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Abstract
Natural gas has been increasingly used as a source of energy and presents itself as a strong trend for the future. In this context,
regarding the high cost of installing pipelines, the design of gas networks requires highlight quality solutions, relating not only
financial indicators but also reliability and security concerning demand. Thus, this paper proposes an approach for the design
of natural gas networks under conditions of uncertainty of load evolution over a time horizon. A predefined network topology
is assumed, where the pipe diameters define the design variables. We propose aMultiobjective Variable Neighborhood Search
(MOVNS)-based algorithm, which is evaluated considering a set of test instances defined from the TSPLIB library data. The
proposed methodology is also applied to a real case study being the results compared to those obtained by three engineers of a
gas company with six years of experience on average. The solutions are investigated from a dominance analysis perspective,
considering the criteria: installation cost, minimum gas pressure, feasibility rate, average cost of failure, and sensitivity. The
results indicate solutions relatively different from those obtained by the engineers, presenting more robust and safe networks
under conditions of uncertainties of load evolution.

Keywords Natural gas pipeline networks · Load-evolution uncertainty · Multicriteria decision-making · Multiobjective
variable neighborhood search (MOVNS)

1 Introduction

Natural gas is an essential energy source for the future.
Its multiple benefits include low greenhouse gas emissions
and low costs, which makes it competitive in most sectors
among other energy sources.1 Global projections of natural
gas reserve levels are also an indication of the relevant role
that natural gas will play in supporting growth in markets in
the future (El Kafazi and Bannari, 2019; Su et al., 2019).
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Global trends in natural gas indicate that consumption,
production, reserves, and dependencies will continue to
increase steadily for the foreseeable future (Jiao et al.,
2021; Hari et al., 2021; Vedik et al., 2021). These rising
expectations may involve the need for optimization and
decision-making tools suitable to handle larger and more
complex projects in national and international fields.

There are several researches in the gas distribution indus-
trial field. Traditionally, studies on the design of pipelines for
a gas network are focused on optimizing the installation cost
of the network for distribution systems. In this context, there
are several works in the literature addressing the problem via
linear programming (Hansen et al., 1991), dynamic program-
ming (Rothfarb et al., 1970), genetic algorithms (Simpson
et al., 1994; Demissie et al., 2017; El-Mahdy et al., 2010), ant
colony optimization algorithm (Zecchin et al., 2006; Moha-
jeri et al., 2012b). However, these studies are limited because
they only seek to minimize the network cost, thus disregard-
ing relevant design aspects, such as theminimumgaspressure
in the network, reliability, and robustness.

In this way, this paper proposes a Variable Neighborhood
Search (VNS)-based multiobjective optimization tool dedi-
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cated to the design of gas network sizing. This optimization
approach estimates solutions while minimizing the network
installation cost and maximizing the minimum allowable gas
pressure. In general, the original contributions of this work
include:

– A pipe sizing multiobjective optimization problem mod-
eling is performed, which aims to minimize the cost and
maximize the minimum pressure;

– A multiobjective VNS algorithm dedicated to the prob-
lem, including an intelligent constructive heuristic;

– A random instance generator for the problem, based on
the database of the TSPLIB library;

– A strategy to support multicriteria decision-making,
involving the following criteria: installation cost, min-
imum pressure, feasibility rate, average cost of failure,
and sensitivity.

This multicriteria investigation considers uncertainty sce-
narios in the evolution of demand over a given time horizon,
which indeed aids in the process of defining an appropri-
ate final solution for the problem. Results have shown very
promising concerning previous studies of the literature.

This paper is organized as follows. Section 2 stands for a
brief review of the literature. Section 3 presents theoretical
concepts about the problem of natural gas network design
and states the proposedmultiobjective optimization problem.
Section 4 discusses the proposed integrated tool. Section 5
describes the design and analysis of the experiments adopted
in this paper. The results are presented in Sect. 6, and the
final observations are provided in Sect. 7.

2 Literature Review

The problem of natural gas network design was first
addressed in the literature in 1970 (Rothfarb et al., 1970).
Since then, many other works have been published in this
field. We conducted an investigative study concerning a
large sample of such works so as to contrast some fea-
tures of our work against the ones from the literature. These
characteristics include network topology (radial or mesh-
ed), instance size (small instances usually have less than 50
nodes), nonlinear-based model, multiobjective optimization,
andmulticriteria analysis. Table 1 presents a brief viewof this
investigation and shows that our proposal explores a great set
of promising features for gas network design.

According to the previous review, several limitations
could be identified in the literature: many works address only
radial networks (Rothfarb et al., 1970; Simpson et al., 1994;
Boyd et al., 1994; Surry et al., 1995; de Wolf and Smeers,
1996; Demissie et al., 2017; Zecchin et al., 2006; Moha-
jeri et al., 2012b, a; Torkinejad et al., 2019; Su et al., 2019);

some approaches are limited to small networks, less than
50 nodes (Rothfarb et al., 1970; Mohajeri et al., 2012b, a;
Torkinejad et al., 2019; Demissie et al., 2017); others works
consider only linear or quadratic approximations of the prob-
lem (Hansen et al., 1991; de Wolf and Smeers, 1996); many
proposals only involve minimizing the network installation
cost (Rothfarb et al., 1970; Hansen et al., 1991; Simpson
et al., 1994; Boyd et al., 1994; de Wolf and Smeers, 1996;
Duarte et al., 2006; Zecchin et al., 2006; El-Mahdy et al.,
2010; Mohajeri et al., 2012b, a; Torkinejad et al., 2019).

Few papers in the literature perform the multi-objective
optimization of natural gas pipelines. In Demissie et al.
(2017), the objective is to minimize the power consump-
tion of the compressor stations and meanwhile maximize the
amount of gas delivered to customers. And in Su et al. (2019),
it is proposed tominimize power demand and risk of gas sup-
ply shortage. However, none of the articles takes into account
our objectives and multicriteria analysis under conditions of
uncertainty.

In this context, this paper presents the following highlights
in comparison with the studies in the literature:

– Consider the analysis of meshed networks, which are
assumed more complex to address;

– Deal with test instances which have more than 50 nodes;
– Deal with nonlinear equations;
– A multiobjective optimization is performed, which aims
to minimize the cost and maximize the minimum pres-
sure;

– Amulticriteria analysis is carried out to assess the behav-
ior of the network 10 years ahead.

3 Design of Natural Gas Networks

The design of a natural gas network consists mainly of two
stages: hydraulic and mechanical (Ottoni and Batista, 2020).
The hydraulic part involves issues such as the demand to
be met, network topology, maximum and minimum pressure
criteria for the proper operation of the network, consumer
flow, and gas characteristics. On the other hand, the mechan-
ical phase of the project involves other problems, such as the
specification of thematerial and the thickness of the pipewall
that is adequate to withstand internal and external pressure
(Ottoni and Batista, 2020; Arya, 2022).

The problemaddressed in thisworkwill involve the design
of a natural gas network in the hydraulic construction stage,
assuming that the mechanical phase has already been com-
pleted. For this, it is necessary to define the network topology
and its demand points (Arya, 2022; Hari et al., 2021).

The next step in designing a natural gas network is the
choice of pipelines that will make up the network. For this
choice, there are relevant points that must be considered. In
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general, the larger the diameter of a pipe, the greater the
amount of gas that can be transported through it; in this way,
the network can safely meet the existing demands (Ottoni
and Batista, 2020; Arya, 2022). However, the diameters of
existing pipelines on the market are fixed, and their cost is
proportional to their size. Therefore, more robust networks
generally tend to be more expensive.

In this way, a combinatorial optimization problem is
obtained, in which we aim to minimize the installation cost
and maximize the minimum pressure on the nodes of a net-
work. The constraints of this problem require that the pipe
diameters are sufficient tomeet the necessary demand so that,
in each internal node of the network, a minimum pressure is
available.

3.1 Proposed Optimization Problem

In this paper, it is desired to define a set of pipes that will
compose the network in order to both minimize the instal-
lation cost and maximize the minimum gas pressure in the
network. The types of pipelines considered in this project
were selected according to those available on the market,
and their cost is proportional to their diameter and length.

The optimization problem considered in this work can be
defined as:

min
x

F1(x) �
∑

k∈K

∑

i∈I
LiCkxik (1a)

max
x

F2(x) � min
j∈{1,...,n} Pj (x) (1b)

subject to:

Pj (x) ≥ Pmin, j = 1, ..., n. (2)

xik ∈ {0, 1}, i = 1, ...,m. k = 1, ..., |K |. (3)

where K is the set of types of diameters available on the
market; I is the set ofm predefined pipelines in the network;
Li is the length of the i-th pipeline of the network; Ck is the
cost per unit length of the k-th type of diameter; Pj is the
pressure obtained at the j-th node in the network; Pmin is the
minimum pressure required on the j-th node; xik is a binary
variable, which is 1 if the k-th diameter is assigned to pipe i
and 0 otherwise.

Equations (1a) and (1b) refer to the multiobjective prob-
lem of minimizing cost and maximizing minimum pressure,
respectively. Equation (2) expresses the minimum pressure
constraints of the problem, which can be verified by solv-
ing nonlinear gas flow equations in the network, as shown in
Ramos and Batista (2020).

The unrestricted multiobjective optimization problem is
represented in (4aand 4b), where the original problem con-

Dataset
Pipe sizing mul�objec�ve

op�miza�on problem

Op�mizer:
MOVNS – based algorithm

Es�mated Pareto-front Mul�criteria
decision-making

Fig. 1 Flowchart of the proposed methodology

straints are dealt with via a penalty function:

min
x

F1(x) �
∑

k∈K

∑

i∈I
LiCkxik + η(x)Cres

∑

i∈I
Li (4a)

min
x

F2(x) � − min
j∈{1,...,n} Pj (x) + η(x)Cres

∑

i∈I
Li (4b)

where η(x) is the number of nodes in the solution x that
violates the minimum acceptable pressure; Cres = Cmax −
Cmin, in whichCmax andCmin are the cost, per unit of length,
of the largest and smallest diameter available, respectively.

4 Proposed Integrated Tool

In this section, we present the integrated tool proposed in
this paper. The methodology follows the flowchart shown in
Fig. 1. Initially, a data set is generated by an instance gen-
erator developed in this work. Of course, the data set of an
instance can also come from a real-world problem. The pro-
posed optimizer then approximates a set of non-dominated
solutions, i.e., a Pareto-front. Finally, multicriteria decision-
making is carried out through the estimated Pareto-front.

In the following, we present the algorithms proposed in
Duarte et al. (2015) and then the algorithms suggested as an
innovation of this paper.

4.1 Multiobjective VNS (MOVNS)

This research proposes a multiobjective version of the Vari-
able Neighborhood Search (VNS) algorithm presented in
Mladenović and Hansen (1997). This method is based on
the systematic change of neighborhood while investigating
solutions in the search space. In this work, we explore a
recent MOVNS algorithm proposed specifically for multi-
objective combinatorial problems Duarte et al. (2015). The
algorithm has some variations, such as the reduced VNS
(RVNS), general VNS (GVNS), and variable neighborhood
descent (VND). These algorithms are presented next.
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4.1.1 Multiobjective Reduced VNS (MORVNS)

The reducedVNS (RVNS) is one of the versions of themulti-
objectiveVNSpresented inDuarte et al. (2015). Its procedure
is based on two actions: (i) disturbing the solution to leave
possible local optima and (ii) changing the neighborhood
until a stop criterion is reached. Algorithm 1 shows these
steps in the multiobjective version of the RVNS proposed
in Duarte et al. (2015). It is important to note that in the
mono-objective algorithm, a solution is characterized by a
single vector, while in the multiobjective version there is a
set of efficient points (non-dominated solutions), represented
in Algorithm 1 by the set E . The other parameters are as
follows: number of neighborhood structures (kmax) and the
runtime limit of the algorithm (tmax).

1 Input: E, kmax , tmax
2 E ′ = ∅;
3 while t < tmax do
4 k = 1;
5 while k ≤ kmax do
6 E ′ = MO-Shake(E, k);
7 E, k = MO-NeighborhoodChange(E, E ′, k);
8 end
9 end

10 return E ;

Algorithm 1: MORVNS

4.1.2 Multiobjective General VNS (MOGVNS)

The MOGVNS algorithm can be divided into three consec-
utive steps: (i) perturbation of the solution to leave possible
local optima, (ii) VND for solution refinement, and (iii)
change of neighborhood until a stopping criterion is reached.
Algorithm 2 shows these steps in the multiobjective version
of GVNS proposed in Duarte et al. (2015).

As represented in Algorithm 2, the input parameters are
as follows: the set of solutions E , number of neighborhood
structures (kmax), number of objective functions (r ), number
of neighborhoods for local search (k′

max), and the runtime
limit for the algorithm (tmax).

4.1.3 Local Search: Multiobjective VND (MOVND)

In the local search approach, called MOVND (Algorithm 3),
the neighborhoods are explored for each objective i sepa-
rately, through a specific execution of VND-i (Algorithm 4).
The input parameters are a set of solutions (E), the number
of neighborhoods for the local search (k′

max), and the total
number of objectives (r ).

An iteration beginswith the random selection of an incum-
bent solution x ′ from the set of unexplored points of E (line

1 Input: E, kmax , r , k′
max , tmax

2 while t < tmax do
3 k=1;
4 while k ≤ kmax do
5 E ′ = MO-Shake(E, k);
6 E ′′ = MO-VND(E ′, k′

max , r );
7 E, k = MO-NeighborhoodChange(E, E ′′, k);
8 end
9 end

10 return E ;

Algorithm 2: MOGVNS

1 Input: E, k′
max , r

2 S1 = {}, S2 = {}, ..., Sr = {};
3 i = 1;
4 while i ≤ r do
5 while E \ Si �= ∅ do
6 x ′ = SelectRandom(E \ Si );
7 Ei = VND-i(x ′, k′

max );
8 Si = Si ∪ Ei ;
9 end

10 E, i = MO-ObjectiveChange(E, Si , i);
11 end
12 return E ;

Algorithm 3: MO-VND

6). The set S represents the points used, grouped by objec-
tive function (S1, S2, ..., Sr ) and updated after each execution
of VND-i (line 8). The improvements in the set of points
are analyzed by the function MO-ObjectiveChange, which
is presented next. In this way, the method is executed until
all objectives are optimized.

Algorithm 4 shows how the local search VND-i is per-
formed concerning the objective i . Note that, as in the original
VND method, the transition between neighborhoods is car-
ried out in a deterministic manner, where each neighborhood
structure is indicated by k (with k ∈ {1, ..., k′

max}).
A new point x ′ is defined as the best solution in the neigh-

borhood k of the vector x in relation to the objective i (line
5). In case of improvement, the x solution is replaced by x ′
and a new neighborhood inspection is made from k = 1. The
main difference between Algorithm 4 and the original VND
is that a set of non-dominated points E is updated through
searches and, at the end of the procedure, non-dominated
solutions are returned (line 6). This concept of dominance is
defined as: given two solutions x1 and x2, x1 is said to dom-
inate x2 if, and only if, Fi (x1) ≤ Fi (x2) for all i = 1, ..., r ,
and there is at least one objective i where Fi (x1) < Fi (x2)
(Miettinen, 2012). In this definition, Fi (·) represents a given
optimization objective and r the total number of objectives
considered.
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1 Input: x, k′
max

2 k = 1;
3 E = {x};
4 while k ≤ k′

max do
5 x ′ = argminy∈Nk (x) Fi (y);
6 E= Update(E, x ′);
7 if Fi (x ′) < Fi (x) then
8 x = x ′;
9 k = 1;

10 else
11 k = k + 1;
12 end
13 end
14 return E ;

Algorithm 4: VND-i

1 Input:E, E ′, k
2 if MO-Improvement(E, E ′) is true then
3 k = 1;
4 E = Update(E, E ′);
5 else
6 k = k + 1;
7 end
8 return E, k;

Algorithm 5:MO-NeighborhoodChange

4.1.4 MO-NeighborhoodChange

Algorithm 5 explains how the MO-NeighborhoodChange
and MO-ObjectiveChange procedures work. As with the
mono-objective version, a neighborhood k is changed to k+1
when there is no further improvement in the current search.
Improvements are seen in the MO-Improvement function.
If MO-Improvement returns true, that is, there has been an
improvement, then the neighborhood structure is reinitialized
(line 3) and the solutions are updated. The Update func-
tion (line 4) is responsible for this update, which returns
the non-dominated solutions of the union of E and E ′. If
MO-Improvement returns false, itmoves on to the next neigh-
borhood structure.

The MO-Improvement function (Algorithm 6) is respon-
sible for verifying whether there has been an improvement
between the solution sets E and E ′. An improvement is
assumed to be true if at least one solution x ′ inE ′ is not
dominated by any of the points in E . This leads to the update
of the approximated Pareto front.

4.1.5 MO-Shake

The multiobjective version of the perturbation procedure,
MO-Shake, is presented in Algorithm 7. Its main objective
is to perturb the set of points to promote searches in new
regions. The Shake function is responsible for modifying

1 Input: E, E ′
2 for x ∈ E ′ do
3 if x /∈ E ∧ ¬Dominated(x, E) then
4 return true;
5 end
6 end
7 return false;

Algorithm 6:MO-Improvement

each solution in the E set, according to the neighborhood k,
to create a new set of points E ′.

1 Input: E, k
2 E ′ = ∅;
3 for x ∈ E do
4 x ′ = Shake(x, k);
5 E ′ = E ′ ∪ {x ′};
6 end
7 return E ′;

Algorithm 7: MO-Shake

4.2 Proposed Approaches

This section presents the main approaches proposed in this
article. Section 4.2.1 presents a constructive heuristic to gen-
erate an initial solution. In 4.2.2, the specific neighborhood
structures for the problem addressed are defined. In 4.2.3, the
implemented instance generator is presented. Section 4.2.4
suggests a robust proposal for MO-NeighborhoodChange
and MO-Improvement. Finally, in 4.2.5, the multicriteria
methodology used in this work is discussed.

4.2.1 Initial Solution

The initialization of a feasible solution for the MORVNS
and MOGVNS algorithms was obtained from a constructive
heuristic. The construction of this initial solution follows the
step by step in the next:

a. A network is started concerning all pipes with the small-
est diameter available, thus having the cheapest possible
solution. The algorithm finishes only when a feasible
solution is found or a stagnation criterion is reached.

b. It is detected which nodes are violating the minimum
pressure constraint and a percentage of 20% of them is
selected.

c. New solutions are generated by increasing in one unit
the diameter of the pipes connected to the nodes selected
in step (b). These perturbations aim to build solutions
whose pressure violations in the nodes become smaller.
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d. The solution with the lowest objective function value
F2 is verified, and if it is feasible and better than the
incumbent solution, the algorithm is closed; otherwise,
the process returns to step (b) and the iterative construc-
tion continues.

The best solution obtained is returned at the end of the
algorithm.

4.2.2 Neighborhood Structures

The neighborhoods proposed in this work are specific to the
characteristics of the problem. Due to the sensitivity of the
candidate solutions, small changes in their structure can alter
their cost on a large scale. Therefore, neighborhood structures
with small perturbations were chosen. The three proposed
neighborhood structures are described in the following:

1. The first neighborhood structure decreases or increases
the diameter of a random pipe to the next available value,
considering the same probability of occurrence. If the
selected pipe is associated with the largest possible diam-
eter, it is decreased to the next available diameter. On
the other hand, if the selected pipe is associated with
the smallest possible diameter, it is increased to the next
viable value.

2. The second structure changes the diameters of two neigh-
boring random pipes, i.e., connected to the same network
node.

3. The third structure changes the diameters of any two ran-
dom pipes in the network.

4.2.3 Instance Generator

One of the contributions of this work is the proposal of an
instance generator based on the TSPLIB data set (Reinelt,
1991). This instance generator is based on the following
steps:

1. An instance is selected from the TSPLIB library. This
instance is represented by a set of vectors on the Cartesian
plane.

2. The minimum spanning tree of the selected instance is
obtained using the Kruskal algorithm (Kruskal, 1956).

3. Leaf nodes, i.e., connected to a single pipe, are identified
and then connected to two or three other arbitrary neigh-
boring nodes, avoiding the intersection between pipes.
This operation aims to define a meshed network.

4. Arbitrarily define between 2 and 5% of network nodes as
source nodes.

5. The incidence matrix of the instance is elaborated.

6. The network parameters are randomly generated. The
demand for each internal node is drawn between 10.000
and 15.000 (m3/h). However, there is a 5% probability
that each node is only of transshipment. The other net-
work data, such as the minimum pressure required, the
pressure at the source nodes, the diameters available, and
the related costs, are the same as those adopted in El-
Mahdy et al. (2010), Ottoni and Batista (2020).

4.2.4 MO-NeighborhoodChange� &MO-Improvement�

The MO-NeighborhoodChange (Algorithm 5) and MO-
Improvement (Algorithm 6) methods, proposed in Duarte
et al. (2015), assume that if a newly generated solution is
not dominated by any of the solutions in the archive, then it
can contribute to its quality. However, due to the deteriora-
tion problem frequently observed in processes of updating /
truncating the set of non-dominated solutions (Deb, 2001), all
non-dominated solutions will be accepted, even if they do not
contribute to the improvement of the archive. This limitation
can lead these methods to a loop, harming the convergence
of the approach.

In this context, this work proposes a different strategy to
verify the possibility of improving the archive. In general,
the MO-Improvement algorithm will suggest the possibil-
ity of improving the current archive, only if a new solution
generated meets two basic criteria: i) be non-dominated in
relation to the other archive solutions and ii) contribute to
the diversity of this archive. If the archive is already full (i.e.,
|E | ≥ N ), the verification will be carried out considering the
inclusion of the new solution in the archive and removal of
the vector of smaller crowding distance (Deb et al., 2002).
This new method is presented in Algorithms 8 and 9.

1 Input: E, E ′
2 for x ∈ E ′ do
3 if x /∈ E ∧ ¬Dominated(x, E) then
4 if |E | < N || improveN DSet(x, E) then
5 return true;
6 end
7 end
8 end
9 return false;

Algorithm 8: MO-Improvement�

In addition, the archive and the neighborhood structure
will be updated in the MO-NeighborhoodChange method
according to the hypervolume quality indicator (HV) (Zitzler
and Thiele, 1999). Therefore, if a newly generated solution
improves the archive HV value, then this updated archive is
returned and the neighborhood structure k = 1 ismaintained;
otherwise, the original archive is kept and the next neighbor-
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1 Input: x, E
2 E = E ∪ {x};
3 c = CrowdingDistanceAssignment(E);
4 y = miny∈E c(y);
5 if x �= y then
6 return true;
7 end
8 return false;

Algorithm 9: ImproveNDSet

1 Input: E, E ′, k
2 if MO-Improvement�(E, E ′) is true then
3 A = Update(E, E ′);
4 if improveHV(E,A) is true then
5 E = A;
6 k = 1;
7 else
8 k = k + 1;
9 end

10 else
11 k = k + 1;
12 end
13 return E, k;

Algorithm 10: MO-NeighborhoodChange�

1 Input: E, A
2 if hypervolume(A) > hypervolume(E) then
3 return true;
4 else
5 return false;
6 end

Algorithm 11: ImproveHV

hood structure is considered, k = k + 1. The same also
applies to the MO-ObjectiveChange method. The pseudo-
code of this new strategy is presented in Algorithms 10 and
11.

These proposed approaches are named MO-Neighbor-
hoodChange� andMO-Improvement�, which are used in this
work to replace the original heuristics.

4.2.5 Multicriteria Analysis

The multicriteria analysis was performed considering sce-
narios of uncertainty of the evolution of the load to assist in
the final decision-making. The growth of demand at internal
network nodes was modeled in order to determine a distribu-
tion network configuration that will respond to an increase in
the nominal demand of each node over a given time horizon.
Since the real growth is unknown, a Gaussian probability
distribution function was used to model the behavior of the
network.

The proposed procedure is described next:

– For a specific period of time, a set of Ns demand sce-
narios was generated using a Gaussian distribution. For
this work, Ns = 2000 scenarios were used and a time
horizon of 10 years. In general, it was assumed a mean
of 0.025 and sample standard deviation of 0.012 for the
first year, which results in a mean of 0.28 and standard
deviation of 0.127 in the tenth year;

– All non-dominated solutions found (network configura-
tions) were evaluated in all scenarios, considering four
pre-established merit functions: minimum pressure; fea-
sibility rate; average cost of failure; sensitivity;

– A dominance analysis was carried out in order to extract
a final subset of non-dominated solutions from the initial
set of candidate solutions.

The pre-established merit functions are modeled as fol-
lows:

Installation Cost
This function deals with the costs that mainly involve civil

works, pressure control equipment, flow meters, and tubes
acquisition (Goldbarg et al., 2006). In this work, the instal-
lation cost is given by (1a):

F1(x) =
∑

k∈K

∑

i∈I
LiCkxik (5)

Minimum Pressure
The minimum pressure ensures that the demands of the

network will be met, and it is defined as (1b):

F2(x) = min
j∈{1,...,n} Pj (x) (6)

Feasibility Rate
The feasibility rate is defined as the relationship between

the number of scenarios in which the network configuration
does not violate the minimum pressure limit (N f ) and the
total number of scenarios (Ns):

F3(x) = N f (x)

Ns
(7)

Average Cost of Failure
The F4 function represents the expected average cost of

failure in the network, which is evaluated considering the
scenarios in which the network is viable:

F4(x) = 1

N f (x)

N f (x)∑

j=1

y j (x) (8)

where y j is the failure cost of scenario j :

y j (x) = μ

m∑

i=1

λi ti qi, j (x) (9)
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whereμ is the gas flow rate ($.h/m3);λi is the failure rate per
unit length of the pipe i ((m.h)−1); ti is the average duration
of the pipe failure i (h), and qi, j (·) is the gas flow in the
pipeline i for the scenario j (m3/h). The values adopted in
this work are as follows:

μ = 0.10 ($.h/m3)

λi = 10−4 ((m.h)−1), ∀i ∈ {1, . . . ,m}
ti = 1 (h), ∀i ∈ {1, . . . ,m}

Sensitivity
The sensitivity allows to evaluate the behavior of the net-

work if any pipeline has a malfunction. In this work, the
impact due to a malfunction of a pipeline was modeled as
the reduction of its diameter to 50% of its nominal value.
The sensitivity function modeled below considers the sum of
the failure effects of each of the network pipes (simultaneous
failures are not considered):

F5(x) =
m∑

i=1

(
1

Na(x)

n∑

j=1

�i
j (x)

)
(10)

in which �i
j (x) =

{
0, if Pi

j (x) ≥ Pmin

(Pmin − Pi
j (x))

2, if Pi
j (x) < Pmin

Na(·) is the number of nodes in solution x that does not
violate the minimum pressure restriction.

5 Design of Experiments

All the algorithms used in the experiment were developed
in MATLAB R2014b and run on a computer Ubuntu 16.04
LTS 8GB of RAM. The statistical analysis of the results was
carried out in R 3.5.3 (R Core Team, 2019).

The instances used were generated from the instance
generator developed in this work. To perform the tests,
9 instances were developed for the problem: Berlin52a,
Berlin52b, Eil51a, Eil51b, Eil76a, Eil76b, St70a, St70b, and
Rd100. In all experiments, 5 executions of the algorithms
were performed for each instance.

The multiobjective algorithms compared in this work
are MORVNS, MOGVNS, NSGA-IIa, and NSGA-IIb. The
NSGA-II employed in this work has many similarities with
the one proposed in Deb et al. (2002), however with different
variation operators, as defined in El-Mahdy et al. (2010). The
algorithms NSGA-IIa and NSGA-IIb differ only in relation
to the stopping criterion. The stop criterion of the NSGA-IIa
is equal to the number of function evaluations (n f e) per-
formed by MORVNS and the stop criterion of NSGA-IIb is
equal to the n f e of MOGVNS. In the algorithms MORVNS
and MOGVNS, the stop criterion based on runtime has been

replaced by a maximum number of iterations. In this context,
it was considered 30 iterations for the MORVNS and 3 for
the MOGVNS.

Finally, the best performing multiobjective algorithm was
applied to the case study presented in El-Mahdy et al. (2010).
The results are compared against the literature.

6 Results

In this section, the results obtained by the proposed tool are
presented. The experiments are divided into two stages: (i)
comparison of the performance of multiobjective algorithms
applied to the problemusing benchmark instances and (ii) use
of the best performing algorithm to optimize the case study
proposed in El-Mahdy et al. (2010). Finally, a multiobjec-
tive analysis is carried out under conditions of uncertainty
regarding the evolution of demand.

6.1 Results from the Benchmark Instances

The parameters used by NSGA-II a and b are compatible
with those used by themono-objective genetic algorithmpro-
posed in El-Mahdy et al. (2010). The algorithm uses binary
variables of 3 bits and the probabilities of crossover andmuta-
tion are 100% and 5%, respectively. The selection operator
is based on a binary tournament.

To compare the algorithmsMORVNS,MOGVNS,NSGA-
IIa, and NSGA-IIb, 9 instances were generated from the
instance generator. Table 2 shows the mean and standard
deviation of the hypervolume (HV) and runtime (in hours)
for each instance.

From Table 2 it is possible to observe that the MOGVNS
algorithm presents, in most cases, the largest hypervolume.
Figure 2 shows examples of the estimated Pareto-front for
the instances Berlin52a, Eil76b, Eil70b, and Rd100. From
these results, it is possible to see that the MOGVNS algo-
rithm is capable of obtaining fronts with better coverage.
MORVNS tends to prioritize results with lower cost, but with
pressures close to the minimum allowed. NSGA-IIa, in con-
trast to MORVNS, tends to map solutions with a higher cost,
but with a higher minimum pressure. NSGA-IIb obtained
solutions with promising coverage, however irregularly dis-
tributed along the front, with several spaces between them.

For a more elaborate comparison of the algorithms, a
statistical analysis was performed to check if there is a signif-
icant difference between them in terms of the hypervolume.
The analysis of variance test (ANOVA) was used to check if
there is a statistical difference between the performance of
the algorithms (significance of 0.05). ANOVA is applied to
test the null hypothesis (H0) of no difference in the perfor-
mance of the algorithms against the alternative hypothesis
(H1) that at least one algorithm is different from another
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Table 2 Comparative results between the algorithms. The best hypervolume (HV) and runtime (in hours) values are in bold

Instances Data MORVNS MOGVNS NSGAIIa NSGAIIb

Berlin52a HV 0.9311(0.0470) 1.1093(0.0170) 1.0309(0.0200) 1.0969(0.0064)

Runtime 0.4069(0.0368) 10.5921(3.6504) 0.4252(0.0034) 10.7607(0.0243)

Berlin52b HV 0.9584(0.0379) 1.0678(0.0058) 1.0041(0.0136) 1.0688(0.0051)

Runtime 0.3922(0.0363) 11.0678(1.8038) 0.4145(0.0027) 11.1542(0.0350)

Eil51a HV 1.0287(0.0190) 1.1819(0.0025) 0.9970(0.0143) 1.1500(0.0033)

Runtime 0.2068(0.0205) 18.6148(5.8375) 0.2202(0.0010) 18.6097(0.040)

Eil51b HV 1.0520(0.0388) 1.1801(0.0020) 0.9997(0.0274) 1.1431(0.0052)

Runtime 0.1936(0.0352) 9.0646(2.7912) 0.2059(0.011) 8.9919(0.0201)

Eil76a HV 0.9009(0.0327) 1.1558(0.0019) 0.9615(0.0212) 1.1131(0.0034)

Runtime 0.4282(0.0381) 73.1421(3.8031) 0.4682(0.0035) 118.041(1.6518)

Eil76b HV 1.0548(0.0183) 1.1896(0.0005) 0.9361(0.0167) 1.1316(0.0091)

Runtime 0.363(0.0167) 88.1583(8.2281) 0.3919(0.0010) 169.5935(3.8554)

St70a HV 0.8650(0.0658) 1.1449(0.0059) 1.0921(0.0178) 1.0921(0.0034)

Runtime 0.3936(0.0412) 39.5511(18.9924) 0.4236(0.0074) 40.8917(0.2716)

St70b HV 0.9410(0.0161) 1.1760(0.0054) 0.9621(0.0206) 1.1243(0.0053)

Runtime 0.346(0.0132) 49.3214(21.1611) 0.3741(0.0034) 52.2361(0.2673)

Rd100 HV 0.7624(0.0325) 1.0971(0.0063) 0.8922(0.0140) 1.0223(0.0081)

Runtime 1.2176(0.1136) 149.6018(42.2332) 1.3124(0.0126) 152.9746(4.3726)

algorithm (Montgomery and Runger, 2013):

{
H0 : αi = 0 ∀i
H1 : αi �= 0 for any i

The ANOVA results indicated that there are differences
between the methods, i.e., with p value less than 0.05. The
premises of normality and homoscedasticity were respected;
the Kolmogorov-Smirnov test and the Bartlett test were used,
respectively.

Tukey’s multiple comparison test (Tukey, 1953) was per-
formed to identify the averages of the algorithms that are
statistically different from each other (Campelo, 2018). This
method can be performed with ANOVA.

The results obtained by the Tukey test showed that for
the instances Berlin52a, Berlin52b, Eil51b, and St70a, the
algorithms MOGVNS and NSGA-IIb present statistically
different performances concerning the methods MORVNS
and NSGA-IIa. For instances Eil51a, Eil76a, Eil76b, St70b,
andRd100a, statistically different performances are observed
in all algorithms. MOGVNS obtained the highest average of
the hypervolume in most instances, as shown in Table 2.

Regarding the computational time of the algorithms,
MORVNSandNSGA-IIa algorithms require similar runtime.
In the sameway, it is possible to notice this similarity between
the algorithms MOGVNS and NSGA-IIb. This approxima-
tion is due to the same stop criterion of these algorithms.

However, the runtimedifferencebetween these twogroups
is considerable. This difference can be justified by the

increase in the number of evaluations of the objective func-
tion, which for the problem in question is computationally
expensive.

Despite this fact, due to the quality of the solutions pointed
out by theMOGVNSandNSGA-IIb algorithms, it is believed
that the runtime in question is not as relevant as the quality
of the solutions obtained, since a solution is not needed in a
short time, but an efficient project. In general, it is extremely
important that the solutions are good enough to save thou-
sands of dollars and also to meet the demand of the network.

In view of the foregoing considerations, it was decided to
apply the MOGVNS in the case study.

6.2 Case Study

The instance used in this case study was proposed in El-
Mahdy et al. (2010). In this article, the authors compared
the solutions obtained by a binary genetic algorithm with the
solutions provided by three engineers with an average of 6
years of experience.

The network consists of m = 21 pipes, n = 12 internal
nodes, and r = 2 source nodes, as can be seen in Figure 3.

6.2.1 Results Obtained by the Proposed Approach

Five MOGVNS executions were carried out. The fronts
obtained (Figure 4) show the ability of the method to repro-
duce similar results.
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Fig. 2 Fronts obtained by the algorithms in the instances: (a) Berlin52a; (b) Eil76b; (c) Eil70b; and (d) Rd100

The largest hypervolume front (from execution 5) was
selected and the multicriteria analysis was performed, eval-
uating installation cost, minimum pressure, feasibility rate,
average failure cost, and sensitivity. The results obtained are
shown in Table 3. The solutions proposed in Ramos and
Batista (2020), El-Mahdy et al. (2010) and by the three engi-
neers were also evaluated on the five criteria, as shown in
Table 4.

From the results obtained, the difficulty of obtaining low-
cost and high-pressure solutions is notable due to the strong
conflict between the two objectives. Besides, based on the
methodology used, it is possible to observe that important cri-
teria (such as those discussed) cannot be ignored in network
planning, as they present interesting characteristics about the
behavior of a network in conditions of uncertainty.

An example of the efficiency of the proposed approach is
solutions 2, 6, 11, 19, and 20 (Table 3), which had the lowest

installation cost, higher value of minimum pressure, greater
feasibility, and less sensitivity compared to the solutions of
the three engineers (Table 4).

In order to make a decision based on the criteria presented
in Table 3, taking into account the cost of installation, min-
imum pressure, feasibility rate, average cost of failures, and
sensitivity of the network, solution 19 was chosen.

The chosen solution contains a cost value smaller than
those found by all the engineers (Table 4). The minimum
pressure is high and greater than all the results presented in
El-Mahdy et al. (2010) and Ramos and Batista (2020). It
contains a high feasibility rate (77.65%) while the highest
rate shown in Table 4 is 10.5%; its average cost of failure
is the fifth-lowest in Table 3 and its sensitivity is lower than
those presented by the papers used as references.
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Fig. 3 Network employed in the case study. Adapted from El-Mahdy
et al. (2010)
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Fig. 4 Fronts obtained by MOGVNS in the case study

6.3 Final Discussion

The results presented in this section illustrate how the
proposed approach can provide promising solutions with dif-
ferent characteristics. Among the results obtained, presented
in Table 3, some are cheaper - both concerning installation
and average cost of failure - while others are more likely to
supply gas properly across the network - greater viability and
smaller sensitivity.

In addition, when comparing Table 3 with Table 4, it
can be seen that, given a similar installation cost range, the
solutions in Table 3 should surpass those in Table 4. This
demonstrates how the search for solutions under different
conditions of uncertainty and merit functions characterizes a
better approach than just looking for cheaper solutions under
the condition of nominal demand.

However, many simplifications and approximations have
been adopted in this work; some for lack of specialization,
some for leading to unnecessary complications, and others
for being, by nature, specific to the network being optimized.

Table 3 Results of multicriteria analysis

Solution F1 F2 F3 F4 F5

1 324336950 14.6 100% 16429.9 224.8

2 297990000 10.6 46.5% 15344.2 4374.4

3 449053150 17.2 100% 16603.9 0

4 377060950 16.6 100% 16101.3 0

5 290109050 4.6 2.32% 12821.3 20461.5

6 293694100 9.1 20.25% 14499.3 4982.7

7 432156550 17.1 100% 16119.6 0

8 417264050 17.1 100% 16134.5 0

9 469551250 17.2 100% 16701.6 0

10 306649000 12.7 93.9% 16275.2 1519.7

11 293081950 8.6 14.6% 14046.4 6108.7

12 387994250 16.9 100% 15858.6 0

13 309160600 13.9 99.8% 16303.2 894.3

14 337797600 15.3 100% 16404.3 8.8

15 349038900 15.8 100% 17089.1 0

16 315314650 14.4 100% 16349.0 537.6

17 403719750 16.9 100% 15997.7 0

18 363596100 16.1 100% 16360.4 0

19 299677000 11.8 77.65% 15377.7 2227.1

20 291723950 7.4 7.65% 13408.0 7732.3

Values in bold had the lowest installation cost, higher value ofminimum
pressure, greater feasibility, and less sensitivity.

Although it is a belief that none of these undermines the
robustness of the methodology itself, they give a lot of room
for improvements and adjustments to be made. Some ideas
to consider are listed as follows:

– Complexity adjustment: the algorithm is computation-
ally expensive. Maintaining a set of candidate solutions
requires MOGVNS to solve the problem of nonlinear
flow over and over again.

– Data collection: many values are approximate in this
work. The growth in demand adopted seems acceptable,
but it certainly varies from case to case.

7 Conclusion

This work aimed to develop a multiobjective optimization
tool for the problem of natural gas network dimensioning.
Minimizing the cost of installing the network and maxi-
mizing the minimum pressure on the network nodes were
considered, aiming to meet the demand safely. To assist
the decision-making, the results obtained were evaluated in
five criteria: installation cost, minimum pressure, feasibility
rate, average cost of failure, and sensitivity. The multicrite-
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Table 4 Solutions from Ramos
and Batista (2020) and
El-Mahdy et al. (2010) evaluated
on the proposed criteria

Solution F1 F2 F3 F4 F5

Ramos and Batista (2020) 286372450 2.7 10.5% 12284.9 3.7782 ×1019

El-Mahdy et al. (2010) 289700950 2.8 1.30% 12945.9 12902.2

Eng. A 300276200 2.8 1.30% 12832.0 12223.4

Eng. B 324824500 2.6 1.11% 12809.0 8.5932 ×1019

Eng. C 301744450 4.8 2.45% 12757.4 16442.1

ria analysis took into account scenarios of uncertainty in the
evolution of demand over a specified time horizon (10 years).

In general, this work brings gains to the academic commu-
nity involvedwith the optimization of natural gas distribution
networks.As stated before, it is believed that the original con-
tributions of thiswork are as follows: themultiobjectivemod-
eling proposed; both the dedicated multiobjective VNS and
the intelligent constructive heuristic; a random instance gen-
erator; and a strategy to aid multicriteria decision-making.

The constructive heuristic proposed for the definition of
an initial solution proved to be very efficient. Thus, the
MORVNS and MOGVNS algorithms already started with
good solutions. This fact tends to favor local search since the
initial solution is possibly already close to promising local
optima.

From a descriptive analysis of the hypervolume val-
ues obtained by the MORVNS, MOGVNS, NSGA-IIa, and
NSGA-IIb algorithms (Table 2), it was observed that in most
instances, the MOGVNS obtained the highest hypervolume
value. The ANOVA test indicated that there are differences
between the investigated algorithms. The Tukey test showed
that for 5 of the instances used, the algorithms are statistically
different from each other; moreover, it showed that in the
other 4 instances, the MOGVNS and NSGA-IIb are statisti-
cally different from theMORVNSandNSGA-IIa algorithms.
The analysis performed concerning the computational cost
shows that due to the quality of the solutions obtained by the
MOGVNS algorithm, it has the best performance among the
investigated algorithms. Even though it is computationally
expensive, the MOGVNS algorithm can obtain good solu-
tions considering the computational cost and the minimum
pressure. Thus, taking into account the investigation carried
out, it was concluded that the best performing algorithm was
MOGVNS.

From the results obtained in the case study, it is possible
to observe that due to the conflict of objectives between the
installation cost and the minimum pressure, it is important
to evaluate the trade-off between the estimated solutions. In
this context, the proposed multicriteria analysis proved to be
very efficient to assist in the decision-making process, as it
aids based on a perspective of demand growth over 10 years.

Analyzing the quality of the solutions using a time horizon
is another premise adopted that is considered of paramount

importance. Installing a natural gas network is amajor under-
taking, and it is expected to last for decades before needing
to be resized. Therefore, this multicriteria analysis offers
designers a good level of confidence that the chosen layout
will remain operational for a considerable period of time.

There aremany potential extensions towhat has been done
in this work. For continuity work, it is suggested: improve the
efficiency of the multiobjective algorithms used, aiming to
decrease the time spent on their execution; develop an inves-
tigation concerning larger instances, as it is believed that
the performance difference between the multiobjective algo-
rithms will be even more evident; explore additional criteria
related to the problem of natural gas network dimensioning;
unconsidered analyzes can be included (for example, mainte-
nance costs); additional sources of uncertainty can be studied
(e.g. pipe roughness, gas flow rate).

Finally, although this procedure is also, or even more,
capable of finding cheap and robust solutions to the prob-
lem of sizing gas networks, it does not imply, at all, replacing
human pipeline designers. On the contrary, its main objective
is to provide the stakeholders a good and varied set of solu-
tions, leaving the real choice for designers and engineers. It is
also worth emphasizing that many parts of the algorithm are
highly customizable and, therefore, as good as the people
involved. Thus, both human judgment and the algorithmic
part are inseparable from the quality of the procedure itself.
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