stability of a multi-order fractional system. To our knowl-
edge, this kind of stability analysis has not been verified in
the literature. Only some inexplicit conditions have been
extracted in the previous studies to ensure the asymptotic
stability ofmulti-order fractional systems that could not be
employed in realistic situations (Buslowicz, 2012; Deng
et al., 2007; Qian et al., 2010).

• Sufficient conditions are found to realize the leader-
following consensus of heterogeneous FOMAS with dif-
ferent fractional orders. In the considered FOMAS, the
dynamic of any agent is representedwith a fractional-order
integrator where its order is different from the others. This
leads to a completely heterogeneous multi-order FOMAS.
Although Hu et al. (2020a, 2020b) considered the frac-
tional order of the leader different from those selected for
the agents, all the agents have similar fractional orders.
However, in the current work, all agents’ fractional orders
could be different.

The current study is arranged as follows: The required
mathematical principles of the graph theory are given in
Sect. 2. The proposed theorem for stability analysis of multi-
order fractional systems is provided in Sect. 3. Section 4
concerns the leader-following consensus issue of FOMAS
with different fractional orders. Numerical simulations are

presented in Sect. 5 to evaluate the accuracy of the pre-
sented distributed control strategy. Conclusions and future
landscapes are discussed in Sect. 6.

2 A Brief Review of Graph Theory

The topology of MAS could be described via the graph theo-
rem. In the following, the required definitions and principles
of graph theory are presented. A set of nodes and edges is
called a graph. A graph is described by G � (S, E) where
S � {s1, . . . , sN } indicates the set of nodes (N nodes are
considered) and E ⊆ S×S is the set of edges where its mem-
bers are represented with ei j � (

si , s j
)
. The set of neighbors

of node si is represented with Ni � {
s j ∈ S :

(
s j , si

) ∈ E
}
.

The adjacency matrix for each graph describes the connec-
tion of edges and nodes. This is a N × N matrix where its
non-negative elements are represented with A � [

ai j
]
. The

diagonal elements of A are considered zero. If
(
s j , si

) ∈ E ,
i �� j , then ai j > 0, else ai j � 0. If A is a symmetric
matrix, then the graph is undirected. Otherwise, the graph
is directed. The Laplacian matrix of a graph is defined as
L � [

li j
]
where lii � ∑

j ��i
ai j and li j � −ai j for i �� j . A

directed graph with a directed path among any pair of its dis-
tinct nodes is called strongly connected. The word ‘strongly’
is deleted for undirected graphs. A spanning tree for a graph
exists if at least one of its nodes has a path to all the other
nodes. Thus, at least a spanning tree exists in the strongly
connected (or connected) graphs. The Laplacian matrix of a
directed graph contains at least a zero eigenvalue with the
corresponding eigenvector 1 � (1, 1, . . . , 1)T .

Lemma 1 Lewis et al. (2014). The Laplacian matrix of a
connected undirected graphhas a zero eigenvaluewith eigen-
vector 1, while the other eigenvalues are positive.

In the leader-following issue, the leader node is repre-
sented with s0. To represent the relation among agents and
the leader, the matrix D � diag{d1, . . . , dn} is defined. If
agent i is directly related to the leader, then di � 1, else
di � 0.

Lemma 2 Ni and Cheng (2010). In connected undirected
graphs with at least a single spanning tree, if there exists at
least a single path connecting the leader to other agents, then
each eigenvalue of the matrix H � L + D is positive. This
means that this matrix is positive-definite.
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3 Stability Analysis of Multi-order Fractional
Systems

The current section verifies the stability of a multi-order
fractional system. To attain this goal, some mathematical
preliminaries are introduced.

3.1 Fractional Calculus Preliminaries

The main idea in fractional calculus is to extend the ordinary
derivative concept to its non-integer order. To achieve this,
various definitions for the fractional-order derivative have
been proposed. The Caputo definition is employed in the
current work, which is more suitable for engineering appli-
cations.

Definition 1 Monje et al. (2010). The fractional-order
derivative of an arbitrary function f (t), or 0D

α
t f (t) is defined

as

(1)

0D
α
t f (t)

� 1

�(n − α)

t∫

0

f (n)(τ )

(t − τ )α+1−n
dτ , (n − 1 ≤ α < n) ,

n ∈ N

whereα is the fractional order, and�(.) is the popularGamma
function defined as �(x) � ∫ ∞

0 e−z zx−1dz.

The state-space equations of a multi-order fractional sys-
tem (without input) could be represented as

⎡

⎢
⎢⎢⎢
⎣

Dα1x1
Dα2x2

...
Dαn xn

⎤

⎥
⎥⎥⎥
⎦

�

⎡

⎢
⎢⎢⎢
⎣

F11 F12 · · · F1n
F21 F22 · · · F2n
...

...
. . .

...
Fn1 Fn2 · · · Fnn

⎤

⎥
⎥⎥⎥
⎦
x (2)

where αi ∈ (0, 1), i � 1, . . . , n denote the frac-
tional orders

(
αi �� α j , i �� j , i , j � 1, . . . , n

)
and x(t) �

[x1(t), . . . , xn(t)]. The corresponding state vector for frac-
tional order αi is represented with xi ∈ R

ni . Moreover,
the state-space matrices are denoted by Fi j ∈ R

ni×n j , i ,
j � 1, . . . , n. In the current section, the asymptotic stabil-
ity of system (2) is discussed. Thus, the system’s input is
considered zero, and the initial state is considered an arbi-
trary nonzero vector x(0). In the particular case, if αi � α,
i � 1, . . . , n, system (2) is called commensurate and α is
called the commensurate order. The stability analysis of com-
mensurate fractional-order systems has been discussed in the
literature. However, the stability analysis of multi-order frac-
tional systems is complicated. The stability of a multi-order
fractional system has been verified in the literature. The pro-
posed approaches require some numerical computations and

could not give straightforward criteria for studying the sta-
bility of such systems. The following subsection verifies the
stability of a particular case of system (2).

3.2 Stability Analysis of a Special Case of Multi-order
Fractional Systems

Consider a special case of system (2) in which ni � 1, i � 1,
. . . , n. In this case, system (3) could be rewritten as

⎡

⎢
⎢⎢⎢
⎣

Dα1x1
Dα2x2

...
Dαn xn

⎤

⎥
⎥⎥⎥
⎦

� −

⎡

⎢
⎢⎢⎢
⎣

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
...

...
fn1 fn2 · · · fnn

⎤

⎥
⎥⎥⎥
⎦
x (3)

where fi j , i , j � 1, . . . , n are arbitrary real numbers and
0 < αi < 1, i � 1, . . . , n. The negative sign in (3) simplifies
the upcoming calculations. This could not be considered as
a limitation. Applying Laplace transform to both sides of (3)
yields

X(s) � (� + F)−1�x(0) (4)

where

(5)

F �

⎡

⎢⎢⎢⎢
⎣

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

⎤

⎥⎥⎥⎥
⎦
, Λ �

⎡

⎢
⎣

sα1 · · · 0
...

. . .
...

0 · · · sαn

⎤

⎥
⎦ , Ψ

�
⎡

⎢
⎣

sα1−1 · · · 0
...

. . .
...

0 · · · sαn−1

⎤

⎥
⎦ , X (s) �

⎡

⎢
⎣

X1 (s)
...

Xn (s)

⎤

⎥
⎦

This means that the characteristic equation of system (3)
is

det(� + F) � 0 (6)

It is evident that if each root of (6) lies in the left half-
plane, system (3) is asymptotically stable (Li &Zhang, 2011;
Petras, 2009). This means that real parts of the roots of (6)
should be verified. A general form for (6) is obtained in the
following lemma.

Lemma 3 The general form of the characteristic Eq. (6)
could be obtained as

det(� + F) �
1∑

j1�0

· · ·
1∑

jn�0

Fj1, ..., jn s

n∑

i�1
αi ji

(7)
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where Fj1, ···, jn is the corresponding cofactor after omitting
the rows and columns corresponding to αi ( ji �� 0). These
cofactors are the principal minors of F . Furthermore, the
coefficient F1, ..., 1 is chosen as 1.

Proof At first, let us verify (7) for n � 2. In this two-order
case, (7) could be written as

(8)

det

[
sα1 + f11 f12

f21 sα2 + f22

]

� sα1+α2 + f22s
α1

+ f11s
α2 + det (F)

Now, (8) could be rewritten as

(9)

det

[
sα1 + f11 f12

f21 sα2 + f22

]

� F1, 1s
α1+α2 + F1, 0s

α1

+ F0, 1s
α2 + F0, 0

As could be seen from (9), (7) is valid for n � 2. Now, let
to verify it for n � 3. In this case, (6) becomes

det

⎡

⎢
⎣
sα1 + f11 f12 f13

f21 sα2 + f22 f23
f31 f32 sα3 + f33

⎤

⎥
⎦

� sα1+α2+α3 + f33s
α1+α2 + f22s

α1+α3 + f11s
α2+α3

+ ( f22 f33 − f23 f32)s
α1 + ( f11 f33 − f13 f31)s

α2

+ ( f11 f22 − f12 f21)s
α3 + det(F) (10)

(10) could be rewritten as the following form

det

⎡

⎢
⎣
sα1 + f11 f12 f13

f21 sα2 + f22 f23
f31 f32 sα3 + f33

⎤

⎥
⎦

� F1, 1, 1s
α1+α2+α3 + F1, 1, 0s

α1+α2 + F1, 0, 1s
α1+α3

+ F0, 1, 1s
α2+α3 + F1, 0, 0s

α1 + F0, 1, 0s
α2

+ F0, 0, 1s
α3 + F0, 0, 0 (11)

It is evident that (7) is valid for n � 3. Continuing this
procedure, it could be easily verified that (7) is valid for any
value of n. The proof is completed. �

Theorem 1 Gantmacher (1959). A symmetric matrix is
positive-definite if and only if all of its principal minors are
positive.

Corollary 1 All coefficients of (7) are positive if and only if
F is a symmetric positive-definite matrix.

Proof The proof is trivial (considering Theorem 1 and
Lemma 3).

Brandibur and Kaslik (2018) verified the asymptotic sta-
bility of a FOS with two different orders. The following
theorem studies the asymptotic stability of system (3) (for
any value of n). �

Theorem 2 Consider that the following conditions are ful-
filled for system (3):

(a) F is a symmetric positive-definite matrix.

(b) ∃αl ,
n∑

i�1, i ��l
αi < 1, l � 1, . . . , n.

Then, system (3) is asymptotically stable.

Proof The theorem is proved based on contradiction. If
system (3) is unstable, (7) has at least a root in the right half-
plane. Therefore, there is a complex variable s satisfying (7)
and Re(s) > 0. Now, we have

|arg(s)| ≤ π

2
⇒ ∣∣arg

(
sαl

)∣∣ � αl · |arg(s)| ≤ αl
π

2
<

π

2
(12)

This means that Re(sαl ) > 0. By setting (7) to zero, we
have

sαl � − p(s)

q(s)
(13)

where

p(s) �
1∑

j1�0

· · ·
1∑

jl−1�0

1∑

jl+1�0

· · ·
1∑

jn�0

Fj1, ..., jl−1, 0, jl+1, ... jn s

n∑

i�1, i ��l
jiαi

q(s) �
1∑

k1�0

· · ·
1∑

kl−1�0

1∑

kl+1�0

· · ·
1∑

kn�0

Fk1, ..., kl−1, 1, kl+1, ...kn s

n∑

i�1, i ��l
kiαi

(14)

Now, the real part of (13) could be calculated by multi-
plying the numerator and denominator of the right-side of
(13) by q∗(s) where q∗(s) indicates the complex conjugate
of q(s). This gives

Re
(
sαl

) � −{Re(p(s))Re(q(s)) + Im(p(s))Im(q(s))}
|q(s)|2

(15)

Now, by considering s � re jθ , we have

Re{p(s)} �
1∑

j1�0

· · ·
1∑

jl−1�0

1∑

jl+1�0

· · ·
1∑

jn�0

Fj1, ..., jl−1, 0, jl+1, ... jn

r

n∑

i�1, i ��l
jiαi

cos

⎛

⎝θ

n∑

i�1, i ��l

jiαi

⎞

⎠ (16)
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Re{q(s)} �
1∑

k2�0

· · ·
1∑

kl−1�0

1∑

kl+1�0

· · ·
1∑

kn�0

Fk1, ..., kl−1, 0, kl+1, ..., kn

r

n∑

i�1, i ��l
kiαi

cos

⎛

⎝θ

n∑

i�1, i ��l

kiαi

⎞

⎠ (17)

Im{p(s)} �
1∑

j1�0

· · ·
1∑

jl−1�0

1∑

jl+1�0

· · ·
1∑

jn�0

Fj1, ..., jl−1, 0, jl+1, ... jn

r

n∑

i�1, i ��l
jiαi

sin

⎛

⎝θ

n∑

i�1, i ��l

jiαi

⎞

⎠ (18)

Im{q(s)} �
1∑

k2�0

· · ·
1∑

kl−1�0

1∑

kl+1�0

· · ·
1∑

kn�0

Fk1, ..., kl−1, 0, kl+1, ..., kn

r

n∑

i�1, i ��l
kiαi

sin

⎛

⎝θ

n∑

i�1, i ��l

kiαi

⎞

⎠ (19)

Replacing (16–19) in (15) gives

Re
(
sαl

) �
−M cos

(
θ

∑n
i�1, i ��l( ji − ki )αi

)

|q(s)|2 (20)

where

M �
1∑

j1�0

· · ·
1∑

jl−1�0

1∑

jl+1�0

· · ·
1∑

jn�0

Fj1, ..., jl−1, 0, jl+1, ... jn r

n∑

i�1, i ��l
jiαi

1∑

k2�0

· · ·
1∑

kl−1�0

1∑

kl+1�0

· · ·
1∑

kn�0

Fk1, ..., kl−1, 0, kl+1, ..., kn r

n∑

i�1, i ��l
kiαi

(21)

Since matrix F is positive-definite, all the coefficients
Fj1, ..., jl−1, 0, jl+1, ... jn and Fk1, ..., kl−1, 0, kl+1, ..., kn are positive
according to Theorem 1, and r is positive, too. Accordingly,
M > 0. Moreover, the maximum value of ji − ki in (20) is
1. Considering this fact and according to condition (b) and
(12), we have

∣
∣∣∣∣∣
arg

⎛

⎝θ

n∑

i�1, i ��l

( ji − ki )αi

⎞

⎠

∣
∣∣∣∣∣
≤

∣
∣∣∣∣∣
arg

⎛

⎝θ

n∑

i�1, i ��l

αi

⎞

⎠

∣
∣∣∣∣∣
<

π

2

(22)

This means that Re(sαl ) < 0, which contradicts our
assumption. Thus, all roots of (7) must lie in the left half-
plane. Then, system (3) is asymptotically stable. �

Remark 1 Theorem 2 only gives a sufficient condition for
the asymptotic stability of system (3). Thismeans that system
(3) can be stable even if conditions (a) or (b) are not met.

Remark 2 According to condition (b), the only summation
of a combination of n− 1 orders should be smaller than one.
For instance, a systemwith three orders 0.9, 0.7, 0.2 could be
stable because of 0.7 + 0.2 < 1. Consider that 0.9 + 0.7 > 1
and 0.9 + 0.2 > 1.

Remark 3 In a particular case, for a two-order fractional
system, it is enough that both of the fractional orders are
smaller than one. It is compatible with the results obtained
by Brandibur and Kaslik (2018).

4 The Leader-Following Consensus
of Multi-order FOMAS

The leader-following problem for a multi-order FOMAS is
studied in the current section.The fractional-order integrators
with non-identical orders are selected as the agents. This
means that the dynamics of agents can be described as

Dαi xi (t) � ui (t), i � 1, . . . , N (23)

whereαi ∈ (0, 1), i � 1, . . . , N denote the fractional orders
and αi �� α j , i �� j . This indicates that a heterogeneous
FOMAS with different fractional orders is considered. The
number of agents, the control signal and position for i-th
the agent in time t are indicated with N , ui (t), and xi (t),
respectively. Besides, assume that condition (b) is satisfied
with FOMAS (23). This paper considers a virtual leader with
position xd(t) (Xie & Cheng, 2014).

Definition 2 Ni and Cheng (2010). The leader-following
consensus of FOMAS(23)with a virtual leader position xd (t)
will be realized if, for any agent i , i � 1, . . . , N , there exists
a proper control signal ui (t) that

lim
t→∞ xi (t) − xd(t) � 0, i � 1, . . . , N (24)

for each initial condition xi (0), i � 1, . . . , N .

Theorem 3 Consider FOMAS (23) with connected undi-
rected topology. Consider that the control signals for agents
are defined as

(25)

ui (t) � k1
∑

j∈Ni

ai j
(
x j (t) − xi (t)

)

+ k1di (xd (t) − xi (t)) + Dαi xd (t)

where k1 is a positive feedback control gain. Moreover, con-
sider that condition (b) is fulfilled. Now, the leader-following
consensus for FOMAS (23) is attained.
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Fig. 1 The topology structure for Example 1

Proof Suppose that the position error between the i-th
agent position and the virtual leader position (or the desired
position) is represented with x̃i (t) � xi (t) − xd(t). Now,
replacing (26) in (23) gives

Dαi x̃i (t) � k1
∑

j∈Ni

ai j
(
x̃ j (t) − x̃i (t)

) − k1di x̃i (t), i � 1, . . . , N

(26)

Based on the definition of matrices D, L and H , (26) is
converted to

Dα x̃(t) � −k1Hx̃(t) (27)

where x̃(t) � [
x̃1(t), . . . , x̃N (t)

]T , and α �
[α1, . . . , αN ]T .

Since a connected undirected graph is considered for
FOMAS (23), based on Lemma 2, H is a positive-definite
matrix. Besides, k1 > 0. Thus, matrix k1H is also positive-
definite. This implies that condition (a) in Theorem 2 is
fulfilled. Moreover, condition (b) is also satisfied. Conse-
quently, based on Theorem 2, system (27) is asymptotically
stable. Thus, the agent’s position tends to the virtual leader’s
position. This completes the proof. �

Remark 4 The control signal (25) has three terms. Imple-
menting the first and second terms is straightforward (only
multiplication and summation operators are needed). The
third term includes a fractional-order derivative of the
desired trajectory.When the desired trajectory is constant, its
fractional-order derivative is zero (in the sense of Caputo).
For a time-varying desired trajectory (such as the sinusoidal
function), the fractional-order derivative of the desired trajec-
tory should be calculated. This calculation can be performed
using the FOTF toolbox (Chen et al., 2009).

5 Simulation Results

In the current section, three numerical examples are pre-
sented to demonstrate the accuracy of the established dis-
tributed control protocol.

Example 1 Assume a FOMAS where the dynamics of its
agents are represented with (23). An undirected connected
topology with three agents and a leader is considered, as

presented in Fig. 1. The leader node is described with 0. The
fractional orders of agents are addressed α1 � 0.5, α2 � 0.6,
α3 � 0.4. Consider that α1 + α2 > 1, α2 + α3 � 1 but
α1 + α3 < 1. Thus, condition (b) is satisfied. The Laplacian
matrix (L) and matrices D and H are determined as

L �
⎡

⎢
⎣

2 −1 −1
−1 1 0
−1 0 1

⎤

⎥
⎦, D �

⎡

⎢
⎣
1 0 0
0 0 0
0 0 0

⎤

⎥
⎦, H �

⎡

⎢
⎣

3 −1 −1
−1 1 0
−1 0 1

⎤

⎥
⎦

(28)

It could be verified that H is positive-definite. The ini-
tial positions of the agents are selected as x1(0) � 20,
x2(0) � 30, x3(0) � −20. Considering xd � 10, Figs. 2
and 3 give the agent positions and the virtual leader posi-
tions for k1 � 0.1 and k1 � 1, respectively. It is obvious that
the agent positions converge to the desired position and the
leader-following consensus is realized. Moreover, the con-
vergence speed increases while decreasing the control gain
k1. Figures 4 and 5 show the control signals of the agents
for k1 � 0.1 and k1 � 1, respectively. It can be concluded
that the maximum value of the control signal increase while
increasing the control gain.

Example 2 In this example, an undirected topology with six
agents is considered (see Fig. 6). The dynamics of agents are
compatible with (23) where α1 � 0.1, α2 � 0.15, α3 � 0.2,
α4 � 0.25, α5 � 0.29, α6 � 0.4. It could be easily checked
that condition (b) is fulfilled. In the following, the Laplacian
matrix (L) and matrices D and H for the graph are specified

L �

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

2 −1 −1 0 0 0
−1 4 −1 −1 −1 0
−1 −1 3 0 0 −1
0 −1 0 2 −1 0
0 −1 0 −1 3 −1
0 0 −1 0 −1 2

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

,

D �

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

, H �

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

2 −1 −1 0 0 0
−1 4 −1 −1 −1 0
−1 −1 3 0 0 −1
0 −1 0 2 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 3

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

(29)

Example 3 This example considers an undirected topology
with 10 agents (see Fig. 9). The dynamics of agents are com-
patible with (23) where α1 � 0.05, α2 � 0.06, α3 � 0.07,
α4 � 0.08, α5 � 0.09, α6 � 0.11, α7 � 0.12, α8 � 0.13,
α9 � 0.14, and α10 � 0.2. It could be easily checked that
condition (b) is fulfilled. In the following, the Laplacian
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Fig. 2 The positions of agents
and the virtual leader in Example
1 for k1 � 0.1

Fig. 3 The positions of agents
and the virtual leader in Example
1 for k1 � 1

Fig. 4 The control signals of the
agents in Example 1 for k1 � 0.1

Fig. 5 The control signals of the
agents in Example 1 for k1 � 1

matrix (L) and matrices D and H for the graph are spec-
ified.

It could be easily checked that H is positive-definite. The
initial conditions for the agents are selected as x1(0) � 10,
x2(0) � 20, x3(0) � 30, x4(0) � −10, x5(0) � −20,
x6(0) � −30. In this case, a sinusoidal path is considered for
the virtual leader position as xd � 8 sin(100π t). The agent
positions and the desired position are shown in Fig. 7 for

Fig. 6 The topology structure for Example 2

k1 � 0.1. As shown in Fig. 7, the leader-following consensus
is met, and all the agent positions tend to the virtual leader
position. The control signals are shown in Fig. 8.

It could be easily checked that H is positive-definite. The
initial conditions for the agents are selected as x1(0) � 10,
x2(0) � 20, x3(0) � 30, x4(0) � 40, x5(0) � 50,
x6(0) � −10, x7(0) � −20, x8(0) � −30, x9(0) � −40,
x10(0) � −50. In this case, a sinusoidal path is considered
for the virtual leader position as xd � 8 sin(100π t). The
agent positions and the desired position are shown in Fig. 10
for k1 � 0.1. As shown in Fig. 10, the leader-following con-
sensus is met, and all the agent positions tend to the virtual
leader position.
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Fig. 7 The positions of agents
and the virtual leader in Example
2

Fig. 8 The control signals of the
agents in Example 2

Fig. 9 The topology structure for Example 3

6 Conclusion

The current paper extracts sufficient conditions to attain the
leader-following consensus for a particular case of FOMAS
with heterogeneous fractional-order integrator agents under
fixed undirected topology. The simulation outcomes also
clarify the efficiency of the presented distributed control
strategy. Although the obtained constraint between the frac-
tional orders could be considered a limitation for applying the
proposed approach, the presented control protocol could be
considered an initiation for future studies. Extracting con-
ditions to realize the leader-following consensus for more
generalized multi-order FOMAS without any limitation on
the fractional orders could be considered a future research
aspect. This idea could be generalized for FOMAS with
double-integrator agents, too. This idea could be extended
to FOMAS with double-integrator agents. The actuator satu-
ration and the communication delay effects should be verified
in future works. Extracting similar conditions for a switching
topology could be chosen as another research field.
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Fig. 10 The positions of agents and the virtual leader in Example 3
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