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Abstract

Overhead transmission lines are the most vulnerable components in electrical power systems. Therefore, to improve the
electrical system availability and reliability, fault location should be performed as quickly and accurately as possible. This
procedure consists of several steps, including fault detection and classification, which are essential to successfully locate the
fault. Due to the importance of these two steps in protection schemes, different approaches have been proposed recently, such
as algorithms based on Fourier Transform, Wavelet Transform, Statistical and Artificial Intelligence Techniques. Although
they are all promising, they require complex formulations or high computational efforts. This paper proposes a method based
on the Euclidean distance measure to perform the fault detection and classification functions, only by using voltage signals
from the transmission line ends. The proposed method is simple and robust, not requiring complex formulation or significant
computational effort. A large number of tests were performed, considering the power system under different operational
conditions and fault characteristics such as fault resistance and fault inception angle, among others. The observed results
showed that the proposed method is capable of accurately detecting and classifying faults, regardless of the power system
condition or fault characteristic. The comprehensiveness and applicability of the proposed method was confirmed by means
of two different transmission lines (line parameters, voltage level, and AC equivalent systems).

Keywords Fault detection - Fault classification - Fault location - Transmission line protection - Euclidean distance - Digital

relay

1 Introduction

Accurate performance and high reliability of electric power
systems (EPS) are fundamental for the continuity of the
electric power supply. However, power interruptions for con-
sumers can occur due to several factors, related to different
equipment of the power grid. Due to their extension and
exposure, transmission lines (TL) are the most vulnerable
components in EPS (Coury et al., 2007).

TL faults can occur for many reasons, for example,
weather conditions (rain, snow, wind, etc.), lightning, insu-
lation failures, short circuits caused by birds, trees, among
others. In general, the EPS restoration can be accelerated
if the fault location is known or estimated with reasonable
accuracy. Algorithms for fault location have been developed,
thus allowing repairing and restoring the EPS as soon and
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accurately as possible (Saha et al., 2010). Depending on the
used method, the fault locator is composed by different steps.
Nonetheless, most of them rely on two essential steps, i.e.,
fault detection (FD) and fault classification (FC).

Fault detection and classification steps in a TL are of
great importance in EPS operation, and they precede the fault
location estimation. Different implementation of these steps
can be found in practice, most of which are performed in
digital relays installed in power substations. Usually, such
relays process voltage signals and/or current signals from
the TL ends, being able to decide on the TL condition (fault
or no-fault) and, in case of fault, discriminate the phases
involved. Due to the importance of this topic, over the last
years many research groups have been working to improve
the fault detection and classification steps. With respect to
TL protection, in Saha et al. (2010) and Raza et al. (2020)
the authors make a review of the literature, discussing tra-
ditional techniques and more complex techniques based on
Artificial Intelligence (Al). In order to properly contextual-
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ize and justify this work, a brief review about fault detection
and classification in TL will be presented.

A digital distance relay contains several functions, among
them fault detection and classification, which should be
simple for a fast and reliable TL protection. According to
Coury et al. (2007), fault detection can be done by current
sample-by-sample methods, using comparative or estimative
algorithms.

Nevertheless, there are more sophisticated methods, based
on statistical approaches, for example. In Dubey et al. (2011),
authors propose a fault detector based on Independent Com-
ponent Analysis (ICA) that reduces the computational burden
in real-time applications when compared to other methods. In
Biswal (2016), the author presents a fault classification algo-
rithm employing an integrated moving sum of current signals.
Other methods that employ cumulative sum (Mohanty et al.,
2008; Noori etal., 2011) and adaptive cumulative sum (Noori
& Shahrtash, 2012, 2013) also take statistical approaches.

In addition to the mentioned works, time—frequency
analysis-based methods are also widely used with reasonable
accuracy, mainly due to the high sampling rate employed.
The wavelet transform (WT) is a widely used tool (Biswas
et al., 2018; Costa, 2014; Gautam et al., 2018) due to its
ability to work in time—frequency domain. Other methods
using S-Transform, that overcomes some disadvantages of
the Wavelet Transform, can be found in the literature (Chavez
et al., 2021; Mondal et al., 2020).

With the popularization of Al, the amount of works
employing this kind of approach in EPS has become greater.
Among the various alternatives, it is possible to find works
that use Artificial Neural Networks (Abdullah, 2018; Silva
etal., 2006; Zhang et al., 2015), Fuzzy Logic (Adhikari et al.,
2016; Eboule et al., 2018), Neuro-Fuzzy Systems (Singh
etal.,2017; Veerasamy et al., 2018), Support Vector Machine
(Jafarian & Sanaye-Pasand, 2013; Johnson & Yadav, 2017)
and Baysian Classifier (Jia, 2017; Pérez et al., 2011). The
advantages of using these techniques are their ability for pat-
tern recognition and their speed for handling large amounts
of data.

In Prasad and Nayak (2019), authors present a method
based on the Euclidean Distance between successive current
samples for fault detection and classification in TL. Accord-
ing to this reference, current phasors are estimated by using
DFT and the decision process is done sample-by-sample.
After a large number of tests, the results revealed that the
method is reliable and has a low response time. The sam-
pling rate used in this method is 1 kHz.

As discussed above, most proposals use sophisticated
algorithms and/or require significant computational effort to
perform the fault detection and classification steps. There-
fore, the objective of this paper is to present a simple, robust
and accurate Euclidean Distance-based method, where only
voltage signals and simple operations are used. This means

that more sophisticated approaches, involving more com-
putational efforts, can be considered for other steps, for
example, the fault location step.

The use of Euclidean distance is not a new issue in classi-
fication problems (Hamacher & Nickel, 1998; Kintali et al.,
2019; Prasad & Nayak, 2019; Saito & Toriwaki, 1994).
However, the use of this concept associated with suitable
sampling rates and protection schemes based on voltage trav-
eling waves can bring several advantages, as follows:

o It uses only voltage signal, which is less affected by load
and fault conditions. Moreover, the specification of trans-
ducers for voltage signals is significantly less critical than
for current signals;

o It was tested against fault resistances higher than most of
the mentioned references, always presenting an accurate
performance;

e It performs fault detection and fault classification demand-
ing a low complexity and computational burden;

o It always responds after half cycle, regardless of the fault
condition,;

o It works on time domain, not requiring any pre-processing
step;

e Communication link is not needed.

This work is organized as follows. In Sect. 2, the main
characteristics of the adopted TL are presented, as well as the
signals acquisition process. In Sect. 3, the proposed scheme,
based on Euclidean Distances, for fault detection and clas-
sification is discussed. In Sect. 4, the proposed scheme is
evaluated and validated. Finally, the conclusions are drawn
in Sect. 5.

2 Adopted TL and Data Acquisition Process

To implement a reliable fault location algorithm, it is impor-
tant to firstly consider an accurate fault detection and
classification scheme. For developing and testing the pro-
posed scheme for fault detection and classification, a TL
must be carefully chosen and modeled, allowing the gen-
eration of voltage signals representing fault conditions and
normal operation.

2.1 Adopted Transmission Line

To develop and evaluate the proposed scheme, a TL of 500kV
(at 60 Hz) and 200 km length was used. The adopted TL and
its main parameters are shown in Fig. 1, where Vi, Z; V;
and Z, represent the AC equivalent systems connected to
the TL ends. After implementing this TL in PSCAD, a large
number of simulations were performed considering fault and
no-fault cases, thus allowing generating and saving the volt-
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Fig.2 Tower geometry and conductors characteristics

age signals of interest for this study. It is important to mention
that the TL was modeled by using the frequency dependent
model, which incorporates the frequency dependence of all
parameters, considering the tower geometry and conductors
characteristics shown in Fig. 2.

2.2 Data Acquisition Process

Several fault conditions were simulated in the adopted TL,
in order to develop and evaluate the proposed method. For
each simulated fault condition, the voltage signals were sam-
pled at 100 kHz and the measurements were taken at the
bus 1. Nowadays, this sampling frequency is reasonable
and significantly lower than many schemes designed for the
same purpose. In fact, according to Marx et al. (2013) many
schemes use sampling frequencies between 0.5 and 5 MHz.

The sliding data window used by the proposed algorithm
has one cycle length and it is updated each half cycle, as
shown in Fig. 3. Thus, any disturbance in the TL always will
be detected within a half cycle. In this way, the proposed
scheme for fault detection continuously monitors the local
voltage signals and, in case of fault, the one cycle window
containing the fault event is collected to proceed with the
fault classification step.

Voltage waveform was chosen as input signal for the pro-
posed scheme, since it has less variation during fault events.

@ Springer

Fig.4 Voltage signal—EPS under normal condition (no fault). a One
cycle signal—EPS under normal condition (no fault). b Comparison
between the first half cycle and the inverted second half cycle

Also, it is less affected by load conditions, differently from
the current signal that is strongly affected by load conditions
or fault characteristics. In addition, by adopting voltage as
input signal, there is no concern about current transformer
(CT) saturation, which could lead to misoperation due to
distortion on the input signal.

3 Proposed Scheme for Fault Detection
and Classification

This section discusses the proposed scheme for fault detec-
tion and classification, presenting details about the pre-
processing step and the designed protection logic.

3.1 Euclidean Distance in Fault Detection
and Classification

As an example, Fig. 4a shows the voltage waveform (Phase
A and bus 1) measured at the local end of the TL shown
in Fig. 1, which represents one cycle at 60 Hz. Since it is a
periodic signal, the comparison between the first half cycle
and the second inverted half cycle is ideally null, as shown in
Fig. 4b. On the other hand, Fig. 5a shows the voltage wave-
form (Phase A and bus 1) when a fault occurs at some point
on the second half cycle. Unlike the previous case (Fig. 4),
the difference between the first half cycle and the inverted
second half cycle is not null (Fig. 5b), clearly indicating a
disturbance in the EPS.
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Fig.5 Voltage signal—EPS under fault. a One cycle after a fault.
b Comparison between the first half cycle and the second half cycle
of a fault phase

The lack of similarity between both curves presented in
Fig. 5 can be estimated by using Euclidean distance, thus
acting as a parameter for detecting TL disturbances. In this
sense, consider a voltage signal represented by the vector
Vi = [v[1] -+ v[N]], where v[n] represents the nth sample
of the voltage signal and N corresponds to total number of
samples, i.e., a full cycle of voltage. The vector V is divided
into two semi-cycles with the same time interval, according
to Egs. (1) and (2).

Vi =[olt] o[ ¥]] = [l - w Y]] m

Vo= (o4 +1] o] = [wll o w[4]] @)

The Euclidean distance between the first half cycle and
the inverted second half cycle can be calculated according to

3).

N/2

dist = |Vi+ Vol = | D (ilk] + va[k])? 3)
k=1

where ||-|| corresponds to the Euclidean norm.

Assuming that this proposal uses three-phase voltage sig-
nals, Eq. (3) can be rewritten per phase, according to Eq. (4),
where ph can be replaced by phases a, b and c.

distph = H Vort + Vpn2 ” “

3.2 Fault Detection

The objective in defining the Euclidean distance given by
Eq. (4) is to measure the level of disturbance of each phase.
When there is no disturbance or when the disturbance is not
significant, distg., will be lower than a threshold value and
so a fault condition is not recognized. However, for more sig-
nificant disturbances, the Euclidean distance will be higher
than a threshold value and so a fault condition is detected. In
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Fig. 6 Flowchart for fault detection

an EPS operating with three-phase voltages, Eq. (5) can be
used as a reference for disturbances detection.

distge; = maximum(dist,, disty, dist.) @)

where dist,, dist, and dist. correspond to the value of
distyy, forphases a, b and c, respectively, according to Eq. (4).
The proposed fault detection scheme calculates distz.;
after each new updating, i.e., each half cycle of voltage signal.
In order to declare the existence of a fault, a detection thresh-
old threshold;.; is defined to differentiate between normal
and fault conditions. Thus, if distg.; > thresholdg.;, there
is a fault in the analyzed data window; otherwise, it does not
exist. The flowchart in Fig. 6 shows the fault detection step.
To precisely declare a fault condition, it is necessary to
define the value of distj., (5), which allows the differen-
tiation between a fault condition and a normal operational
condition. In order to exemplify the operation of the fault
detection scheme, Fig. 7 shows the voltage signal for a fault
condition close to the middle of the data window. At the end
of each half cycle, values of dist;,; are calculated and a deci-
sion is made by the proposed scheme, as can be seen by the
blue bars. This procedure is in accordance to the explana-
tion given when discussing Fig. 3. Note that pre-fault di sz .,
values are compared to post-fault values. When post-fault
values exceed a pre-defined threshold, the fault is detected
inside this data window, and the signals are collected for
the following steps. After several simulations, with various
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fault and normal conditions, the value of 0.1 was defined as
a threshold for fault detection.

It is important to mention that to distinguish lightning
and switching occurrences from fault events an additional
protection logic could be implemented so that a possible
misoperation of the protection scheme can be avoided.

3.3 Fault Classification

The Euclidean distance distpy, can also be used to indicate in
which phases the fault occurred and, consequently, to classify
the faults in the TL. To build an accurate fault classifier,
the threshold values dist,;, are not enough, since faults in
one phase can influence the other phases. In addition, since
TL faults can involve ground, Eq. (6) is used to signalize
this involvement, comparing dist, value with a threshold
value, defined as threshold, (ground threshold). If ground
is involved, the fault may be line-ground (L-G) or line-line-
ground (L-L-G). Otherwise, the fault can be line-line (L-L)
or line-line-line (L-L-L).

disrg = [[(Va1 + Vp1 + Ver) + (Vaz + Vo + Vo) |l (6)
After verifying the ground involvement, it is defined which
phases have the highest value, lowest value and median value
of Euclidean distance, according to Egs. (7)—(9), which will
be used to define the faulty phases.

dist?h”x = maximum(dist,, disty, dist.) @)
distZ’}f" = minimum(dist,, disty, dist.) 8)
distl¢! = median(disty, disty, dist,) 9)

Discarding the ground involvement and since at least two
phases are involved (because they can only be L-L or L-L-
L), the classification of these two types of fault consists of
determining whether the phase with the shortest Euclidean
distance participates in the fault. In other words, the phase
of Eq. (8) is calculated and so this value is compared with a
threshold value, defined as threshold(y /1 r). This thresh-
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old can be determined according to Eq. (10), as a function of
the detection threshold.

threshold(pp/Lir)y =k - thresholdge, (10)
where k is a constant.

If distyi" > threshold(Lr/Lir), then the phase with
the shortest Euclidean distance participates in the fault, oth-
erwise not. Simulations in this work were run for two TL
models (500 kV and 440 kV), as will be shown later. After
78 fault cases for each TL the value of kK = 1 proved to be
quite opportune.

For faults involving ground (L-G and L-L-G), a more
refined method is necessary, as the healthy phases are also
significantly affected. First, the classification distances must
be normalized, by calculating the phases with the shortest
and longest Euclidean distance, according to (11) and (12),
respectively, emphasizing that the ground component should
be considered. The distance of the ph-th normalized phase is
determined according to Eq. (13).

dist™" = minimum(dist,, disty, distc, dist,) (11)

dist™" = maximum(dista, disty, dist,, distg) (12)
) distpy — dist™in

dlsrph(norm) = (13)

distmax — djgymin

Asitis asingle-phase or double-phase fault, one of the phases
is involved and the other is not, remaining to determine
whether the phase with a median distance, called di st?{{fmrm)
(Eq. (14)) is under fault condition or not. In L-G faults,
median distance tends to be close to zero, while in L-L-G
faults it tends to be close to one. Therefore, it is possible to

assign the condition of dist”¢¢ > 50% for double-phase

ph(norm)
faults and di stZ‘;gl ormy < 30% for single-phase faults.

dist™?

ph(norm) = median (diSla(norm)s diszh(n()rnz)v disrh(norm))

(14)

The flowchart in Fig. 8 summarizes the fault classification
step.
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Fig. 8 Flowchart for fault
classification
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4 Proposed Method Evaluation

The results obtained with the proposed scheme for fault
detection and classification are analyzed and discussed in this
section. In addition to the TL shown in Fig. 1 (500 kV and
200 km LT), a second TL was also modeled and simulated.
This second one has voltage level of 440 kV and 330 km
length, which represents a significant difference when com-
pared to the first one. In this way, it will be possible to evaluate
the proposed scheme under many operational conditions and
considering two different TL, giving the results greater cred-
ibility.

4.1 Cases considering the TL of 500 kV

The TL adopted for this evaluation was modeled in PSCAD,
where several fault cases were simulated and analyzed. To
evaluate the proposed scheme, many fault conditions were
generated by changing the following parameters: fault loca-
tion, fault type, fault resistance, fault inception angle, and
bus voltage. As depicted in Table 1, 78 fault cases were sim-
ulated and the voltage waveforms at the bus 1 were stored,
thus allowing a later implementation of the fault detection
and classification steps in MATLAB. The fault cases were
simulated assuming solid and non-solid faults, as shown in
Table 1.

4.2 Results for fault detection—TL of 500 kV

The procedure described in the flowchart presented in Fig. 6
was applied in all 78 fault cases, and their correspondents
distges values are shown in Fig. 9. As can be seen, for all
considered fault cases the Euclidean distances are higher than
the chosen threshold, accurately indicating the fault.

Table 2 shows the average value of dist,.; with respect to
Fig. 9. As can be seen, the selected threshold was always able
to detect faults, even against high values of fault resistance.

Classification

dist,
> threshold,

Normalize
dist,,

;ogmed
dIStph[norM|

= 50%
v

dist]it*
ph s ogmax
> < i ) (dm"“>

L-L-G LG

distnin
> thresholdg,,

distp™ ) distgit™
disthe? diseni disthet

Table 1 Adopted power system and faults characteristics

Feature Considered values

Fault location (distance from from 5 to 195 (steps = 5 km)

bus 1 in km)
Fault type A; B; C; AB; AC; BC; ABT;
ACT; BCT; ABC
Fault resistence (£2) 0; 50 and 100
Fault incidence angle (°) —90; — 60; — 30; 0; 30; 60; 90
Voltage at bus 1 (pu) 1; 1.05
Voltage at bus 2 (pu) 1
Angle at bus 2 (°) -5 -10
Inductance at bus 1 and bus 2 5
(mH)
10
1
5
2
T
0.01
1 20 40 60 78

Cases

Fig.9 distges values for fault detection—TL of 500 kV

4.3 Results for fault classification—TL of 500 kV
To perform the fault classification step, the procedure showed

in Fig. 8 was applied. After calculating the Euclidean dis-
tances for each phase, the Euclidean distance for ground

@ Springer



1472

Journal of Control, Automation and Electrical Systems (2022) 33:1466-1476

Table 2 Average value of distg,,—TL of 500 kV

Cases Average distgje;
Solid faults R 1.35
Non-solid faults R 0.68
All faults 1.01
1 threshold
g9
5e-3
WO
R
T
1e-10
L-G L-L-G L-L L-L-L
Fault type

Fig. 10 dist, values for fault classification—TL of 500 kV

involvement was also calculated to determine the type of
fault (6)—(9). All fault cases were grouped according to the
fault type by using boxplot, as shown in Fig. 10.

By defining a ground threshold of 0.005, it is possible
to observe that the first two groups of faults have a ground
Euclidean distance above the threshold, while the last two
ones have values below that threshold. Therefore, results
show that ground Euclidean distance value is able to dis-
criminate between faults involving ground and not involving
ground. In this way, it is possible to proceed with the next
step of fault classification, determining which Euclidean dis-
tance will be calculated for fault classification: di st;’f}f” or

distZ’,f(dn orm)’ defined in Egs. (8) and (14), respectively.

Figure 11 shows the results for fault classification, where
the cases are grouped by using bloxplot graph. The left verti-
cal axis shows the calculated values of di st;",fgl orm) (in blue)
according to Eq. (14) that evaluates whether the faults are L-
G or L-L-G. The right vertical axis (in red) shows the values
of di st;”}f” as defined in Eq. (14), which assesses whether the
faults are L-L or L-L-L. Table 3 shows the average, minimum
and maximum values of each boxplot in Fig. 11.

It is clearly noted that all fault cases were correctly clas-
sified according to the missing phase, since the thresholds
defined in Sect. 3.3 correctly classified the fault types. For
the left fault group (in blue), the calculated median dis-
tances below the threshold indicate that there is only one

phase involved, while distances that present values above
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Fig. 11 Distance values for fault classification—TL of 500 kV

Table 3 Observed values for dist"¢? ) and dist™”"—TL of 500 kV

ph(norm
Cases Average Minimum Maximum
L-G 0.26 0.00 0.45
L-L-G 0.82 0.51 0.99
L-L 0.02 0.02 0.02
L-L-L 0.93 0.7 2.07

the threshold indicate two phases involved. Considering the
group of faults on the right (in red), cases that present classi-
fication distance values below the threshold indicate that the
cases involve two phases and cases that present distances
above the threshold indicate that all the three phases are
involved.

As can be seen in Fig. 11 and Table 3, some few cases are
close to the threshold values. However, it is worth mention-
ing that the proposed method was always able to correctly
classify the fault, considering the ranges defined in Table 1
and 78 fault cases simulated.

4.4 Cases considering the TL of 440 kV

To validate and give more credibility to results and analyzes
obtained in the previous sections, a second TL was modeled
and simulated considering several faults conditions. This sec-
ond TL (Figs. 12, 13) differs from the previous one with
respect to the tower geometry, voltage level (440 kV) and
line length (330 km). Also, by means of this procedure, it
will be possible to reevaluate the threshold values previously
defined.

Once again, 78 fault cases were generated by changing
the parameters depicted in Table 1. It is important to mention
that the only difference, when compared to the first TL, is the
faultlocation, which now varies from 10 to 320 km away from
bus 1. This measure aims to provide a greater variety of fault
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Fig. 13 Tower geometry and conductors characteristics
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Resistivity: 1000000 [chm™m]
Aerial: Direct Numerical Integration
Underground: Direct Numerical Integration
Mutusl: Analytical Approximstion (LUCCA)

Table 4 Average value of distgo.,—TL of 440 kV

Cases Average distge;
Solid faults R 1.50
Non-solid faults R 0.60
All faults 1.05

cases to perform this study, showing the comprehensiveness
of the proposed solution.

4.5 Results for fault detection—TL of 440 kV

To evaluate the fault detection step, the same procedure
described in the flowchart shown in Sect. 3.2 was performed.
The detection distance values for all simulated fault cases are
shown in Fig. 14, recalling that the same threshold previously
defined was used. As can be seen, for all simulated fault cases
the calculated distance values are above the defined thresh-
old, indicating that the detection algorithm is effective for
several TL models. Similarly to Table 2, the average values
of disty.; are presented in Table 4, confirming the threshold
value previously defined for fault detection.

10

dist  fot

0.01
0 40

2

—

60 78
Cases

Fig. 14 disty.; for fault detection—TL of 440 kV

|

T % :

Se-3 -
‘th
2
]

1e-10
< I
L-G L-L-G L-L L-L-L
Fault type

Fig. 15 dist, values for fault classification—TL of 440 kV

4.6 Results for fault classification—TL of 440 kV

The proposed classification scheme was also evaluated
against the TL of 440 kV. Initially, the step that defines ground
involvement was applied to group the faults cases in L-G/L-
L-G or L-L/L-L-L. Similar to Fig. 10, this step results are
shown in Fig. 15, where it is observed that the same thresh-
old used in the previous TL was able to indicate faults with
ground involvement.

The step for distances calculation, defined in Egs. (8)
and (14), was applied to classify faults considering faults
with and without ground involvement. The results are shown
in Fig. 16 by means of a boxplot, similar to the procedure
adopted for Fig. 11. The same thresholds previously defined
(TL of 500 kV) were used. The results showed that the pro-
posed scheme correctly responds regardless the adopted TL,
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Fig. 16 Distance values for fault classification—TL of 440 kV

Table 5 Observed values for dist"¢d and dist™"—TL of 440 kV

ph(norm)
Cases Average Minimum Maximum
L-G 0.30 0.00 0.49
L-L-G 0.82 0.56 0.98
L-L 0.02 0.02 0.02
L-L-L 0.91 0.22 1.83

operating conditions, fault locations, type of fault and fault
resistance. Once again, as can be seen in Fig. 16 and Table
5, some few fault cases are close to the defined thresholds.
Nevertheless, for all 78 simulated fault cases, considering the
ranges shown in Table 1, the proposed method performed as
expected, properly classifying the fault.

4.7 Performance comparison

To compare the proposed Euclidean distance-based method
with other methods found in the literature, Table 6 is
presented. As can be seen, this table allows comparisons
regarding factors as input signals, used algorithm, test sys-
tems, sampling frequency, response time, and complexity.
By analyzing Table 6, it can be seen that the main advan-
tages of the proposed method are as follows: (a) it uses only
voltage signals, which are less affected by load and fault con-
ditions. Moreover, the specification of transducers for voltage
signals (PT) is less critical than for current signals (CT), as
voltage works in a narrower operating range; (b) communi-
cation link is not needed; (c) two different transmission lines
were used during its evaluation step; (d) it is able to perform
FD and FC requiring low computational burden; (e) it works

@ Springer

on time domain, not requiring any pre-processing step. Even
though the sampling rate of the proposed method is higher
than the ones used by most of the other methods, it is still
reasonable.

In terms of response time, Prasad and Nayak (2019) and
Pérez et al. (2011) are faster than the proposed method, but
their accuracies are guaranteed for fault resistances up to 50
Q and 40 €2, respectively, while the proposed method is accu-
rate up to 100 2. On the other hand, the method developed
by Gupta and Tripathy (2015) presents a good performance
up to 500 €2, with a reasonable response time. Nevertheless,
this method uses two variables (V and /) and needs a com-
munication link, making the protection design more complex
and expensive.

It is important to highlight that differently from the other
methods, the proposed one was tested against two different
transmission lines, considering a large number of fault cases
and operating conditions. By means of hundreds of simula-
tions the proposed method proved to be a feasible and reliable
option for fault detection and classification in transmission
lines.

5 Conclusions

In this paper, a Euclidean distance-based method was pro-
posed for fault detection and classification in TL. Several
fault cases were simulated to evaluate the proposed method
against two different TL and fault characteristics. The
observed results showed that for all considered fault cases
(78 for each TL), the proposed method was able to correctly
detect and classify the fault, regardless the operational con-
dition or fault characteristics (fault location, fault resistance
and fault inception angle).

For detection and classification purposes, the method is
based on the similarity level between two consecutives half
cycles, estimated by using Euclidean distance. This feature
makes the proposed method easy to implement for practical
applications, as the required computational effort is very low
when comparing with most of the other methods. Moreover,
the solution presented here does not need communication
link or any pre-processing step, correctly responding for fault
resistances up to 100 .

The comprehensiveness and robustness of the proposed
method was proved by means of two different TL. It is
worth noting that even keeping the same threshold values,
the expected performance was observed in both situations.
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Table 6 Comparison between different methods for fault detection and classification
References Algorithm Input signal Test system Fault Complexity Sampling Performed Response
resistance frequency function time
(€2) (kHz)
Proposed Euclidean \'% 500 kV, 100 Low 100 FD and FC HC
method distance 200 km,
(time and
domain) 440 kV,
330 km
Prasad and Euclidean 1 230 kV, 50 Low 1 FD and FC <HC
Nayak Distance 300 km
(2019) (Frequency
domain)
Kintali et al. Euclidean 1 400 kV, 50 Low 1 FD and FC HC
(2019) distance 300 km
(time
domain)
Yadav and Linear Dis- 1 400 kV, 100 Moderate 1 FD and FC oC
Sweta- criminant 100 km
padma Analysis
(2015) and
Wavelet
Transform
Gupta and Superimposed V and I from 400 kV, 500 High 1 FD <0C
Tripathy Sequence both 300 km
(2015) Compo- terminals
nents based
integrated
impedance
Pérez et al. Bayesian I 500 kV, 40 High 500 FD and FC <HC
(2011) classifier 864 km
and
adaptive
wavelet

HC half cycle, OC one cycle, V voltage, I current
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