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Abstract
This paper presents single-layer robust nonlinear controllers for the unmanned aerial manipulator (UAM) trajectory tracking
problem. The multi-body dynamical modeling of an underactuated UAM is conducted from the perspective of its end-effector
using the Euler–Lagrange formalism. Accordingly, two single-layer nonlinear controllers are designed based on the classic
H∞ and the novelW∞ control approaches for robust trajectory tracking of the UAMend-effector. The nonlinearH∞ andW∞
controllers are implemented in a hardware-in-the-loop framework using a simulator developed on Gazebo and ROS platforms,
based on the computer-aided design model of the UAM. The performance of the controllers is evaluated when executing tasks
such as object grasping, extension and retraction of the manipulator arm, hovering, and tracking a time-varying trajectory,
while the UAM is affected by disturbances as ground effect, environment wind, and parametric and structural uncertainties.

Keywords Robust control · Nonlinear control · Optimal control · Aerial manipulator

1 Introduction

Unmanned aerialmanipulators (UAMs) consist of unmanned
aerial vehicles (UAVs) coupled with one or more robotic
manipulators. These aerial robots expand the workspace of
a robotic manipulator to encompass the entire accessible
(i.e., obstacle-free) tridimensional space. They have a vast
potential to perform tasks such as grasping objects, load
transportation and sensor deployment, especially in remote,
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hard to access and hazardous environments (Orsag et al.
2018; Ollero and Siciliano 2019).

Despite the advantages, the control design for UAMs is
challenging. These systems are, usually, underactuated with
highly coupled and complex nonlinear dynamics. In addition,
UAMs operate under disturbances caused by aerodynamic
effects, unmodeled dynamics and parametric uncertainties,
as well as displacements of the center of mass (CoM) gener-
ated by themovements of the robotic arm. As a consequence,
robust controllers are required to achieve acceptable perfor-
mance.

In the literature, most studies dealing with control design
for UAMs employ hierarchical controllers based on simpli-
fied models, with one control loop for the UAV and another
for the robotic manipulator. Heredia et al. (2014) design a
backstepping controller for the UAV and an admittance con-
troller for the robotic arm; also in Jimenez-Cano et al. (2013),
the same backstepping controller of Heredia et al. (2014) is
used for the UAV, while a PID controller is designed for
the robotic arm. Chaikalis et al. (2020) propose a hierar-
chical control strategy, in which an adaptive backstepping
controller with gravity compensation is designed based on
simplified UAV dynamics, and a separate adaptive back-
stepping controller is developed for the manipulator arm.
Admittance-based control structures are also found in Ryll
et al. (2017); Zhang et al. (2018); Coelho et al. (2020); Sligh-
tam et al. (2021); Smrcka et al. (2021).
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Still concerning hierarchical methods, passivity-based
control strategies have also been used for control design of
UAMs. Acosta et al. (2014) propose a robust passivity-based
hierarchical controller, which ensures stability to the sys-
tem with the robotic arm locked. The same authors present
in Acosta et al. (2020) a nonlinear cascade control struc-
ture with a passivity-based controller for the UAV and an
inverse kinematic controller with integral action for the
robotic manipulator. In addition to these control techniques,
Ballesteros-Escamilla et al. (2019) propose an adaptive con-
troller based on a PD structure for the trajectory tracking of
a UAM, and Nava et al. (2020) present an outer-loop PID
controller for the UAV and an inner-loop controller based on
multi-task optimization for a manipulator.

Although less prevalent, another approach that has been
used to control UAMs is based on the multi-body model
obtained from theUAVperspective, which takes into account
the coupling between the UAV and the robotic manipulator.
Mello et al. (2016) propose a cascade control strategywith an
outer-loop kinematic controller designed based on the dual-
quaternion algebra and an inner-loop dynamic controller
designed based on input–output partial feedback lineariza-
tion with a linearH∞ controller used as the auxiliary control
law. Moreover, in our previous work (Morais et al. 2020), we
present the multi-body model of a UAM obtained from the
UAV perspective, fromwhich robust nonlinearH∞ andW∞
controllers are designed for trajectory tracking. These con-
trollers are compared and validated in a hardware-in-the-loop
(HIL) simulation.

On the one hand, the aforementioned hierarchical con-
trol strategies based on simplified models of the UAM have
some drawbacks. By using decoupledmodels of theUAVand
the manipulator, the dynamical coupling effects are assumed
as disturbances for the control design, degrading its perfor-
mance. On the other hand, the control strategies based on
the multi-body model obtained from the UAV perspective
(Mello et al. 2016; Morais et al. 2020) do consider the sys-
tems dynamical coupling; however these control strategies
still require the usage of outer layers in order to track refer-
ences of the end-effector. To address these issues, this work
proposes a single-layer controller based on the multi-body
dynamics of the UAM modeled from the perspective of the
end-effector.

As previously mentioned, UAMs require robust con-
trollers in order to achieve acceptable performance. A usual
approach used to deal with uncertainties in the control design
stage is the nonlinear H∞ control strategy (van der Schaft
2000). Some applications of this control technique to under-
actuated mechanical systems are found in Siqueira and Terra
(2004); Raffo et al. (2011, 2015). Nevertheless, as stated in
Chilali and Gahinet (1996), the H∞ control strategy deals
mostly with the aspect of the highest gain that the system
gives to the disturbances and provides little control over the

transient behavior of the system. To overcome this issue,
Aliyu and Boukas (2011) proposed the formulation of the
H∞ controller in the Sobolev space Wm,p for the general
class of nonlinear systems. This approach was later particu-
larized for mechanical systems and extended to the weighted
Sobolev space in Cardoso et al. (2018). Furthermore, in Car-
doso et al. (2021), the W∞ control theory was refined and
formulated for reduced and underactuated systemswith input
coupling. The motivation behind this novel control approach
is to consider the dynamics of the system in the cost func-
tional to obtain a controller that provides better transient
performance with fast reaction against external disturbances.
These features make the novel W∞ control strategy even
more attractive for the control design of UAMs.

Therefore, aiming to perform trajectory tracking of the
end-effector and achieve robustness against disturbances
with fast transients, this paper designs two single-layer con-
trollers for a UAM, one based on the classic nonlinear H∞
control approach and the other based on the novel nonlin-
ear W∞ one. The efficiency of the proposed controllers is
demonstrated via numerical experiments conducted in a HIL
framework using the ProVANT simulator. The ProVANT
simulator1 is a software developed at Federal University of
Minas Gerais (UFMG) and released under the MIT open-
source license. This software was created with the primary
goal of providing simulations with visual feedback of control
strategies designed for UAVs. Comparison analyses between
the nonlinear H∞ and W∞ single-layer controllers are also
performed to highlight their advantages and disadvantages
in the case study.

Summarizing, the main contributions of this paper are:
(i) the multi-body dynamical modeling of the UAM from
the perspective of its end-effector, using the Euler–Lagrange
formalism; (ii) the proposal of two single-layer nonlinear
controllers, based on the nonlinear H∞ and the novel non-
linearW∞ control approaches, for robust trajectory tracking
of the UAM end-effector; (iii) the validation of the pro-
posed single-layer controllers in a HIL framework using the
ProVANT Simulator, resulting in soft real-time control sys-
tems that are ready for implementation in the real system.

The remainder of the paper is structured as: Section 2
develops the multi-body modeling of the UAM from the
perspective of its end-effector; Sect. 3 presents the design
of the single-layer nonlinear H∞ and W∞ controllers for
the UAM; Sect. 4 describes the simulation environment,
performs the HIL numerical experiments, and presents the
comparative analysis between theH∞ andW∞ controllers.
Finally, Sect. 5 concludes the work and proposes future
works.

1 TheProVANTsimulator software is available for download onhttps://
github.com/Guiraffo/ProVANT-Simulator.
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Notation: The notation used in this paper is quite stan-
dard. Italic lowercase letters denote scalars, boldface italic
lowercase letters denote vectors, and boldface italic upper-
case letters denote matrices; (·)′, (·)−1, and (·)† stand,
respectively, for the transpose, inverse, and Moore–Penrose
pseudo-inverse of the element (·); N � {1, 2, . . .}, R �
(−∞,∞), R≥0 � [0,∞), Rn � {r = [r1 . . . rn]′ : ri ∈
R}, and R

n×m � {R = [r1 . . . rm] : r i ∈ R
n}; SO(3)

denotes the group of all rotations about the origin of three-
dimensional Euclidean space R3, and Rx,φ , Ry,θ , and Rz,ψ

denote rotation matrices of angles φ, θ , and ψ around �x ,
�y, and �z axes, respectively; O and 1 are, respectively, zero
and identity matrices with appropriate dimension; diag(·)
is a diagonal matrix whose diagonal elements are given in
parentheses, and all off-diagonal elements are zero; similarly,
blkdiag(·) represents a block diagonal matrix whose diago-
nal elements are squarematrices given in parentheses, and all
off-diagonal blocks are zero matrices; z(t) : R≥0 → R

nz is a
time-varying function, and ż(t) � d z(t)/dt denotes its time
derivative.Let t ∈ R≥0 and p ∈ N∪{∞}, if z(t) ∈ Lp[0,∞),

then ||z(t)||Lp �
(∫ ∞

0

∑nz
j=1 |z j (t)|p dt

)1/p
< ∞, where

z j (t) is the element corresponding to the j-th row of the

vector z(t); ||z(t)||Lp,� �
(∫ ∞

0 ||�1/p z(t)||p
p dt

)1/p
,

with ||�1/p z(t)||p �
(∑nz

i=1 | (�1/p z(t)
)

i |p
)1/p

, in which(
�1/p z(t)

)
i stands for the i-th element of the vector result-

ing from the product �1/p z(t); let m ∈ N ∪ {0}, then
||z(t)||Wm,p,�

�
( m∑

α=0
||dα z(t)/dtα||p

Lp,�α

)1/p, with � �
{�0, . . . ,�m}.

2 SystemModeling

This section develops the multi-body modeling (Shabana
2013) of the UAM from the perspective of its end-effector
using the Euler–Lagrange formalism. TheUAM is composed
of a quadrotor UAV serially coupled with a planar manipula-
tor with three revolution joints. Figures 1 and 2 illustrate the
computer-aided design (CAD) model of the UAM and the
planar manipulator, respectively.

In order to obtain the forward kinematic model (FKM),
the UAM is assumed to be composed of four rigid bodies: the
quadrotor UAV and the three links of the planar manipulator.
Then, the following frames are rigidly attached to the system:
the inertial reference frame (FI ); frame (FL0 ) attached to
the geometric center of the quadrotor UAV; frame (FLi ),
for i ∈ {1, 2, 3}, attached to the i-th link of the planar
manipulator according to the standard Denavit–Hartenberg
(DH) convention; and the end-effector frame (FL4 ).

In this work, the UAM equations of motion are obtained
from the perspective of the end-effector. The end-effector

Fig. 1 Computer-aided design of theUAMand reference frames rigidly
attached to obtain the FKM

Fig. 2 Computer-aided design of the planar manipulator and reference
frames rigidly attached to obtain the FKM. The frames �z-axis points
inward to the page

has six degrees of freedom (DOF), which are grouped
into the vector qE (t) : R≥0 → R

6, with qE (t) �
[φ(t) θ(t) ψ(t) x(t) y(t) z(t)]′, where φ(t), θ(t), and ψ(t)
are Euler angles with the ZYX convention about local axis,
which are used to describe the orientation of FL4 w.r.t. FI ,
and x(t), y(t), and z(t) are the position of FL4 along the �x ,
�y and �z axes of FI , respectively, in which (·)′ denotes the
transpose operator. The manipulator arm has three revolu-
tion joints, thus three DOF, that are grouped into the vector
qM(t) : R≥0 → R

3, with qM(t) �
[
β1(t) β2(t) β3(t)

]′
,

where βi (t) : R≥0 → R is the angular position of the i-th
link w.r.t the (i − 1)-th link. Therefore, the vector of gen-
eralized coordinates that describes the system is given by
q(t) : R≥0 → R

9, with q(t) �
[
q ′
E (t) q ′

M(t)
]′
.

The FKM of the UAM is developed using homogeneous
transformation matrices (HTM) (Jazar 2010). The position
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and orientation of FL4 w.r.t. FI are computed by the HTM2

HFI
FL4

=
[
RFI
FL4

pFI
FL4

O 1

]
, (1)

where O is a matrix of zeros with appropriate dimension,
RFI
FL4

∈ SO(3) is a rotation matrix from FL4 to FI , with

RFI
FL4

� Rz,ψ Ry,θ Rx,φRx,− π
2
, and pFI

FL4
= [

x y z
]′

is the

position of the origin of FL4 w.r.t. FI , expressed in FI .
Using the standard DH convention, the pose of frames

FLi , for i ∈ {1, 2, 3}, w.r.t. FLi−1 is given by the HTM

H
FLi
FLi+1

=
[
R
FLi
FLi+1

p
FLi
FLi+1

O 1

]
, (2)

with

R
FLi
FLi+1

=
⎡
⎣
cos(βi ) − sin(βi ) cos(αi ) sin(βi ) sin(αi )

sin(βi ) cos(βi ) cos(αi ) − cos(βi ) sin(αi )

0 sin(αi ) cos(αi )

⎤
⎦ ,

p
FLi
FLi+1

= [
ai cos(βi ) ai sin(βi ) di

]′
,

where αi , di , ai ∈ R are, respectively, the i-th link twist
angle, the i-th link offset distance, and the i-th link length
(Jazar 2010). The DH parameters of the manipulator arm, as
well as the physical parameters of the UAM, are presented
in Table 1.

In order to derive the equations ofmotionof the system, the
pose of the CoM of each body must be computed. Therefore,
assuming frames located at theCoMCk , for k ∈ {0, 1, 2, 3},
where C0 is the CoM of the quadrotor UAV, and C1, C2, C3
are the CoM of the planar manipulator links, the pose of each
CoM is given by

HFI
Ck

= HFI
FL4

H
FL4
Ck

=
[
RFI
Ck

pFI
Ck

O 1

]
, (3)

with H
FL4
C3 �

[
1 p

FL4
C3

O 1

]
and H

FL4
Cn

�
(
H

FLn+1
FL4

)−1

H
FLn+1
Cn

, forn ∈ {0, 1, 2},whereHFLk+1
Ck

�
[
1 p

FLk+1
Ck

O 1

]
,

with p
FL1
C0 � [0 − l0 0]′, l0 ∈ R is the distance from frame

FC0 to FL1 , p
FLi+1
Ci

� [−ai/2 0 0]′ for i ∈ {1, 2, 3}, and
1 is an identity matrix with appropriate dimension.

Assumption 1 The position of the CoM of each body is
located at its geometric center.

2 For the sake of simplicity, throughout the manuscript, some function
dependencies are omitted.

2.1 Equations of Motion

The equations of motion of the UAM are derived through the
Euler–Lagrange (EL) formalism (Jazar 2010) and written as

M(q)q̈(t) + (C(q, q̇) + �) q̇(t) + g(q) = u(t) + δ(t), (4)

where M(q) : R9 → R
9×9 is the symmetric and positive-

definite inertia matrix, C(q, q̇) : (R9 × R
9) → R

9×9 is the
centripetal and Coriolis forces matrix, � ∈ R

9×9 is the vis-
cous friction coefficient matrix, g(q) : R

9 → R
9 is the

vector of gravitational forces, u(t) : R≥0 → R
9 is the

vector of generalized forces due to the control inputs, and
δ(t) : R≥0 → R

9 is the unknown but bounded vector of gen-
eralized disturbances, with δ(t) � [δφ(t) δθ (t) δψ(t) δx (t)
δy(t) δz(t) δβ1(t) δβ2(t) δβ3(t)]′.
Remark 1 The vector of generalized disturbances δ(t) repre-
sents the total effects of external disturbances, parametric
uncertainties, and unmodeled dynamics actuating on the
UAM.

The inertia matrix is obtained from the total kinetic energy
of the system, which is computed by (Jazar 2010) K =
q̇ ′M(q)q̇, with

M(q) =
3∑

k=0

(
mk J ′

vk
Jvk + J ′

ωk
RFI
Ck

ICk (R
FI
Ck

)′ Jωk

)
, (5)

where mk ∈ R and ICk ∈ R
3×3 are, respectively, the mass

and the inertia tensor matrix associated with the k-th body. In
addition, Jvk = ∂ ṗFI

Ck
/∂ q̇ is the linear velocity Jacobian, in

which ṗFI
Ck

(t) : R≥0 → R
3 is the time derivative of pFI

Ck
(t) :

R≥0 → R
3 obtained from (3). Similarly, Jωk = ∂ω

FI
Ck

/∂ q̇ is

the angular velocity Jacobian, in which ω
FI
Ck

(t) : R≥0 → R
3

is the angular velocity of the k-th body w.r.t. FI , expressed
in FI , obtained from S(ω

FI
Ck

) = Ṙ
FI
Ck

(RFI
Ck

)′, where S(·) is
a skew-symmetric matrix (Jazar 2010).

The centripetal and Coriolis forces matrix C(q, q̇) is
obtained from the inertiamatrix by computing theChristoffel
symbols of the first kind

C k̂, ĵ =
9∑

l̂=1

1

2

[
∂M k̂, ĵ

∂q l̂

+ ∂M k̂,l̂

∂q ĵ

− ∂M l̂, ĵ

∂q k̂

]
q̇ l̂ , (6)

where C k̂, ĵ and M k̂, ĵ are, respectively, the elements of the

Coriolis and inertia matrices corresponding to the k̂-th row
and ĵ-th column.

The frictional force actuating on the UAM is computed
by:

Fdrag = −�q̇(t). (7)
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Only the friction forces generated by themanipulator’s joints
are here considered; therefore,� = diag(0, 0, 0, 0, 0, 0,μβ1 ,
μβ2 , μβ3), where μβi ∈ R is the coefficient of friction of the
i-th joint.

The gravitational force vector g(q) is computed by
g(q) = ∂U(q)/∂q, where U(q) : R

9 → R is the poten-
tial energy of the system, which is computed by summing up
the potential energy of all the bodies

U = −ga

(
3∑

k=0

az mk pFI
Ck

)
, (8)

where az � [0 0 1]′, and ga ∈ R is the gravity acceleration.
The generalized forces vector is given by u(t) =

B(q)υ(t), in which B(q) : R9 → R
9×7 is the input coupling

matrix, and υ(t) : R≥0 → R
7 is the vector of control inputs,

with υ(t) � [ f1(t) f2(t) f3(t) f4(t) τ1(t) τ2(t) τ3(t)]′,
where f j is the thrust generated by the j-th propeller, for
j ∈ {1, 2, 3, 4}, and τi is the torque applied to the i-th
joint of the manipulator arm by a servomotor.

The thrust generated by the j-th propeller is given by
(Sanchez-Cuevas et al. 2017)

f j (z j ) = bω2
j

1

fG E (z j )
, (9)

where b ∈ R is the propeller thrust coefficient, ω j (t) :
R≥0 → R is the angular velocity of the j-th propeller,
z j (t) : R≥0 → R is the distance from the j-th propeller to the
closest surface of the environment, and fG E (z j ) : R → R

is the ground effect factor, which accounts for the increment
in thrust due to the ground effect, that is given by

fG E (z j ) = 1 −
(

R

4z j

)2

− R2

⎛
⎜⎜⎝

z j√(
d2 + 4z2j

)3

⎞
⎟⎟⎠

− R2

2

⎛
⎜⎜⎝

z j√(
2d2+4z2j

)3

⎞
⎟⎟⎠−4R2

⎛
⎜⎝ z j(

l2+4z2j

)3

⎞
⎟⎠ ,

(10)

where R ∈ R is the propeller radius, d ∈ R is the distance to
the adjacent propeller, and l ∈ R is the distance between the
propellers and the quadrotor geometric center.

In order to improve the controllability of the system and
generate the input coupling necessary to design the nonlinear
H∞ and W∞ controllers presented in the next section, the
rotors of the quadrotor UAV are tilted toward its geometric
center by a small angle αT (Raffo et al. 2011). Thus, the input
coupling matrix of the system is given by

Table 1 Table of system parameters

Parameter Value

Unmanned aerial manipulator parameters

l 0.3 (m)

l0 0.1165 (m)

d 0.4243 (m)

b 9.510−6 (N·s2/rad2)
kτ 1.710−7 (N·m·s2/rad2)
r 0.127 (m)

αT 5 (◦)
ga 9.81 (m/s2)

μβ1 , μβ2 , μβ3 0.30485 (N · s/m)

mC0 2.24 (kg)

mC1 , mC2 , mC3 0.2 (kg)

IC0 diag(1.18, 2.35, 1.17) · 10−2 (kg·m2)

IC1 ,IC2 ,IC3 diag(1.1, 1.1, 1.2) · 10−3 (kg·m2)

Denavit–Hartenberg parameters

Link di (m) θi (rad) ai (m) αi (rad)

l1 0 β1 + 0.3670 0.0765 0

l2 0 β2 + 2.5813 0.1485 0

l3 0 β3 + 2.9486 0.1635 0

l4 0 0 0 0

B(q) =
[
J ′

ω0
RFI
C0

J ′
v0
RFI
C0

[
O6×3

13

]]
· N,

N �
[

N O6×3

O3×4 13

]
,

N �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 l cos(αT ) 0 −l cos(αT )

−l cos(αT ) 0 l cos(αT ) 0
kτ

b cos(αT ) − kτ

b cos(αT ) kτ

b cos(αT ) − kτ

b cos(αT )

− sin(αT ) 0 sin(αT ) 0
0 − sin(αT ) 0 sin(αT )

cos(αT ) cos(αT ) cos(αT ) cos(αT )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(11)

where 13 is an identity matrix with dimension 3, kτ ∈ R

is the propeller drag coefficient, Jv0 , Jω0 are the linear and
angular velocity Jacobians associated with the CoM of the
quadrotor UAV defined as in (5), and RFI

C0 is defined as in
(3).

Remark 2 The UAM considered in this work is an underac-
tuated mechanical system (Raffo et al. 2015), since it has
more degrees of freedom than manipulated variables, i.e.,
q(t) : R≥0 → R

9 and rank(B(q)) = 7,∀q.

3 Controller Design

This section concerns the design of the single-layer nonlinear
H∞ andW∞ controllers for the UAM.
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Regarding Remark 2, the UAM is underactuated and no
more than seven degrees of freedom (DOF) can be controlled
(i.e., regulated at a desired position or track a reference trajec-
tory) simultaneously through the control inputs (Siqueira and
Terra 2004). Therefore, for control design purposes, we split
the vector of generalized coordinates into controlled and sta-
bilized DOF as q(t) � [q ′

s q ′
c]′, in which qs(t) : R≥0 → R

2

represents the stabilized DOF and qc(t) : R≥0 → R
7 the

controlled ones. The nonlinearH∞ andW∞ controllers are
designed in order to achieve trajectory tracking of the con-
trolled DOF while stabilizing the remaining ones.

For the UAM considered in this work, the rolling and
pitching motions are correlated with the x and y move-
ments, respectively. Then, it is necessary to choose either
these angles or the x and y positions as the controlled
DOF (Raffo et al. 2011). Aiming to achieve tracking of
the end-effector, the controlled DOF is chosen as qc(t) =
[ψ x y z β1 β2 β3]′, and the stabilized DOF is chosen
as qs(t) = [φ θ ]′. Consequently, system (4) is partitioned,
resulting in

[
Mss Msc

Mcs Mcc

] [
q̈s

q̈c

]
+

[
Css Csc

Ccs Ccc

] [
q̇s

q̇c

]
+

[
gs

gc

]

=
[
Bs

Bc

]
υ+δ, (12)

in which, for the purposes of control design, the frictional
force and the ground effect are assumed as unmodeled
dynamics. Thus, � = O9×9 in (7), and fG E (z j ) = 1 in
(9), which results in f j = bω2

j .

Remark 3 According to the particular choices of stabilized
and controlled DOF, the partitioned system (12) provides
rank(Bs(q)) = 2, and rank(Bc(q)) = 7,∀q ∈ R

9. These
features are necessary to design the nonlinear H∞ andW∞
controllers proposed in Raffo et al. (2011) and Cardoso et al.
(2021).

In the following, the single-layer nonlinearH∞ andW∞
controllers are designed based on the partitioned system (12).

3.1 NonlinearH∞ Control Design

The single-layer nonlinearH∞ controller is designed in this
subsection based on the approach proposed in Raffo et al.
(2011) for input-affine underactuated mechanical systems
with input coupling represented by theEuler–Lagrange equa-
tions. The use of the Euler–Lagrange model provides some
features of the Inertia and Coriolis matrices, such as sym-
metry M(q) = M ′(q), positive definiteness M(q) > 0
and skew-symmetry Ṁ(q) − 2C(q̇, q), to demonstrate the
asymptotic stability of the nonlinear H∞ controller pre-
sented in this section, as well as for the nonlinear W∞

controller presented in Sect.3.2. To design this controller,
system (12) is normalized by pre-multiplying it by

Tm =
[

1 −MscM−1
cc

−McsM−1
ss 1

]
, (13)

to obtain a block diagonal inertia matrix. This results in the
normalized system

[
Mor O

O M ic

]

︸ ︷︷ ︸
M(q)

[
q̈s

q̈c

]
+

[
Cor Coc

C ir C ic

]

︸ ︷︷ ︸
C(q,q̇)

[
q̇s

q̇c

]
+

[
gor

gic

]

︸ ︷︷ ︸
g(q)

=
[
υor

υic

]

︸ ︷︷ ︸
υ(t)

+
[
δor

δic

]

︸ ︷︷ ︸
δ(t)

, (14)

where M(q) = Tm(q)M(q), C(q, q̇) = Tm(q)C(q, q̇),

g(q) = Tm(q)g(q), υ(t) = Tm(q)B(q)υ(t), and δ(t) =
Tm(q)δ(t).

Afterwards, the tracking error vector is defined as

x(t) =

⎡
⎢⎢⎣

q̇s(t)˙̃qc(t)
q̃c(t)∫ t

0 q̃c(τ )dτ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q̇s(t)
q̇c(t) − q̇cr (t)
qc(t) − qcr (t)∫ τ

0 qc(t) − qcr (t)dτ

⎤
⎥⎥⎦ , (15)

in which an integral action is considered over the error of the
controlled DOF to improve the parametric uncertainty and
constant disturbance rejection capability for the closed-loop
system, and qcr (t) : R≥0 → R

7 is the desired trajectory for
the controlled DOF, with qcr (t) ∈ C2.
Assumption 2 The desired trajectory is feasible.

Remark 4 Assumption 2 holds if there exists a control action
υ(t) and some configuration of the stabilized DOF qs(t),
such that system (4) can track the desired trajectory qcr (t),
even when affected by the disturbance signal δ(t).

Then, the following states transformation is considered:

z(t) =

⎡
⎢⎢⎣

z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T11 O O O

O T22 T23 T24

O O 1 1

O O O 1

⎤
⎥⎥⎦ x(t) = T0x(t),

(16)

where T11, T22, T23, and T24 are weighting matrices of
appropriate dimension, and T11 � ρ1, T22 � ν1, with
ρ, ν ∈ R≥0.

Despite this transformation, the following change of vari-
ables over the control action and disturbances is considered:

M(q)T ẋ + C(q, q̇)Tx = u(t) + d(t), (17)
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where T �
[
T11 O O O

O T22 T23 T24

]
.

Accordingly, by expanding transformations (16) and (17)
and writing the normalized system (14) with respect to the
tracking error variables, the system is represented in the stan-
dard state-space form

ẋ = f (x, qs, t) + G(x, qs, t)u + K (x, qs, t)d, (18)

where f (x, qs, t) � T−1
0 FT0x, with

F �

⎡
⎢⎢⎣

−M−1
or Cor −M−1

or Coc O O

−M−1
ic C ir −M−1

ic C ic O O

O T−1
22 1 − T−1

22 T23 −1 − T−1
22 (T23 − T24)

O O 1 −1

⎤
⎥⎥⎦ ,

G(x, qs , t) = K (x, qs , t) � T−1
0

⎡
⎢⎢⎣

M−1
or O

O M−1
ic

O O

O O

⎤
⎥⎥⎦ .

The transformed control input and external disturbance vec-
tors are given by u = T c(−n + υ) and d=MT cM−1δ,

respectively, in which n � Mcc(q̈cr
− T−1

11 T22 ˙̃qc −
T−1
11 T13q̃c) + Gc + Ccc

(
q̇cr

− T−1
11 T22q̃c

−T−1
11 T23

∫
q̃cdt

)
, and T c � blkdiag (T11, T22).

Finally, in order to design the single-layer nonlinearH∞
controller for the system (18), plant P1 is defined as

P1:

⎧⎪⎨
⎪⎩

ẋ(t)= f (x, qs, t)+G(x, qs, t)u(t)+K (x, qs, t)d(t),

ζ (t)=W

[
x(t)

u(t)

]
,

(19)

where ζ (t) is the cost variable.
The classic nonlinear H∞ control problem is posed as

VH∞ =min
u∈L

max
d∈L

{
1

2
‖ζ (t)‖2L2

− 1

2
γ 2‖d(t)‖2L2

}
,

s.t. P1, (20)

where γ ∈ R≥0 is the H∞ attenuation level, and L =
L2[0,∞) (van der Schaft 2000).

Remark 5 The nonlinearH∞ controller is designed to satisfy
the inequality ‖ζ (t)‖L2

≤ γ ‖d(t)‖L2 . Thus, it inherently
provides disturbance attenuation to the closed-loop system
for any d(t) ∈ L2[0,∞), i.e., bounded in energy. This,
together with the integral action considered on the controlled
DOF in (15), allows handling a wide variety of disturbances.

Remark 6 In the optimal control problem (20), which con-
siders the tracking error vector (15), as well as in the W∞
optimal control problem that is subsequently presented, the
generalized velocities of the stabilized DOF are required to

converge to zero. Accordingly, there is no need to set refer-
ences for the stabilized DOF as the optimal control problem
(20) does not regulate the generalized coordinates qs(t). This
allows the controller to accommodate these DOF in order to
achieve tracking of the controlled DOF and attenuate dis-
turbances. For example, if the UAM is in contact with the
environment, the controller will accommodate the stabilized
DOF in order to achieve the task.

The optimization problem (20) can be formulated using
dynamic programming (DP) (Kirk 2012), from which the
associated Hamiltonian is given by

HH∞ = ∂ ′VH∞
∂x

ẋ + ∂ ′VH∞
∂qs

q̇s + 1

2
x′ Qx + x′Su

+ 1

2
u′Ru − 1

2
γ 2d

′
d, (21)

with the boundary condition VH∞(0) = 0, in which Q, S
and R are weighting matrices with appropriate dimension,

and W ′W =
[
Q S
S′ R

]
.

The optimal control law, u∗, and the worst case of distur-
bances, d

∗
, are computed by taking the partial derivatives of

(21), as follows

∂HH∞
∂u

= G′(x, qs, t)
∂VH∞

∂x
+ S′x + Ru = 0, (22)

∂HH∞
∂d

= K ′(x, qs, t)
∂VH∞

∂x
− γ 2d = 0. (23)

After some algebraic manipulations, the above derivatives
lead to

u∗ = −R−1
(
G(x, qs, t)

∂VH∞
∂x

+ S′x
)

, (24)

d
∗ = 1

γ 2 K
′(x, qs, t)

∂VH∞
∂x

. (25)

The Hamilton–Jacobi (HJ) equation associated with this
optimization problem is obtained by replacing the optimal
control law (24) and the worst case of the disturbances (25)
in (21), resulting in

V̇H∞(x, t) + HH∞(VH∞ , x, qs, u∗, d∗
, t) = 0. (26)

A particular solution to the HJ partial differential equation
(PDE) (26) is given in the following theorem.

Theorem 1 (Raffo et al. 2011) Let VH∞(x, qr , t) be the
parameterized scalar function:

VH∞(x, qr , t)
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= 1

2
x′T ′

0

⎡
⎢⎢⎣

Mss Msc O O

Mcs Mcc O O

O O Y X − Y
O O X − Y Z + Y

⎤
⎥⎥⎦ T0x, (27)

where X , Y , Z ∈ R
nc×nc are constant, symmetric, and

positive-definite matrices such that Z−XY−1X +2X > O,
and T0 and T are defined as in (16) and (17). If these matri-
ces verify the following equation,

⎡
⎢⎢⎣

O O O O

O O Y X
O Y 2X Z + 2X
O X Z + 2X O

⎤
⎥⎥⎦ + Q + 1

γ 2 T
′T

−(S′ + T )′R−1(S′ + T )=O, (28)

then, function V (x, qr , t) constitutes a solution to the HJ
Eq. (26), for a sufficiently high H∞ attenuation level γ .

The asymptotic stability of the nonlinear H∞ controller
is stated in the following theorem.

Theorem 2 (Adapted from (Raffo et al. 2015)) Consider a
desired sufficiently large H∞ attenuation level γ > 0. Let
VH∞(x, qr , t) ≥ 0 be a solution of (26) given by function
(27), with matrices X , Y , Z and T verifying (28), then the
closed-loop system corresponding to system (19) with the
control law (24) is asymptotically stable.

From the results of Theorem 1, the following optimal con-
trol law is obtained:

u∗(t) = −Tm R−1(S′ + T )x(t). (29)

By replacing the optimal control law (29) into (17), assum-
ing d = 0 , and after some manipulations, the following
transformed generalized force vector is obtained:

υ(t) = M(q)q̈(t) + C(q, q̇)q̇(t) + g(q), (30)

with

q̈(t) =
[
O

q̈cr

]
− K D

[
q̇s˙̃qc

]
− K P

[
O

q̃c

]
− K I

[
O

∫t
0 q̃cdτ

]
.

(31)

The matrices K D , K P , and K I are given in Appendix A.
The control input applied to system (12) is given by

υ(t) = B(q)†Tm
−1(q)υ(t). (32)

3.2 NonlinearW∞ Control Design

The single-layer nonlinearW∞ controller is designed in this
subsection based on the approach proposed in Cardoso et al.
(2021) for input-affine underactuated mechanical systems
with input coupling represented by theEuler–Lagrange equa-
tions. The first step to design this controller is to rewrite
system (12) as the tracking error dynamics, which is given
by

M(qs, q̃c + qcr
)

[
q̈s¨̃qc+q̈cr

]
+ C(qs, q̃c + qcr

, q̇s,
˙̃qc

+q̇cr
)

[
q̇s˙̃qc+q̇cr

]

+g(qs, q̃c + qcr
) = B(qs, q̃c + qcr

)υ(t) + δ(t), (33)

with q̃c � qc(t)− qcr
(t), and the desired trajectory qcr

(t) ∈
C2 according to Assumption 2.

Considering the tracking error vector defined in (15),
Eq. (33) is expressed in the state space as

ẋ =
⎡
⎣

−M−1C O O

[O 1] O O

O 1 O

⎤
⎦ x

︸ ︷︷ ︸
f (x,qs )

+
⎡
⎣

−M−1d
O

O

⎤
⎦

︸ ︷︷ ︸
f (x,qs ,t)

+
⎡
⎣
M−1

O

O

⎤
⎦

︸ ︷︷ ︸
G(x,qs )

u(t)

+
⎡
⎣
M−1

O

O

⎤
⎦

︸ ︷︷ ︸
K (x,qs )

δ(t), (34)

where d � g(qs, x) + M(qs, x)

[
O

q̈cr

]
+ C(qs, x)

[
O

q̇cr

]
,

and u(t) = B(qs, x)υ(t) is the generalized input vector.
In order to derive the nonlinearW∞ optimal control law,

system (34) composes plant P2, which is given by

P2 :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = f (x, qs, t) + f (x, qs, t) + G(x, qs, t)u(t)

+ K (x, qs, t)δ(t),

zc(t) = ∫ t
0 q̃c(τ )dτ,

zs(t) = q̇s(t),

(35)

where zc(t) and zs(t) are the cost variables related to the
controlled and stabilized DOF, respectively. They allow the
appearance of both dynamics in the cost functional.

TheW∞ optimal control problem is posed as

VW∞=min
u∈U

max
δ∈L

{
1

2
||zc||2W3,2,�

+1

2
||zs ||2W1,2,ϒ

−γ 2

2
||δ||2L2

}
,

s.t. P2, (36)
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where γ is theW∞ attenuation level,U ⊆ R,L = L2[0,∞).
Besides, � = {�0, �1, �2 ,�3} and ϒ = {ϒ0,ϒ1} are
composed of symmetric and positive-definite tuning matri-
ces, that weight the influences of the cost variables and their
time derivatives in the control objective.

Remark 7 The nonlinear W∞ controller is designed to sat-
isfy the inequality ||zc(t)||W3,2,� + ||zs(t)||W1,2,ϒ ≤
γ ||δ(t)||L2 . In this case, time derivatives of the cost variables
are taken into account; consequently, the controller provides
a faster disturbance attenuation with an improved transient
performance to the closed-loop system, besides the features
mentioned in Remark 5.

The optimization problem (36) is formulated using DP,
from which the associated Hamiltonian is given by

HW∞(VW∞ , x, qs, u, t)=∂ ′VW∞
∂x

ẋ+1

2
z′c�0zc+1

2
ż′c�1 żc

+1

2
z̈c�2 z̈c+1

2
...
z ′

c�3
...
z c+1

2
z′sϒ0zs+1

2
ż′sϒ1 żs−1

2
γ 2δ′δ,

(37)

with the boundary condition VW∞(0) = 0.
The optimal control law and theworst case of disturbances

are computed by taking the partial derivatives of (37) as fol-
lows

∂HW∞
∂u

= G′ ∂VW∞
∂x

−�C ˙̃q−�d+�δ∗+�u∗ = 0, (38)

∂HW∞
∂w

= K ′ ∂VW∞
∂x

−�C ˙̃q−�d+�u∗+�δ∗−γ 2δ∗ = 0,

(39)

where 
 � M−1EM−1 with E � blkdiag(ϒ1,�3).
Accordingly, the optimal control law is obtained from (38),
with some algebraic manipulations, and is given by

u∗ = −�−1G′ ∂VW∞
∂x

+ C ˙̃q + d − δ∗. (40)

In addition, the worst case of the disturbances is computed
by subtracting (39) from (38), yielding

δ∗ = 1

γ 2

(
K ′ − G′)∂VW∞

∂x
. (41)

TheHJ equation associatedwith the optimization problem
is obtained by replacing the optimal control law and theworst
case of the disturbances in (37), which results in

V̇W∞(x, t) + HW∞(VW∞ , x, qs, u∗, δ∗, t) = 0. (42)

A particular solution to the HJ PDE (42) is given in the
following theorem.

Theorem 3 (Adapted from (Cardoso et al. 2021)) Let VW∞
be the parametrized scalar function

VW∞(x, t) = 1

2
x′

⎡
⎢⎢⎢⎣

Û O O O

O Q̂ K̂ F̂
O K̂ R̂ Ŝ
O F̂ Ŝ P̂

⎤
⎥⎥⎥⎦ x > 0, (43)

such that Û , Q̂, K̂ , F̂, R̂, Ŝ, and P̂ are positive-definite

matrices and verify Q̂ − K̂ R̂
−1

K̂ > 0 and

[
Q̂ K̂
K̂ R̂

]
−

[
F̂
Ŝ

]
P̂

−1
[
F̂ Ŝ

]
> 0, with Û , Q̂, K̂ , and F̂ obtained from

the following Riccati equations

−Ûϒ−1
1 Û + ϒ0 = O, (44)

−F̂�−1
3 F̂ + �0 = O, (45)

− Q̂�−1
3 Q̂ + 2K̂ + �2 = O, (46)

−K̂�−1
3 K̂ + 2Ŝ + �1 = O. (47)

Besides, R̂, Ŝ, and P̂ are given by

R̂ = Q̂�−1
3 K̂−F̂, (48)

Ŝ = Q̂�−1
3 F̂, (49)

P̂ = K̂�−1
3 F̂. (50)

Then, function VW∞(x, t) is a solution to the HJ Eq. (42).

The asymptotic stability of the nonlinear W∞ controller
is stated in the following theorem.

Theorem 4 (Cardoso et al. 2021) Consider a sufficiently
large W∞ attenuation level γ > 0, satisfying M−1EM−1

−γ 2 I < 0, with E � blkdiag(ϒ1,�3). Let VW∞(x, t) > 0
be a solution of (42) given by the parametrized scalar func-
tion (43). Therefore, the closed-loop system composed of
control law (40) and system (35) is asymptotically stable.

From the results of Theorem 3, the applied control inputs
are given by:

υ(t) = B†(qs, x)

(
g(q) + M(q)

[
O

q̈cr

]

+C(q, q̇)q̇−M(q)Kx(t)) , (51)

with,

K �
[
ϒ−1

1 Û O O O

O �−1
3 Q̂ �−1

3 K̂ �−1
3 F̂

]
.

where Û , Q̂, K̂ , and F̂ are obtained from the soltuion of
(44)–(50).
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Remark 8 The nonlinear H∞ and W∞ controllers are
designed considering input-affine underactuated mechani-
cal systems with input coupling that are represented by the
canonical Euler–Lagrange equations. Therefore, these con-
trol strategies can be employed to a quadrotor UAV coupled
with different manipulator configurations, provided that the
system has input coupling.

4 Hardware-In-the-Loop Numerical
Experiments

This section presents numerical results of two different
experiments to corroborate the efficiency of the proposed
single-layer nonlinear H∞ and W∞ controllers. The first
experiment is adapted from a benchmark proposed by Suarez
et al. (2020) and denoted by Experiment A. This experiment
is used to tune the controllers and compare their performance
by means of the integral of the square error (ISE) and inte-
gral of the absolute value of the control derivative (IADu)
indexes. The second experiment, denoted by Experiment B,
is designed to evaluate the controllers in a more complex
scenario, with tasks commonly executed by UAMs.3

The experiments were performed in a HIL framework
using the ProVANT Simulator (Lara et al. 2018), which uses
the Gazebo platform (Koenig and Howard 2004) to execute
the simulation and provide a visual feedback of the experi-
ment. Gazebo was set up with the Open Dynamics Engine
(ODE) physics engine considering a step time of 4 ms, and
the controllers were executed with a sample time of 12 ms.
The ProVANT simulator provides a set of plugins that emu-
late the brushless and servo motors, and also a set of sensors
that provide the complete state vector of the system. In the
ProVANT simulator, the grasping of objects is performed by
a plugin that emulates an electromagnet rigidly attached to
the end-effector. This electromagnet generates a magnetic
field strong enough to couple metallic objects when it is at 1
mm of distance.

Figure 3 shows the hardware components of the HIL
framework and their connections. The simulation server
used in this work is a general-purpose notebook computer
equipped with an Intel Core i7 7500U processor, with two
physical and four logical cores, running at 2.9 GHz, 16
GB of RAM and a NVidia 920MX GPU. This computer
runs Ubuntu version 20.04 operational system and executes
the software components of the ProVANT Simulator. The
embedded system executes the software components of the
controller, which is composed of a Raspberry Pi 3B+ SOC
with a quadcore ARM Cortex-A53 processor running at 1.2
GHz, with 1GB of RAM and a VideoCore IV GPU.

3 A video recording of the experiments is available in https://youtu.be/
qoQXryey3UM.

Fig. 3 Connection between the embedded system and the simulation
server, the software running in each system component, and the data
transmitted between the softwares

The embedded system and the simulation server com-
municate through a local area network (LAN) connected
by a 1 Gbps ethernet switch, with, respectively, fixed IP
addresses 192.168.0.10 and 192.168.0.100. The controller is
a ROS node implemented in C++ programming language on
the embedded system that communicates using ROS mes-
sage with the ProVANT Simulator. At each step time, the
ProVANT simulator feeds the controller with the desired tra-
jectory and the state of the system. The controller computes
the control law and returns the control inputs to be applied
to the UAM.

In order to compare the performance of the proposed non-
linear W∞ and H∞ single-layer controllers, initially, the
H∞ controller was tuned with two different sets of param-
eters to conduct Experiment A. On the one hand, the first
version, called H IADu∞ controller, was tuned in order to
achieve a similar control effort to the W∞ controller, for
which the IADU performance index was used. For com-
parison purposes, in that case, we are interested in the ISE
performance index. On the other hand, the second version,
called H ISE∞ controller, was tuned pursuing ISE similar to
theW∞ controller, allowing now to analyze the control effort
expended by the controllers when presenting similar trajec-
tory tracking performance.

The H IADu∞ controller was implemented taking into
account the control law (32) with the parameters γ = 12,
ωus = 0.4875, ωuc = 9.5, ω1s = 3, ω1c = 0.65,
ω2c = 0.5, ω3c = 2.75, and the H ISE∞ controller with
γ = 12, ωus = 0.75, ωuc = 3, ω1s = 2.5, ω1c = 0.39,
ω2c = 1, ω3c = 2.95. The W∞ controller (51) was tuned
with ϒ0 = diag(50, 50), ϒ1 = 10−4 · 12, �0 = diag(0.4,
0.001, 0.001, 0.005, 0.005,0.075, 0.075), �1 = diag(1, 1, 1,
1, 0.01, 0.1, 0.1), �2 = diag(0.1, 0.01,0.01,1, 0.1, 0.1, 0.1),
and �3 = diag(0.01,0.01, 0.01, 10−3, 10−4, 0.01, 0.01).

To ensure satisfaction of Assumption 2, the position,
velocity and acceleration references for all experiments
were generated offline using a modified version of the
rapidly exploring random tree (RRT) path planning algo-
rithm, denoted RRT* (Choset et al. 2005), that was executed

123

https://youtu.be/qoQXryey3UM
https://youtu.be/qoQXryey3UM


Journal of Control, Automation and Electrical Systems (2023) 34:1–17 11

Fig. 4 Environment of the Experiment A. Image obtained from Suarez
et al. (2020)

using MoveIt.4 The resulting reference data were saved to a
comma separated value (CSV) file to be provided during the
simulations.

4.1 Experiment A

The aim of Experiment A is: (i) to tune the controllers and (ii)
evaluate their tracking accuracy and control effort. Figure 4
illustrates the environment of Experiment A, highlighting its
parameters. This experiment is composed of the following
phases: the UAM starts at the origin (1) pFI

FL4
= [0 0 0]′

m, lifts off to position (2) pFI
FL4

= [0 0 h1]′ m, proceeds

to (3) pFI
FL4

= [0.9dgoal 0 h1]′ m, then goes to (4) pFI
FL4

=
[dgoal 0 hgoal]′ mwhile its manipulator arm is extended in its
total length, reaching the goal position, and finally it proceeds
to (5) pFI

FL4
= [dgoal 0 h1]′ m. The experiment parameters

were obtained from Table V of Suarez et al. (2020), which
are given by h1 = 2 m, dgoal = 2 m, and hgoal = 1 m. It
is noteworthy that the ground effect and the friction force of
the manipulator’s joints are disregarded in this experiment.

Figures 5 and 6 show the results obtained inExperimentA,
while Table 2 shows the related performance indexes. Note
that all the designed controllers were able to track the desired
trajectories with small error and similar behavior. Neverthe-
less, when analyzing the performance indexes of theH IADu∞
andW∞ controllers, clearly the nonlinearW∞ controller pro-
vided a higher precision during the trajectory tracking. This
better performance is obtained due to the inclusion of the
system dynamics directly in the cost functional, which pro-
vides smoothness to the control system, added to a greater
number of parameters available for control adjustment. The
latter affords more flexibility for theW∞ controller in order
to achieve the desired performance in control systems with
different time scales, as the UAM.

Indeed, from the tuning parameters used in the W∞ con-
troller, it is possible to infer that the UAM used in this work

4 MoveIt is a ROS application that provides several motion planning
algorithms and other functionalities required by path planners such as
collision detection (Coleman et al. 2014).

Fig. 5 Roll and pitch angles, error of translational position and yaw
angle, and angles of the manipulator arm during experiment A

has at least three groups of dynamicswith very distinct behav-
ior, namely the attitude, linear positions, and manipulator
joint dynamics, and thus, they require distinct tuning. In con-
trast, the nonlinear H∞ controller designed here considers
only two different groups of dynamics for tuning, one related
to the controlledDOF and other related to the stabilizedDOF.
Consequently, this controller must be adjusted seeking a per-
formance trade-off between the dynamics in this two DOF
groups, making it difficult to obtain an acceptable perfor-
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Fig. 6 Applied control inputs during experiment A

mance for the whole system. In this context, the possibility
of weighting each DOF separately is a clear advantage of the
W∞ control formulation.

Additionally, when the H∞ controller is tuned to obtain
similar precision, as in the H ISE∞ controller, it demands a
much higher control effort, as can be verified by the IADu
index. Therefore, it is noteworthy that these features provide
the nonlinear W∞ controller better transient response with
less control effort and less oscillatory behavior.

Fig. 7 Simulation environment designed in Gazebo for experiment B

4.2 Experiment B

The aim of this experiment is to evaluate the following fea-
tures: (i) the performance of the UAM operating in hover
mode; (ii) the ability to track a time-varying trajectory, grasp
and carry an object; (iii) the system behavior under move-
ments of the robotic arm; (iv) robustness against disturbances
such as ground effect, environment wind, friction forces, and
parametric and structural uncertainties. Figure 7 illustrates
the environment designed for Experiment B, indicating the
UAM initial position, an obstacle to be avoided by the UAM,
and a yellow object, which is a metallic cube placed at the
goal position (Target). In this experiment, the UAM must
perform a mission composed of the following stretches: the
UAM starts at the initial position pFI

FL4
(0) = [0.5 2.7 0]′ m,

displaced from the desired position (1) pFI
FL4

= [0.5 2.7 1]′
m, with the remaining states equal to zero; goes through the
intermediate point (2) pFI

FL4
= [1.5 1.5 1.1]′ m; proceeds to

the target position (3) pFI
FL4

= [2.23 2.7 0.73]′ m and hovers

while extending its manipulator arm; grabs the small metal-
lic cube with mass of 200 g; retracts the manipulator arm;
returns to the starting position carrying the object; and lands.

The ground effect and the friction force of the manipu-
lator’s joints are assumed unmodeled dynamics for control
design purposes, that must be attenuated by the proposed
single-layer nonlinear H∞ and W∞ controllers. Addition-
ally, to emulate a northeasterly wind actuating on the UAM
in the direction of the wind, a drag force of 0.5N is applied to
the center of gravity of the quadrotor UAV when it is operat-

Table 2 Performance
indexes—Experiment A

P. index Definition W∞ H IADu∞ H ISE∞

IADu
∫ T
0

∑7
i=1

∣∣∣ dυi
dt

∣∣∣ dt 80249 80283 107648

ISE
∫ T
0 q̃ ′

c q̃c dt 3.5052 · 10−3 0.2107 3.5216 · 10−3
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Fig. 8 Roll and pitch angles, error of the yaw angle, and angles of the
manipulator arm during Experiment B

ing outdoor (on the right side of the simulation environment).
This drag force is computed as (Hoerner 1965)

fdrag = 0.5 cD ρ a u2, (52)

where cD = 1.05 is the drag coefficient (the drag coefficient
of a cube is employed to account for theworst case, the actual
coefficient is expected to be lower), a ≈ 0.1 m2 is the cross-

Table 3 Performance indexes—Experiment B

P. index Definition W∞ H ISE∞ H ISE∞ /W∞

IADu
∫ T
0

∑7
i=1

∣∣∣ dυi
dt

∣∣∣ dt 408116 571545 140.05%

ISE
∫ T
0 q̃ ′

c q̃c dt 10.218 41.676 407.88%

Table 4 Maximum and mean values of the end-effector tracking error
during the grasping of the metallic object in Experiment B

P. index definition (·) W∞ [m] H ISE∞ [m]

max
t ∈ [25,50]

‖(·)−(·)r ‖2 x 0.0139 0.0144

y 0.0271 0.0297

z 0.0449 0.0550

pFI
FL4

0.0454 0.0507

mean
t ∈ [25,50]

‖(·)−(·)r ‖2 x 0.0022 0.0016

y 0.0053 0.0056

z 0.0246 0.0268

pFI
FL4

0.0128 0.0234

sectional area of the UAM, obtained from the CAD model,
ρ = 1.21 kg/m3 is the fluid mass density, and u is the wind
speed in m/s, set as 2.8 m/s, which is the average wind speed
at the Federal University of Minas Gerais campus.

At the beginning of the experiment, the UAM starts ver-
tically displaced from the reference in order to evaluate the
performance of the control systemswhen the tracking error is
large. From Figs. 8, 9 and 10, notice that the UAM converges
to the desired trajectory in a few seconds. After 15 seconds,
the UAM reaches the target and extends its manipulator arm.
In this stretch of the simulation, the ground effect increases
due to the proximitywith the table.Despite someoscillations,
the H ISE∞ and W∞ controllers are able to achieve the mis-
sion. Conversely, the H IADu∞ controller presents a growing
oscillatory behavior due to the ground effect, which increases
even more when the UAM grasps the metallic cube, destabi-
lizing the system. Since theH IADu∞ controller was unable to
achieve themission, falling to the ground in approximately 27
seconds, Tables 3 and 4 show only the performance indexes
of the H ISE∞ andW∞ controllers.

It is noteworthy that the H∞ controller requires greater
control effort than the W∞ controller in order to attenuate
the disturbances and complete the mission. This analysis is
corroborated by the performance indexes present in Table 3,
which shows that even though the H ISE∞ controller expends
more control effort than theW∞ controller, the latter achieved
a better trajectory tracking performance. Table 4 shows the
maximum and mean tracking error of the end-effector dur-
ing the phase of grasping of the metallic object. It can be
observed that, due to the ground effect, the biggest error in
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Fig. 9 Applied control inputs during Experiment B. The purple line
indicates the approximate instant in which the cube is grasped by the
end-effector using the different controllers (Color figure online)

Fig. 10 3D trajectory of the end-effector during Experiment B

Fig. 11 External disturbances generated by the ground effect, wind,
and joint friction during Experiment B

the translational position is achieved in the altitude, besides
that, the tracking error remains reasonable.

Figure 11 shows the generalized disturbance forces and
torques applied to the system due to the drag force, ground
effect, and joint frictions. Note that all system DOF are
affected by these external disturbances. Also, it is worth
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Table 5 Average propeller
thrust before (between 22.5 and
27.5 s) and after (between 27.5
and 32.5 s) grasping during
Experiment B

H ISE∞ W∞

Before Grasping After Grasping Before Grasping After Grasping

f1 [N] 4.8540 4.8445 4.8705 4.7354

f2 [N] 6.7809 7.3743 6.7564 7.3535

f3 [N] 8.2486 9.2089 8.2900 9.3807

f4 [N] 7.0351 7.4130 6.9586 7.3825

Total Thrust 26.9187 28.8407 26.8756 28.8521

Thrust increase 1.9220 1.9765

after grasping

Fig. 12 Histogram of the control law execution times during Experi-
ment B

highlighting that the generalized disturbances depend on the
UAM dynamic behavior due to the mapping of the exter-
nal disturbances to the generalized ones. This behavior can
be appreciated in Fig. 11 that shows the effect of the gener-
alized disturbances when the experiment is performed with
each controller. Additionally, the effect of the object grasp-
ing can be seen in Table 5, which shows the average thrust
generated by each propeller in small intervals before and
after that event. It is noteworthy the consistency of the thrust
increased by approximately the weight of the grasped object
with 200g. Also, notice that the controllers are also affected
by parametric and structural uncertainties due to the differ-
ences between the model used for control design, which is
developed in Sect. 2, and the one implemented in the simu-
lator (CAD model) which is more precise. The H ISE∞ and
W∞ controllers are able to accomplish the mission, and suc-
cessfully attenuate the effects of these disturbances.

Figure 12 presents the histogram of the control law execu-
tion time for the nonlinearH ISE∞ andW∞ controllers during
the Experiment B, while Table 6 shows their minimum, aver-
age, and maximum execution times. Both control laws are
always computed in a shorter time interval than the 12-ms
sampling time. Therefore, both controllers are suitable for
deployment in the real system. Also note that, as a result
of its simpler control law, the W∞ controller has slightly
faster execution times than the H∞ controller. In both con-

Table 6 Control law execution times during the Experiment B

Control Strategy Min [ms] Avg [ms] Max [ms]

H ISE∞ 4.76 5.8295 10.149

W∞ 4.11 5.1471 9.6591

trol laws, the most computationally expensive operations are
the computation of the Coriolis and centripetal forces matrix
and of the Moore–Penrose pseudo-inverse. Thus, these oper-
ations are prime candidates for computational performance
optimization.

5 Conclusion

This work presented the multi-body dynamical model-
ing of an underactuated UAM from the perspective of its
end-effector. Accordingly, two single-layer nonlinear con-
trollers were designed, based on the H∞ and W∞ control
approaches, for robust trajectory tracking of the UAM end-
effector. These controllers were implemented in an embed-
ded computational system and validated in aHIL framework.
Two different scenarios were considered in the numerical
experiments. The first scenario was designed to evaluate the
tracking accuracy and the control effort of the UAM, while
the second one was proposed to evaluate the controller’s per-
formance in an usual task that includes hovering, tracking a
time-varying trajectory, extending and retracting the manip-
ulator arm, grasping and carrying an object, while the UAM
is affected by disturbances such as the ground effect, envi-
ronment wind, and parametric and structural uncertainties.

For comparison purposes, the single-layer nonlinearH∞
controller was tuned considering two different criteria. The
H IADu∞ controller was tuned to achieve a similar control
effort with respect to the single-layer W∞ controller, while
the H ISE∞ controller was tuned to achieve a similar tracking
performance. These performances were evaluated through
the IADU and ISE indexes. It was verified that theW∞ con-
troller provided greater tracking accuracy compared to the
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H IADu∞ one and less control effort than theH ISE∞ controller.
Moreover, in the second scenario, theH IADu∞ controller was
not able to attenuate the applied disturbances and could not
complete the experiment. All the control laws were executed
in a feasible computational time to be implemented in the
embedded system.

The loss of performance when subjected to disturbances
and the difficulty of adjusting the H∞ controller is due to
its formulation that requires that all DOF in each dynam-
ics group (stabilized and controlled) be tuned with the same
weighting parameters (see Appendix A). Therefore, future
work will include the reformulation of the nonlinear H∞
control strategy to allow separate weighting of more dynam-
ics. Also, the possibility of solving this issue by normalizing
the system in terms of time scales will be analyzed. In addi-
tion, since we are dealing with an aerial manipulator, it is
intended to reformulate the presented controllers in the oper-
ational space taking into account constraints related to its
workspace, obtain a kinematic and dynamic model free of
representational singularities, and consider a contact model
of the UAM for control design purposes. Finally, it is also
intended to carry out real flight experiments.

Acknowledgements An early version of this paper (Morais et al. 2020)
was presented at the XXIII Congresso Brasileiro de Automática (CBA
2020).

A NonlinearH∞ Control Matrices

As in Raffo et al. (2011), the matrices K D , K P and K I in
(31) are given by

K D =
[
K Dss K Dsc

K Dcs K Dcc

]
, K P =

[
O K Psc

O K Pcc

]
,

K I =
[
O K Isc

O K Icc

]
,

where

K Dss = M−1
or

(
Cor + 1

ω2
us
1

)
,

K Dsc = M−1
or

(
Coc − MscM−1

cc
1

ω2
uc

)

× ωucω1c√
γ 2 − ω2

uc

√
γ 2 − ω2

us

ωusω1s
,

K Psc = M−1
or

(
Coc − MscM−1

cc
1

ω2
uc

)

×
ωuc

√
ω2
2c + 2ω1cω3c√
γ 2 − ω2

uc

√
γ 2 − ω2

us

ωusω1s
,

K Isc = M−1
or

(
Coc − MscM−1

cc
1

ω2
uc

)
ωucω3c√
γ 2 − ω2

uc

√
γ 2 − ω2

us

ωusω1s
,

K Dcs = M−1
ic

(
C ir − Mcs M−1

ss
1

ω2
us

)
ωusω1s√
γ 2 − ω2

us

√
γ 2 − ω2

uc

ωucω1c
,

K Dcc =
√

ω2
2c + 2ω1cω3c

ω1s
1 + M−1

ic

(
C ic + 1

ω2
uc
1

)
,

K Pcc =
√

ω2
2c + 2ω1cω3c

ω1s
M−1

ic

(
C ic + 1

ω2
uc
1

)
+ ω3c

ω1s
1,

K Icc = M−1
ic

(
C ic + 1

ω2
uc
1

)
ω3c

ω1s
,

in which it is considered the particular case where Q =
blkdiag(ω2

1s1, ω2
1c1, ω2

2c1, ω2
3c1), R = blkdiag(ω2

ur1, ω2
uc1), and

S = O.

References

Acosta, J., de Cos, C. R.,&Ollero, A. (2020). Accurate control ofAerial
Manipulators outdoors. A reliable and self-coordinated nonlinear
approach. Aerospace Science and Technology, 99, 1–14.

Acosta, J.A., Sanchez, M.I., & Ollero, A. (2014). Robust control of
underactuated Aerial Manipulators via IDA-PBC. In: IEEE Con-
ference on Decision and Control, IEEE, pp 673–678

Aliyu, M. D. S., & Boukas, E. K. (2011). Extending nonlinearH2,H∞
optimisation to W1,2, W1,∞ spaces-part i: Optimal control. Intern
J Syst Sci, 42(5), 889–906.

Ballesteros-Escamilla, M. F., Cruz-Ortiz, D., Chairez, I., & Luviano-
Juárez, A. (2019). Adaptive output control of amobilemanipulator
hanging from a quadcopter unmanned vehicle. ISA Transactions,
94, 200–217.

Cardoso, D.N., Esteban, S., & Raffo, G.V. (2018). Nonlinear H2 and
H∞ control formulated in the weighted sobolev space for under-
actuated mechanical systems with input coupling. In: 2018 IEEE
Conference on Decision and Control (CDC), IEEE, pp 3812–3817

Cardoso, D. N., Esteban, S., & Raffo, G. V. (2021). A robust optimal
control approach in the weighted Sobolev space for underactuated
mechanical systems. Automatica, 125, 1–11.

Chaikalis, D., Khorrami, F., & Tzes, A. (2020). Adaptive Control
Approaches for an Unmanned Aerial Manipulation System. 2020
International Conference on Unmanned Aircraft Systems, ICUAS
2020 pp 498–503

Chilali, M., & Gahinet, P. (1996). H∞ design with pole placement
constraints: an LMI approach. IEEE Transactions on automatic
control, 41(3), 358–367.

Choset,H., Lynch,K.,Hutchinson, S.,Kantor,G.,Burgard,W.,Kavraki,
L., & Thrun, S. (2005). Principles of Robot Motion: Theory, Algo-
rithms, and Implementations. Cambridge: MIT Press.

Coelho, A., Singh, H., Kondak, K., & Ott, C. (2020). Whole-Body
Bilateral Teleoperation of a Redundant Aerial Manipulator. In:
2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp 9150–9156

Coleman, D., Sucan, I., Chitta, S., & Correll, N. (2014). Reducing the
Barrier to Entry of Complex Robotic Software: a MoveIt! Case
Study. Journal of Software Engineering for Robotics, 1(1), 1–14.

Heredia, G., Jimenez-Cano, A.E., Sanchez, I., Llorente, D., Vega, V.,
Braga, J., Acosta, J.A., &Ollero, A. (2014). Control of amultirotor
outdoor aerial manipulator. In: IEEE International Conference on
Intelligent Robots and Systems, IEEE, pp 3417–3422

Hoerner, S. F. (1965). Fluid-dynamic drag - Practical Information
on Aerodynamic Drag and Hydrodynamic Resistance. Cambridge
University Press.

123



Journal of Control, Automation and Electrical Systems (2023) 34:1–17 17

Jazar, R. N. (2010). Theory of Applied Robotics (2nd ed.). Boston, MA:
Springer.

Jimenez-Cano, A.E., Martin, J., Heredia, G., Ollero, A., & Cano, R.
(2013). Control of an aerial robot withmulti-link arm for assembly
tasks. In: IEEE International Conference onRobotics andAutoma-
tion, IEEE, pp 4916–4921

Kirk, D.E. (2012). Optimal control theory: an introduction. Courier
Corporation

Koenig,N.,&Howard,A. (2004).Design anduse paradigms for gazebo,
an open-source multi-robot simulator. IEEE International Confer-
ence on Intelligent Robots and Systems, 3, 2149–2154.

Lara, A.V., Nascimento, I.B.P., Arias-Garcia, J., Becker, L.B., &
Raffo, G.V. (2018). Hardware in The Loop Simulation Envi-
ronment for Testing of Tilt-Rotor UAVs Control Strategies. In:
Congresso Brasileiro de Automática - CBA, Sociedade Brasileira
de Automática, pp 1–7

Mello, L. S., Raffo, G. V., & Adorno, B. V. (2016). Robust whole-body
control of an unmanned aerial manipulator. European Control
Conference (pp. 702–707). Aalborg: IEEE.

Morais, J.E., Cardoso, D.N., & Raffo, G.V. (2020). Robust optimal
nonlinear control strategies for an aerial manipulator. In: Con-
gresso Brasileiro de Automática - CBA, Sociedade Brasileira de
Automática, pp 1–8

Nava, G., Sablé, Q., Tognon,M., Pucci, D., & Franchi, A. (2020). Direct
Force Feedback Control and Online Multi-Task Optimization for
AerialManipulators. IEEE Robotics and Automation Letters, 5(2),
331–338.

Ollero, A., & Siciliano, B. (Eds.). (2019). Aerial Robotic Manipulation.
Cham: Springer.

Orsag, M., Korpela, C. M., Oh, P., & Bogdan, S. (2018). Aerial Manip-
ulation. Springer.

Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2011). Nonlinear H∞
controller for the quad-rotor helicopter with input coupling. IFAC
Proceedings Volumes, 44, 13834–13839.

Raffo, G. V., Ortega, M. G., Madero, V., & Rubio, F. R. (2015).
Two-wheeled self-balanced pendulum workspace improvement
via underactuated robust nonlinear control. Control Engineering
Practice, 44, 231–242.

Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F.,
& Franchi, A. (2017). 6D physical interaction with a fully actuated
aerial robot. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp 5190–5195

Sanchez-Cuevas, P., Heredia, G., & Ollero, A. (2017). Characterization
of the aerodynamic ground effect and its influence in multirotor
control. International Journal of Aerospace Engineering, 2017,
1–17.

Shabana, A. A. (2013). Dynamics of multibody systems. Cambridge
University Press. https://doi.org/10.1017/CBO9781107337213

Siqueira, A. A., & Terra, M. H. (2004). Nonlinear H∞ control for
underactuated manipulators with robustness tests. Revista Cont-
role & Automação, 15(3), 339–350.

Slightam, J.E., Mcarthur, D.R., Spencer, S.J., & Buerger, S.P. (2021).
Passivity analysis of quadrotor aircraft for physical interactions.
In: 2021 Aerial Robotic Systems Physically Interacting with the
Environment (AIRPHARO)

Smrcka, D., Baca, T., Nascimento, T., & Saska, M. (2021). Admit-
tance Force-Based UAV-Wall Stabilization and Press Exertion
for Documentation and Inspection of Historical Buildings. In:
2021 International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, pp 552–559

Suarez, A., Vega, V. M., Fernandez, M., Heredia, G., & Ollero, A.
(2020). Benchmarks for Aerial Manipulation. IEEE Robotics and
Automation Letters, 5(2), 2650–2657.

van der Schaft, A. (2000). L2-Gain and Passivity Techniques in Non-
linear Control (2nd ed.). London: Springer.

Zhang, X., Liao, H., Du, X., & Xu, B. (2018). A Fast Hybrid Noise
Filtering Algorithm Based on Median-Mean. In: 2018 IEEE Inter-
national Conference on Mechatronics and Automation (ICMA),
IEEE, pp 2120–2125

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

123

https://doi.org/10.1017/CBO9781107337213

	Robust Nonlinear Control of Aerial Manipulators
	Abstract
	1 Introduction
	2 System Modeling
	2.1 Equations of Motion

	3 Controller Design
	3.1 Nonlinear H Infinity Control Design
	3.2 Nonlinear W Infinity Control Design

	4 Hardware-In-the-Loop Numerical Experiments
	4.1 Experiment A
	4.2 Experiment B

	5 Conclusion
	Acknowledgements
	A H Infinity Control Matrices
	References




