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Abstract
The synchronization problem of multi-agent systems with non-identical general agents under time-varying topologies and in
the presence of external disturbances has not been solved for the introspective agents, i.e., agents have access to parts of their
own states. This paper aims to tackle this problem. It is assumed that the time-varying topology switches among a certain
amount of topologies with any a priori given dwell time and each topology contains a directed spanning tree. This paper
proposes a family of distributed protocols for each agent only using relative information from its neighboring agents and
some of its own states, such that synchronization can be achieved among agents while the effect of disturbances with finite
power on the norm of all agents’ output disagreement can be suppressed as much as possible. It should be emphasized that
agents’ controller states are exempted from the protocol design.

Keywords Multi-agent systems · Heterogeneous network · External disturbances · Switching topologies

1 Introduction

The problem of achieving synchronization in a multi-agent
system (MAS),where the goal is to design a distributed proto-
col, such that somevariables of interest, either states or output
trajectories, become the same asymptotically, has been sub-
stantially studied in last decade (see Bai et al. (2011), Ding
et al. (2018), You et al. (2020) and references therein). Var-
ious applications can be cast in this framework, including
distributed computation, swarming and flocking , the coor-
dination or platooning of autonomous vehicles, and many
others (for example, Tanner et al., 2007,Bernardo et al., 2015,
Viana et al., 2017, Jaoura et al., 2022).

For a MAS of identical agent models (i.e., homogeneous
network), an amount of efforts has been put in, first for sim-
ple agent dynamics and topology, then progressing to general
higher-order agent dynamics and time-varying topology, for
example (Li et al., 2010; Liu et al., 2018; Zhang et al., 2019;
You et al., 2020). While for a MAS of non-identical models
(i.e., heterogeneous network), more and more attention has
been given. One reason is that it can accommodate parameter
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uncertainty or small disturbances in the agent dynamics. The
other is that the heterogeneousMAS represents more general
systems. The work has been focused on output synchroniza-
tion, that is, all the agents should agree on a set of pre-selected
outputs, and leader-following consensus, that is, all agents
converge asymptotically to a priori given leader’s trajectory.
It is commonly assumed that agents are introspective, that
is, agents possess some knowledge about their own states
(see Kim et al. (2011), Yang et al. (2014), Xu et al. (2017),
Wang et al. (2020) for example). In both Xu et al. (2017) and
Wang et al. (2020), another layer of communication is needed
in the controller design. The synchronization problem for a
network of non-introspective agents is more challenging, yet
effort has already beenmade in this direction (Peymani et al.,
2014; Zhang et al., 2016). A specific class of heterogenous
networks is studied in Panteley and Loria (2017) with static
output feedback, showing that the synchronization involves
the stability of two orthogonal dynamical systems.

In the practical applications, agent systems are easily
affected by disturbances, which might result from sensor
bias or noise, processing errors or system uncertainties. Li et
al. (2014) considers agents with both external disturbances
and system uncertainties and a static protocol is designed
to ensure the network disagreement is uniformly ultimately
bounded (UUB). The literature uses the H∞ norm of the
transfer function from the external disturbance to the dis-
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agreement as a measurement for the synchronization among
agents (see Wang and Ding (2016), Zhang et al. (2019),
Zhang et al. (2018) for example). Wang and Ding (2016)
analyzes homogeneous network with constant input delay
while using full state feedback in the controller. In Zhang et
al. (2019), event-triggered controller using output feedback
for a general heterogeneous network is investigated and lin-
ear matrix inequality (LMI) theory is utilized for choosing
controller parameters. The H∞ almost synchronization is
brought forth in Peymani et al. (2014) for a network of intro-
spective, right-invertible linear time-invariant (LTI) agents.
The impact of disturbances on the synchronization error
dynamics is attenuated to an arbitrarily small value in the
sense of theH∞ norm. After that, the problem ofH∞ almost
synchronization for networks of identical non-introspective
agents is also studied in Peymani et al. (2013), where the only
available information for each agent is the network measure-
ment which is a linear combination of relative outputs.

Synchronization under time-varying communication
topologies, where the links among agentsmight vanish, come
up, become stronger or weaker, has been studied in the lit-
erature. In Shi and Johansson (2013); Meng et al. (2013),
the conditions for synchronization are derived under switch-
ing signal with an arbitrarily given dwell time. In Li et al.
(2021), the switching of topology follows a Markov process
and aperiodic intermittent control strategy is investigated.
Intermittent communication topology is also a kind of time-
varying topology, but it tackles the synchronization problem
with discontinuous information from the network (see Cheng
et al. (2016), Yu et al. (2018) for example).

So far, the results on the synchronization problem for het-
erogeneous networks of the general, linear, non-introspective
agents under switching topologies in the presence of exter-
nal disturbance can be seen in Zhang et al. (2015). Since no
agents’ states are available for the protocol design, all agents’
outputs are almost regulated to an external trajectory gener-
ated by an autonomous system. In this paper, partial states
are allowed to be utilized in the protocol. Hence, agents’ out-
puts can be directly synchronized with an arbitrary degree of
accuracy (i.e., the disagreement dynamic is asymptotically
smaller than any desired bound). In particular, the notion of
almost output synchronization for heterogeneous networks of
the general, linear, introspective agents under time-varying
topologies is formulated. It is assumed that the external dis-
turbances have power less than a prior given bound and the
time-varying topology switches among a finite number of
directed graphs that contain a directed spanning tree with an
a priori givendwell time.Then, a family of parameterized dis-
tributed protocols is designed for each agent such that almost
synchronization is achieved among agents and the network
disagreement can be squeezed by tuning the parameter in the
protocol.

The remainder of this paper is organized as follows. In the
rest of this section, we introduce some notations and recall
some results of algebraic graph theory. In Sect. 2, heteroge-
neous multi-agent networks are discussed, together with the
switching topologies and some assumptions on the network.
The problem of almost output synchronization is formulated
and solved in Sect. 3. In Sect. 4, we solve the almost regu-
lated output synchronization problem. In Sect. 5, the results
are illustrated via simulation examples.

1.1 Notations and Definitions

A matrix A ∈ C
m×n has its conjugate transpose denoted

by Ā
′
. When m = n, the eigenvalues are represented by

λi (A) (i = 1, . . . , n). And if all its eigenvalues are in the
open left-half complex plane, the matrix A is Hurwitz sta-
ble. For Ai ∈ C

m×n (i = 1, . . . , n), blkdiag{Ai } denotes a
block-diagonal matrix with Ai as the diagonal elements. The
Kronecker product between two matrices is marked by⊗. In
is the identity matrix, 0n means the zero square matrix, and
1n denotes a column vector with all entries equal to one. The
subscript n of the dimension is dropped if it is clear in the
context. [x1; · · · ; xn] denotes the column vector by stacking
the elements of x1, . . . , xn . Finally, H∞ norm of a transfer
function T is indicated by ‖T ‖∞.

A triple (V, E,A) is used to define a graph G, where V =
{1, . . . , N } is a node set, E is a set of node pairs (i, j), and
A = [ai j ] is theweighted adjacencymatrixwith ai j ∈ R ≥ 0
standing for the weigh between node i and j . G is undirected
if (i, j) ∈ E ⇒ ( j, i) ∈ E ; otherwise, directed. A directed
path from node i1 to ik is a sequence of vertices {i1, . . . , ik}
such that (iq , iq+1) ∈ E for q = 1, . . . , k − 1. A directed
graph G contains a directed spanning tree if there is a node
r such that a directed path exists between node r and every
other node. A weighted graph G is linked with a Laplacian
matrix L = {�i j } with �i j = ∑N

j=1 ai j for i = j ; otherwise
−ai j . Since the graph G has non-negative weights, L has
all its eigenvalues in the closed right-half plane and at least
one eigenvalue at zero associated with right eigenvector 1N
(Godsi & Royle, 2001). If G has a directed spanning tree, L
has a simple eigenvalue at zero and all the other eigenvalues
have strictly positive real parts (Ren & Beard, 2005).

The following definitions will be used in this paper (see
Saberi et al., 2022).

Definition 1 For given α, β > 0, GN
α,β is the set of fixed

directed graphs composed of N nodes such that for every
G ∈ G

N
α,β , the graph has a directed spanning tree and the asso-

ciated eigenvalues of its Laplacian, denoted by λ1, . . . , λN ,
that satisfy Re(λi ) > β and | λi |< α whenever λi 	= 0.
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Definition 2 An LTI dynamics (A, B,C, D) is right-
invertible if given a reference output yr (t), there exist an ini-
tial condition x(0) and an input u(t) such that y(t) = yr (t)
for all t ≥ 0. For example, every single-input single-output
system is right-invertible, unless its transfer function is iden-
tically zero.

Definition 3 An LTI dynamics (A, B,C, D) is minimum-
phase when the invariant zeros of the quadruple are all in the
open left-half complex plane.

2 Multi-agent Systems

A MAS with N non-identical under external disturbances is
considered, with the agent i described by an LTI dynamics:

�i :
⎧
⎨

⎩

˙̄xi = Ai x̄i + Bi ūi + Gi w̄i ,

yi = Ci x̄i ,
zm,i = Cm,i x̄i ,

(1)

for i = 1, . . . , N , where x̄i ∈ R
ni , ūi ∈ R

mi , and yi ∈ R
p

are states, inputs and outputs of the agent i , respectively.
zm,i ∈ R

pm,i is the part of states that can be accessed by
agent i . While, w̄i ∈ R

w̄i is the external disturbance, the

power ofwhich is finite, i.e., limT→∞
1

2T

∫ T
−T w̄

′
i w̄idt < ∞.

Matrices Ai , Bi , Ci , Gi , Cm,i have proper dimensions and
satisfy the following assumption:

Assumption 1 For each agent i ∈ V:

1. (Ai , Bi ,Ci ) is right-invertible and minimum-phase;
2. (Ai , Bi ) is stabilizable and (Ai ,Ci ) is detectable;
3. (Ai ,Cm,i ) is detectable.

The time-varying topology G(t) is defined by a triple
(V, E(t),A(t)), where both E(t) and A(t) are functions of
time t and each node in V stands for an agent. Moreover,
the time-varying weighed adjacency matrix A(t) = [ai j (t)]
with ai j (t) being a piecewise constant and right-continuous
in time t . The time-varying topologyG(t) supplies each agent
with a quantity ζi (t), which is a linear, time-varying combi-
nation of its own output relative to that of its neighboring
agents, i.e.,

ζi (t) =
N∑

j=1

ai j (t)(yi (t) − y j (t)) =
N∑

j=1

�i j (t)y j (t), (2)

for agent i ∈ V , where ai j (t) ≥ 0 and aii (t) = 0 with
i, j ∈ V . And L(t) = [�i j (t)] is corresponding time-varying
Laplacian matrix, which is also piecewise constant and right-
continuous functions of t .

The assumptions for the switching topology are given as
follows:

Assumption 2 Let {tk} be the time sequence of the disconti-
nuities of the piecewise constant weighted adjacency matrix
A(t) such that 0 =: t0 < t1 < · · · < tk < · · · . Assume
that the switching time sequence has minimum dwell time
τ ∗ > 0 such that tk+1 − tk ≥ τ ∗ for k = 0, 1, 2, . . ..

Assumption 3 Let G = {G1,G2, . . . ,GM } be a set of finite
directed graphs and G ⊂ G

N
α,β . Assume that G(t) remains

constant during interval [tk−1, tk), and switches among the
finite graph set G at t = tk , k = 1, 2, . . ..

The switching topology can be easily presented with
a piecewise constant, right-continuous function σ(t) :
[0,∞) → M := {1, 2, . . . , M}, where σ(t) ∈ M for
t ∈ [tk−1, tk) and σ(t) changes at t = tk , k = 1, 2, . . ..
Suppose, for each Gi ∈ G (i = 1, . . . , M), we denote the
associated weighted matrix by Ai and Laplacian matrix by
Li . Then, by using the function σ(t), we have G(t) = Gσ(t).
And similarly, we have A(t) = Aσ(t), and L(t) = Lσ(t),
which implies that ai j (t) = ai j,σ (t) and �i j (t) = �i j,σ (t).

3 Almost Output Synchronization Under
Switching Topologies

In this section, we consider almost output synchronization
under switching topologies for a MAS described in Sect. 2.

Define variables for the entire MAS w̄ := col{w̄i }, ū :=
col{ūi }, ζ := col{ζi }. Synchronization among agents ismea-
sured by the mutual disagreement. That is, the disagreement
between agent i and agent N is denoted by ei := yN − yi
for i ∈ V , and e := col{ei } is the disagreement vector for the
whole MAS.

Before giving the problem formulation, a set of distur-
bances presented in the system is defined as:

Definition 4 A set of piecewise continuous noises with
power less than κ is defined as �κ = {w̄ : ‖w̄‖rms =
limT→∞

1

2T

∫ T
−T w̄

′
i w̄idt < κ}.

We now formulate the problem of almost output synchro-
nization under switching topologies as follows:

Problem 1 Consider a MAS with non-identical and intro-
spective agents described by (1) and (2), in the presence of
external disturbances and under a switching topology G(t).
Suppose Assumptions 2 to 1 are satisfied, and the switching
topology has a minimum dwell time τ ∗ and the disturbance
has a limit power κ . Then, the problem of almost output syn-
chronization under the switching topology G(t) is to find,
if possible, for any κ > 0, any γ > 0, an LTI distributed
dynamic protocol, such that the disagreement among agents
satisfies lim supt→∞ ‖e(t)‖ < γ .
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The main result in this section is given in the following
theorem.

Theorem 1 Consider a MAS with non-identical and intro-
spective agents described by (1) and (2). Under Assump-
tions 2 to 1, with any a priori given minimum dwell time τ ∗,
for any given κ > 0, the problem of almost output synchro-
nization under a switching topology G(t) is solvable, i.e.,
there exists a family of LTI dynamic protocols, parameter-
ized in terms of low-and-high gain parameters δ, ε ∈ (0, 1],
of the form

{
χ̇i = Ai (δ, ε)χi + Bi (δ, ε) col{ζi , zm,i },
ūi = Ci (δ, ε)χi + Di (δ, ε) col{ζi , zm,i }, (3)

for i ∈ V , where χi ∈ R
qi , such that, for any given

γ > 0, there exists a δ∗ ∈ (0, 1] such that, for each
δ ∈ (0, δ∗], there exists an ε∗(δ, τ ∗) ∈ (0, 1] such that
for any ε ∈ (0, ε∗(δ, τ ∗)], the protocol (3) achieves almost
output synchronization under the switching topology, i.e.,
lim supt→∞ ‖e(t)‖ < γ .

Remark 1 For the distributed protocol (3), we only need to
know the lower bound on the real parts of the non-zero eigen-
values of all the Laplacian matrices Li , i ∈ M, (i.e., β), the
upper bound of the magnitude of the eigenvalues of all the
Laplacianmatrices Li , i ∈ M, (i.e., α), the number of agents
N , and the minimum dwell time τ ∗.

We will prove Theorem 1 in the following subsequent
sections in a constructive way.

3.1 Homogenization via a Pre-compensator

In this section, we show that non-identical agents represented
by (1) can be shaped into asymptotically identical agents via
a dynamic pre-compensator, using the local measurements
zm,i , which is called homogenization.

Lemma 1 Consider aMASof N non-identical agents described
by
(1). Let Assumption 1 hold. We denote by nqi the maximal
order of infinite zeros of (Ci , Ai , Bi ), i ∈ {1, . . . , N }. Sup-
pose a triple (C, A, B) is given such that

1. rank(C) = p,
2. (C, A, B) is invertible, of uniform rank nq ≥ nqi , and

has no invariant zero.

Then for each agent i ∈ {1, . . . , N }, there exist a dynamic
pre-compensator for each agent i ∈ V:
{
ẋ p,i = Ap,i x p,i + Bp1,i ui + Bp2,i zm,i ,

ūi = Cp,i x p,i + Dp1,i ui + Dp2,i zm,i ,
(4)

where ui ∈ R
p is a new input, x p,i ∈ R

pi is the state for
pre-compensator i . The cascade of the pre-compensator (4)
and the agent (1) is then presented as:

{
ẋi = Axi + B(Mui + Rxi ) + Ei,dw̄i + ρi ,

yi = Cxi ,
(5)

where ui , yi ∈ R
p, xi ∈ R

pnq ; A, B, and C are given as:

A =
(
0 Ip(nq−1)

0 0

)

, B =
(
0
Ip

)

, C = (Ip 0). (6)

Moreover, M ∈ R
p×p is an arbitrary and non-singular

matrix and R ∈ R
p×pnq is amatrix of appropriate dimension

and can be chosen arbitrarily. Ei,d can be chosen appropri-
ately and ρi is generated by an exponentially stable system
of the following form:

˙̃xi = Hi x̃i + Eo,i w̄i ,

ρi = Wi x̃i , (7)

where Hi , Eo,i , Wi can be found appropriately and Hi is
Hurwitz stable.

Proof The proof is in “Appendix.” 
�
We then define

Eiwi := (
Ei,d Wi

)
(

w̄i

x̃i

)

.

Then, the augmented agent can be rewritten as follows:

{
ẋi = Axi + B(Mui + Rxi ) + Eiwi ,

yi = Cxi .
(8)

Note that if nq = 1, then A = 0, B = C = Ip. For i ∈ V , the
measurement ζi is available, the local measurement zm,i will
no longer be used. They only play a role in homogenizing
the non-identical agents.

3.2 Protocol Design

In this section, we design a protocol for each augmented
agent (8) using a low-gain parameter δ ∈ (0, 1] and a high-
gain parameter ε ∈ (0, 1].

First, select K to ensure that A − KC is Hurwitz. Next,
choose Fδ = −B

′
Pδ , where Pδ = P

′
δ > 0 is the unique

solution of the following algebraic Riccati equation:

PδA + A
′
Pδ − τ PδBB

′
Pδ + δ I = 0, (9)

where τ > 0 is the lower bound on the real parts of the non-
zero eigenvalues of all Laplacian matrices Li , i ∈ M (i.e.,
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τ ≤ β). Next, define Sε = blkdiag{Ip, ε Ip, . . . , εnq−1 Ip},
Kε = ε−1S−1

ε K and Fδε = ε−pnq FδSε.
Then, we define the dynamic controller for each agent

i ∈ V:
˙̂xi = Ax̂i + BRx̂i + Kε(ζi − Cx̂i ),

ui = M−1Fδε x̂i . (10)

The state x̂i is an observer estimate of a linear combination
of other agents’ relative states with the same weights as in
the measurement ζi . The following Lemma provides a con-
structive proof of Theorem 1.

Lemma 2 For any given γ > 0, there exists a δ∗ ∈ (0, 1]
such that, for each δ ∈ (0, δ∗], there exists an ε∗(δ, τ ∗) ∈
(0, 1] such that for any ε ∈ (0, ε∗(δ, τ ∗)], the dynamic proto-
col (10) solves the problem of almost output synchronization
for a MAS of the form (8) under the switching topology G(t).

Proof For each i ∈ {1, . . . , N − 1}, let x̄i := xN − xi andˆ̄xi := x̂N − x̂i . Moreover, define ŵi = ENwN −Eiwi . Then,
using (8), we can write down the error dynamics as follows:

˙̄xi = Ax̄i + B(Fδε
ˆ̄xi + Rx̄i ) + ŵi ,

ei = Cx̄i . (11)

Define ḡi j,σ (t) = �i j,σ (t) − �N j,σ (t), i, j ∈ {1, . . . , N − 1}.
From (10), we obtain the following dynamics:

˙̄̂xi = A ˆ̄xi + BR ˆ̄xi +
N−1∑

j=1

ḡi j,σ (t)KεCx̄ j − KεC ˆ̄xi . (12)

Next, define ξi = Sε x̄i , and ξ̂i = Sε
ˆ̄xi . Then, the dynamics

(11) and (12) become

εξ̇i = Aξi + BFδξ̂i + Vεiξi + ε Ēεi ŵi ,

ε
˙̂
ξi = Aξ̂i + Vεi ξ̂i +

N−1∑

j=1

ḡi j,σ (t)KCξ j − KC ξ̂i , (13)

where Vεi = εnq BRS−1
ε , Ēεi = Sε.

Now define Ḡσ(t) = [ḡi j,σ (t)], i, j ∈ {1, . . . , N − 1}.
Moreover, let ξ = col{ξi }, ξ̂ = col{ξ̂i }, ŵ = col{ŵi }. Then,
we obtain the overall system dynamics as follows:

εξ̇ = (IN−1 ⊗ A)ξ + (IN−1 ⊗ BFδ)ξ̂ + Vεξ + ε Ēεŵ,

ε
˙̂
ξ = (IN−1 ⊗ (A − KC))ξ̂ + Vεξ̂ + (Ḡσ(t) ⊗ KC)ξ, (14)

where Vε = blkdiag{Vεi } and Ēε = blkdiag{Ēεi }.
DefineU−1

σ(t)Ḡσ(t)Uσ(t) = Jσ(t), where Jσ(t) is the Jordan

canonical form of Ḡσ(t), and let

v = (Jσ(t)U
−1
σ(t) ⊗ Ipnq )ξ, ṽ = v − (U−1

σ(t) ⊗ Ipnq )ξ̂ .

Then, the new overall system dynamics can be written,

εv̇ = (IN−1 ⊗ A)v + (Jσ(t) ⊗ BFδ)(v − ṽ) + Wεv + ε Ēŵ,

ε ˙̃v = (IN−1 ⊗ (A − KC))ṽ + (Jσ(t) ⊗ BFδ)(v − ṽ) + Wεv

+ε Ēŵ − Ŵε(v − ṽ), (15)

where Ē = (Jσ(t)U
−1
σ(t) ⊗ Ipnq )Ēε,, Wε = (Jσ(t)U

−1
σ(t) ⊗

Ipnq )Vε(Uσ(t) J
−1
σ(t) ⊗ Ipnq ), and Ŵε = (U−1

σ(t)⊗ Ipnq )Vε(Uσ(t) ⊗ Ipnq ). Finally, define Z as

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1 0
0 e1
...

...

eN−1 0
0 eN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊗ Ipnq ,

such that a vector variable η can be defined in such a way,

η := Z

(
v

ṽ

)

= (
v1 ṽ1 . . . vN−1 ṽN−1

)′
,

where ei ∈ R
N−1 is the i’th standard basis vector whose

elements are all equal to zero except for the i’th element
which is equal to 1. Then, the dynamics of η can be written
from (15):

εη̇ = Ãδ,σ (t)η + W̃εη + ε Ẽŵ, (16)

where

Ãδ,σ (t) = IN−1 ⊗
(
A 0
0 A − KC

)

+ Jσ(t) ⊗
(
BFδ −BFδ

BFδ −BFδ

)

,

W̃ε = Z

(
Wε 0

Wε − Ŵε Ŵε

)

Z−1, and Ẽ = Z

(
Ē
Ē

)

For t ∈ [tk−1, tk), we denote the value of σ(t) as �, where
� ∈ M. It follows from the proof of (Grip et al., 2014,
Theorem 1), that for each � ∈ M, there exists a small δ∗, for
any δ ∈ (0, δ∗], Ãδ,� in (16) is Hurwitz stable. We pick a δ ∈
(0, δ∗] and let it be fixed. Then there exists P̃δ,� = P̃

′
δ,� > 0

satisfying

Ã
′
δ,� P̃δ,� + P̃δ,� Ãδ,� = −3I2(N−1)pnq . (17)

Define Lyapunov function V� = εη
′
P̃δ,�η for this interval.

Evaluating its derivative along the trajectory of (16) yields
that
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V̇� = −3‖η‖2 + 2Re(η∗ P̃δ,�W̃εη) + 2εRe(η∗ P̃δ,� Ẽŵ)

≤ −3‖η‖2 + 2‖P̃δ,�‖‖W̃ε‖‖η‖2 + 2ρε‖ŵ‖‖η‖
= −(2 − 2‖P̃δ,�‖‖W̃ε‖)‖η‖2

− (‖η‖ − ρε‖ŵ‖)2 + ε2ρ2‖ŵ‖2
≤ −(2 − 2‖P̃δ,�‖‖W̃ε‖)‖η‖2 + ε2ρ2‖ŵ‖2,

where ρ ≥ λmax(P̃δ,�)‖Ẽ‖ ≥ ‖P̃δ,� Ẽ‖. Moreover, since W̃ε

shrinks to zero as ε goes to zero, there exists an ε∗
1 such that,

for any ε ∈ (0, ε∗
1], 2 − 2‖P̃δ,�‖‖W̃ε‖ > 1 holds for any

� ∈ M. Then,

V̇� ≤ −(2 − 2‖P̃δ,�‖‖W̃ε‖)‖η‖2 + ε2ρ2‖ŵ‖2
≤ −‖η‖2 + ε2ρ2‖ŵ‖2. (18)

So,

V̇� + ‖η‖2 − ε2ρ2‖ŵ‖2 ≤ 0. (19)

From Kalman–Yakubovich–Popov Lemma (Zhou & Doyle,
1998), we conclude that (19) implies that ‖Tŵη‖∞ ≤ ερ.
Next, we will show that this implies that the transfer function
from the original disturbance to the network disagreement
satisfies that ‖Tw̄e‖∞ ≤ ερ1, for certain ρ1.

Recall that ŵi = ENwN − Eiwi which implies that ŵ =
Tww, where

Tw =

⎛

⎜
⎜
⎜
⎝

−E1 0 . . . 0 EN

0 −E2 . . . 0 EN
...

...
...

...
...

0 0 . . . −EN−1 EN

⎞

⎟
⎟
⎟
⎠

.

Following the proof above, we find that

e = (IN−1 ⊗ C)(IN−1 ⊗ S−1
ε )(U� J

−1
� ⊗ Ipnq )

(
I(N−1)pnq 0

)
Z−1η

= (U� J
−1
� ⊗ C)

(
I(N−1)pnq 0

)
Z−1η.

Let� = (U� J−1
� ⊗C)

(
I(N−1)pnq 0

)
Z−1. Since the norm

of � is bounded, we have that

‖e‖ = ‖�η‖ ≤ ‖�‖‖Tŵη‖∞‖Tw‖‖w‖ ≤ ερ‖�‖‖Tw‖‖w‖.

According to Sect. 3.1 of homogenization, we have thatwi =(
w̄i

x̃i

)

, and that x̃i is defined via

˙̃xi = Hi x̃i + Eo,i w̄i ,

where Hi is Hurwitz and thus there exists�
′
such that ‖w‖ ≤

‖w̄‖ ≤ �
′ ‖w‖. This implies that there exists ρ1 such that

‖Tw̄e‖∞ ≤ ερ1, (20)

which can be made arbitrarily small by an appropriate choice
of the high gain ε.

Let us first consider (16) without the disturbance w,
and denote the state as η̃ and Lyapunov function as Ṽ� =
εη̃

′
P̃δ,�η̃ for interval t ∈ [tk−1, tk). We then have

˙̃V� ≤ −(2 − 2‖P̃δ,�‖‖W̃ε‖)‖η̃‖2

≤ − (2 − 2‖P̃δ,�‖‖W̃ε‖)
ε‖P̃δ,�‖ Ṽ�

≤ − 1

ελmax(P̃δ,�)
Ṽ�.

Define λc = min�∈M
1

λmax(P̃δ,�)
, then ˙̃V� ≤ −λc

ε
Ṽ�.

According to Liberzon and Morse (1999), we define mul-
tiple Lyapunov function for (16) as Ṽ = εη̃

′
P̃δ,σ (t)η̃. Then,

for t ∈ [tk−1, tk), we have

Ṽ (t) ≤ e−λσ(t)(t−tk−1)Ṽ (tk−1)

≤ e− 1
ε
λc(t−tk−1)Ṽ (tk−1).

Let b = supi, j∈M
λmax(P̃δ,i )

λmin(P̃δ, j )
. Let st be the switching times

during [t0, t). Then st ≤ t − t0
τ ∗ . And we have

Ṽ (t) ≤ bst e− λc
ε

(t−t0)Ṽ (t0)

≤ b
t−t0
τ∗ e− λc

ε
(t−t0)Ṽ (t0)

≤ e−(
λc
ε

− ln b
τ∗ )(t−t0)Ṽ (t0).

There exist ε∗
2 = λcτ

∗
ln b+τ∗ such that for any ε ∈ (0, ε∗

2], V (t) ≤
e−(t−t0)V (t0). Since εmax�∈M λmax(P̃δ,�)‖η̃(t)‖2 ≥ Ṽ (t)
≥ εmin�∈M λmin(P̃δ,�)‖η̃(t)‖2, we have

‖η̃(t)‖ ≤
√
√
√
√max�∈M λmax(P̃δ,�)

min�∈M λmin(P̃δ,�)
e− 1

2 (t−t0)‖η̃(t0)‖. (21)

Hence, we can choose ε∗ = min{ε∗
1, ε

∗
2}, such that for each

fixed ε ∈ (0, ε∗], limt→∞ ‖η̃(t)‖ = 0.
We now consider the affect of the external disturbance on

the networkdisagreement.Define state transitionmatrix from
tk−1 to tk as φ(tk, tk−1), it is easy to find that ‖φ(tk, tk−1)‖ <

1 for any k. Let Tφ = maxk ‖φ(tk, tk−1)‖.
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When adding the affect of disturbance, during an inter-
val, t ∈ [tk−1, tk), η(tk) = φ(tk, tk−1)η(tk−1) + ∫ tk

tk−1
Tŵη(t)

ŵ(tk − t)dt .
Then we have

‖η(tk)‖ ≤ ‖φ(tk , tk−1)η(tk−1)‖ + ‖
∫ tk

tk−1

Tŵη(t)ŵ(tk − t)dt‖

≤ Tφ‖η(tk−1)‖ + ερκ‖Tw‖

≤ T k
φ ‖η(t0)‖ +

1 − T k−1
φ

1 − Tφ
ερκ‖Tw‖.

Thus, lim supk→∞ ‖η(tk)‖ = 1

1 − Tφ

ερκ . Therefore,

‖η(t)‖ ≤ ‖φ(t, tk−1)η(tk−1)‖ + ερκ‖Tw‖, (22)

for 0 ≤ t − tk−1 < τ ∗. Hence, lim supt→∞ ‖η(t)‖ ≤
2 − Tφ

1 − Tφ

ερκ‖Tw‖.
Next, we will show that, there exists a ρ2 such that

lim supt→∞ ‖e(t)‖ ≤ ερ2κ . From the above, we already
know that e = �η and the norm of � is bounded. Thus,
we have

lim sup
t→∞

‖e(t)‖ = � lim sup
t→∞

‖η(t)‖ ≤ ερ2κ, (23)

where ρ2 = �ρ. Let ε = γ /(ρ2κ), then lim supt→∞ ‖e(t)‖
≤ γ . 
�

4 Almost Regulated Output Synchronization
Under Switching Topologies

In this section, we consider the case where the goal is that
the agents follow a particular trajectory in the presence of
external disturbances under a time-varying topology. In gen-
eral, the reference trajectory is generated by an autonomous
system of the form:

�̄0 :
{ ˙̄x0 = Ā0 x̄0,
y0 = C̄0 x̄0,

(24)

where x̄0 ∈ R
n0 , y0 ∈ R

p. We assume that ( Ā0, C̄0) is
observable, and all eigenvalues of Ā0 are in the closed-right
half complex plane, and C̄0 has full row rank.

Let ei0 := yi − y0 be the regulation error for agent i ∈
V and e0 = col{ei0}. In order to achieve regulated output
synchronization for all agents, the following assumption is
clearly necessary:

Assumption 4 Every agent of the direct graph Gi , i ∈ M, is
a member of a directed spanning tree with root contained in
a subset π ⊂ V .

To regulate all agents in the network to a reference trajec-
tory, it is necessary that agents in the root set π will receive
the regulation error ei0. It implies that the quantity available
to each agent is altered to

ζ̃i =
N∑

j=1

ai j (t)(yi − y j ) + ϕi (yi − y0), (25)

where ϕi = 1 for i ∈ π and ϕi = 0 for i /∈ π . Note that the
reference system can be viewed as a new root agent, denoted
as 0.This expandedgraphwill be referred to as the augmented
graph and will be denoted by G̃(t). The associated Laplacian
matrix L̃(t) = [�̃i j (t)] is then

L̃(t) =
(

0 0
− col{ϕi } L(t) + diag{ϕi }

)

.

Thus, in terms of the Laplacian matrix L̃(t), (25) can be
rewritten as ζ̃i = ∑N

j=0 l̃i j (t)y j .

Note that G̃(t) switches among the finite graph set G̃ =
{G̃1, G̃2, . . . , G̃M }, with associated Laplacian matrix L̃i for
each G̃i . Also note that, from Assumption 4, each graph G̃i
contains a directed spanning tree with agent 0 as the root
(Grip et al., 2012).

We will define almost regulated output synchronization
problem under the switching topology as follows.

Problem 2 Consider a MAS with non-identical and intro-
spective agents described by (1) and (2) and an autonomous
systemdescribed by (24). SupposeAssumptions 2 to 4 are sat-
isfied, and the switching topology hasminimumdwell time τ ∗
and the disturbance has a limit power κ . Then, the problem
of almost regulated output synchronization under switching
topology G̃(t) with respect to a reference trajectory y0 is to
find, if possible, for any κ > 0 and any γ > 0, an LTI
dynamic protocol such that, the disagreement among agents
satisfies that lim supt→∞ ‖e0(t)‖ < γ .

Here is the main result in this section:

Theorem 2 Consider a MAS with non-identical and intro-
spective agents described by (1) and (2) and an autonomous
system described by (24). Under Assumption 2 to 4with any a
priori given minimum dwell time τ ∗, for any given κ > 0, the
problem of almost regulated output synchronization under a
switching topology G̃(t) is solvable, i.e., there exits a family
of LTI dynamic protocols, parameterized in terms of low-
and-high gain parameters δ, ε ∈ (0, 1], of the form:
{ ˙̃χi = Ai (δ, ε)χ̃i + Bi (δ, ε) col{ζ̃i , zm,i },
ūi = Ci (δ, ε)χ̃i + Di (δ, ε) col{ζ̃i , zm,i }, (26)

fori ∈ V , where χ̃i ∈ R
q̃i , such that given any γ > 0,

there exists a δ∗ ∈ (0, 1] such that, for each δ ∈ (0, δ∗],
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there exists an ε∗(δ, τ ∗) ∈ (0, 1] such that for any ε ∈
(0, ε∗(δ, τ ∗)], the protocol (26) achieves almost regulated
output synchronization under switching topology, i.e., we
have lim supt→∞ ‖e0(t)‖ < γ .

Proof The proof is constructive and similar to the proof of
Theorem 1, except that the autonomous system needs to be
rank-uniformed first. In what follows, we will give such a
design procedure.

Let the largest observability index of the pair ( Ā0, C̄0) be
denoted by n∗

q0 . There exist a series of state manipulations
for (24) and a matrix B0 such that the resulting system char-
acterized by (A0, B0,C0) is invertible, of the uniform rank
nq ≥ max{nqi , n∗

q0}, and have no invariant zeros (Yang et
al., 2014, Appendix C). According to Peymani et al. (2014,
Lemma 4), we can then transform the autonomous system
into the following form:

�0 :
{
ẋ0 = Ax0 + B(M0u0 + R0x0),
y0 = Cx0,

(27)

where x0 ∈ R
pnq , u0 ∈ R

p, A, B, and C are given by (6),
and M0 ∈ R

p×p is an arbitrary non-singular matrix. Since
it is an autonomous system, we choose u0 = 0. Finally,
R0 ∈ R

p×pnq such that (27) can generate the same outputs as
(24). By adding a term E0w0 with E0 = 0 in (27), we obtain
the same form for the autonomous system as the agents in
the system (8), with i ∈ {0,V}.

The protocol designed here is similar to the one (10) used
in the synchronization case, except that α and β used in (9)
are set to the proper bounds associated with L̃i , i ∈ M.
The dynamic protocol used for each agent in the augmented
system is given by:

˙̂xi = Ax̂ + BR0 x̂i + Kε(ζ̃i − Cx̂i ),

ui = M−1
0 Fδε x̂i , (28)

where Kε = ε−1S−1
ε K and Fδε = ε−pnq FδSε, with K and

Fδ are chosen in the same way in Sect. 3. Notice that setting
x̂0(0) = 0 leads to x̂0(t) = 0 and u0(t) = 0 for all t ≥ 0.

The remaining of the proof is then the same as the proof
of Theorem 1. 
�

5 Examples

In this section, we illustrate our results on a MAS of N = 10
agents, in which there are four different dynamics:

I : A =
⎛

⎝
−1 2 0
0 0 1
2 1 1

⎞

⎠ , B =
⎛

⎝
0
0
1

⎞

⎠ ,C
′ =

⎛

⎝
0
1
0

⎞

⎠ ,C
′
m =

⎛

⎝
1
1
0

⎞

⎠ ,G =
⎛

⎝
1
0
1

⎞

⎠ ,

II : A =
⎛

⎝
−2 1 0
0 0 1
1 1 2

⎞

⎠ , B =
⎛

⎝
0
0
1

⎞

⎠ ,C
′ =

⎛

⎝
0
1
0

⎞

⎠ ,C
′
m =

⎛

⎝
1
0
1

⎞

⎠ ,G =
⎛

⎝
2
1
2

⎞

⎠ ,

III : A =
⎛

⎝
−3 2 0
0 0 1
2 2 1

⎞

⎠ , B =
⎛

⎝
0
0
1

⎞

⎠ ,C
′ =

⎛

⎝
0
1
0

⎞

⎠ ,C
′
m =

⎛

⎝
0
0
1

⎞

⎠ ,G =
⎛

⎝
2
3
4

⎞

⎠ ,

IV : A =
⎛

⎝
−2 3 0
0 0 1
3 1 2

⎞

⎠ , B =
⎛

⎝
0
0
1

⎞

⎠ ,C
′ =

⎛

⎝
0
1
0

⎞

⎠ ,C
′
m =

⎛

⎝
1
1
0

⎞

⎠ ,G =
⎛

⎝
4
1
3

⎞

⎠ .

Agents 1, 2, and 3 have type I dynamics, Agents 4, 5,
and 6 have type II dynamics, Agents 7 and 8 have type III
dynamics, and Agents 9 and 10 have type IV dynamics. The
topology switches among three directed graphs presented in
Fig. 1 in a circular manner. The minimum dwell time τ ∗ is
equal to 3 second. The external disturbances are chosen as
w̄1(t) = sin(9t), w̄2(t) = 1.5, w̄3(t) = cos(6t), w̄4(t) = 1,
w̄5(t) = cos(3t), w̄6(t) = sin(6t), w̄7(t) = sin(5t), w̄8(t) =
cos(t), w̄9(t) = sin(10t), w̄10(t) = cos(2t). The degree of
the infinite zeros for each agent is equal to 2.

After homogenization, the agents have dynamics of the
form (8) with

A =
(
0 1
0 0

)

, B =
(
0
1

)

, C = (
1 0

)
,

E1wi1 =
(
0 0 0 0
1 2 3 4

) (
w̄i1
x̃1

)

, E2wi2 =
(
1 0 0 0
2 1 3 5

) (
w̄i2
x̃2

)

,

E3wi3 =
(
3 0 0 0
4 2 4 4

) (
w̄i3
x̃3

)

, E4wi4 =
(
1 0 0 0
3 3 4 6

) (
w̄i4
x̃4

)

,

where i1 ∈ {1, 2, 3}, i2 ∈ {4, 5, 6}, i3 ∈ {7, 8}, i4 ∈
{9, 10}.

Fig. 1 The topologies of multi-agent systems
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Fig. 2 Almost output synchronization

Fig. 3 Almost regulated output synchronization

Almost output synchronization: Choose K = (
3 2

)
to

place eigenvalues at {−1, −2}, and select δ = 10−5. Fig-
ure 2 shows the results for ε = 0.0002 and ε = 0.0007. It
is clearly that when ε is smaller, the effect of disturbance on
the network disagreement is squeezed much more.

Almost regulated output synchronization: In this case, the

reference system of the form (24) has A0 =
(

0 0.5
−0.5 0

)

,

C0 = (
1 0

)
and the initial condition x0 =

(
0
1

)

, which is

connected to the root Agent 2. After homogenization, we get
R0 = [−0.52 0], M0 = 1, A, B, andC are the same as above
for (27). We use the same K matrix, and choose δ = 10−5.
Figure 3 also shows that when ε is smaller, the effect of
disturbance on the regulation error is attenuated much more.

6 Conclusion

In this paper, we have formulated the notion of almost syn-
chronization for heterogeneous networks of introspective
agents under directed switching topologies. That means the
problem of almost synchronization for heterogeneous net-
works of both introspective and non-introspective agents
under a directed switching topologies has been done. The
future research will be focused on agents in the presence of
actuator saturation and input delay while under switching
topologies.

The author has no conflicts of interest to disclose.

Proof of Lemma 1

Proof Let nq ≥ maxi=1,...,N (nqi ). Then, according to San-
nuti et al. (2014, Theorem 1), there exists a pre-compensator
to make agent i ∈ {1, . . . , N } invertible and of equal rank
nq ,

{
ẋ1p,i = A1

p,i x
1
p,i + B1

p,i u
1
i ,

ūi = C1
p,i x

1
p,i x

1
p,i + D1

p,i u
1
i ,

(1)

where u1i ∈ R
p. Next, we concentrate on transforming dif-

ferent invertible system dynamics of equal rank to almost
identical ones.

Let

x̃i =
(

x̄i
x1p,i

)

.

There always exist nonsingular state transformation �i,x and
input transformation �i,u , see Sannuti and Saberi (1987),
such that

x̃i = �i,x xi , u1i = �i,uu
2
i . (2)

where

xi :=
(
xi,a
xi,d

)

.

Then, the interconnection of (1) and (1) can be written in the
special form,

⎧
⎨

⎩

ẋi,a = Āi,axi,a + L̄i,a yi + Ei,aw̄i ,

ẋi,d = Axi,d + B(u2i + Di,axi,a + Di,d xi,d) + Ei,dw̄i ,

yi = Cxi,d ,

(3)

where A, B, C are as defined in (6). Note that there is an
output injection for the zero dynamics. Therefore, we can
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have internal stability even if the system is not minimum
phase.

Note that the information

z̄m,i :=
(
zm,i

x1p,i

)

is available for agent i , and z̄m,i can be represented in terms
of xi,a, xi,d as

z̄m,i = C̄m,i

(
xi,a
xi,d

)

, where C̄m,i =
(
Cm,i 0
0 I

)

�i,x .

We define that, for i = 1, . . . , N ,

Āi =
(

Āi,a L̄i,aC
BDi,a A + BDi,d

)

, B̄i =
(
0
B

)

.

Assumption 1 implies that (Cm,i , Ai ) is observable, which
yields that (C̄m,i , Āi ) is observable. We then design an
observer-based pre-compensator for the system (3) as

{ ˙̄̂xi = Āi ˆ̄xi + B̄i u2i − K̄i (z̄m,i − C̄m,i ˆ̄xi ),
u2i = (−Di,a R − Di,d

) ˆ̄xi + Mui ,
(4)

where ui ∈ R
p, K̄i is chosen such that Āi + K̄i C̄m,i is

Hurwitz stable, R is chosen such that A + BR has desired
eigenvalues in the open left half plane, and M is an arbitrary
and non-singular matrix. Define the observer error x̃i = xi −ˆ̄xi . Notice that the observer error dynamics is asymptotically
stable. Moreover, the effect of xi,a on the dynamics xi,d is
asymptotically canceled. Thus, the mapping from the new
input ui to the output yi is given by

{
ẋi,d = (A + BR)xi,d + BdMvi + ρi + Ei,dw̄i ,

yi = Cx̄i,d ,
(5)

and the observer error dynamics is written as,

⎧
⎨

⎩

˙̃xi = ( Āi + K̄i C̄m,i )x̃i +
(
Ei,a

Ei,d

)

w̄i ,

ρi = Bd
(
Di,a Di,d − R

)
x̃i .

(6)

Then, let xi be xi,d , which results in the dynamics in (8).
Moreover, Hi , Eo,i , and Wi can be found in (6). 
�
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