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Abstract
In a typical power system network, transmission losses are considered as one of the important parameters for economic
operation. To concern this problem, researchers have proposed many techniques to minimize the transmission losses based
on the cost benefit analysis which is associated with the optimal placement of the reactive power sources. In the present work,
a novel technique, namely oppositional crow search algorithm (CSA), is proposed for Var planning by utilizing the fuzzy
logic technique to determine capacitor placement positions. In this approach, fuzzy membership value is calculated based
on the loss sensitivity factor of each bus of the test networks. Then, shunt capacitors placement positions are assigned to
buses having the higher membership values. Once the capacitor placement positions are evaluated, the CSA and oppositional
CSA are executed to obtain the optimal setting of transformer tap positions, reactive power generation of the generators, and
magnitude of shunt capacitors placed at the weak nodes. The proposed method is performed on standard IEEE 30 and IEEE
57 bus networks, and the obtained results are compared with several other established methods for Var planning. From the
obtained results, it is found that the proposed method shows better performance when compared to other techniques suggested
in the literature in terms of reduced active power loss and system operating cost.
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1 Introduction

1.1 General

In a typical power system network, transmission losses
accounts to 5–10% of the total power generation (Outlook,
2010). Thereby, reactive power planning (RPP) problem is
measured as oneof the challenging tasks for the power system
operators in providing efficient, secure, and healthy dispatch
of reactive power. The effective and co-ordinated planning of
reactive power sources helps in the drastic reduction in active
power loss by improving voltage profile of the power system
network. The planning problem involves the determination of
location and size of the additional Var sources required at the
weak nodes in addition to the existing Var sources present in
the network. The weak bus provides significant information
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regarding where voltage collapse appears in severe contin-
gency cases and where reactive power sources needs to be
installed in order to reduce active power losses and operating
cost of the system.

1.2 Literature Review

In the current scenario of interconnected power systems, the
system increased transmission loss and congestion of power
lines are due to enhanced power demand, unscheduled power
flow and curtailment in the extension of transmission lines.
Thereby, to restore system stability margins to previously
existing circuits and retain efficient power system operation,
reactive power control and planning is extremely crucial. The
challenges of RPP involve the decision of exact location and
amount of reactive power sources where the objectives are
to reduce the transmission loss and optimize the cost of Var
sources. The optimal RPP encompasses voltage quality, eco-
nomic operation, and reduction in system losses.

Fuzzy-based approach for reactive power control has been
presented inAbdul-Rahman and Shahidehpour (1993) where
fuzzy membership values of loss sensitivity of each bus are
determined. Reactive power compensation at some selected
buses based on fuzzy membership values of loss sensitivity
would improve the voltage profile of the systemas claimed by
the authors. Heuristics techniques are also applied in Man-
tovani and Garcia (1996) for reactive power optimization.
A methodology for RPP in a large-scale distribution sys-
tem by the allocation of shunt capacitors has been studied
in Chiang et al., (1990a, 1990b). The impacts of genetic
algorithm (GA) have been used in Ghose et al., (1999) and
Miu et al., (1997) for the optimal allocation of shunt capaci-
tors in the distribution network. The application of GA-based
optimal RPP has been also described in Lai and Ma (1997).
Again, in addition to GA, the linear programming approach
for Var planning has been also discussed in Gudadappanavar
and Mahapatra (2021) and Lee et al., (1998). The determi-
nation of weak nodes of an interconnected power network
plays a key role in optimal Var planning (Raj & Bhat-
tacharyya, 2016). Modal analysis method has been presented
in Gao et al., (1992) for the evaluation of voltage stability.
Weak bus-oriented RPP for the improved system security has
been presented in Chen (1996). GA, differential evolution
(DA) and particle swarm optimization (PSO)-based opti-
mization methods are used by the authors in Bhattacharyya
and Goswami (2007) for the optimal planning of reactive
power sources which reduces active power loss and overall
system operating cost. RPP considering the voltage stability
problem has been addressed by the authors in Chattopadhyay
and Chakrabarti (2002). A modified interior point method
for optimal reactive power control has been presented in
Zhu and Xiong (2003). The chance constrained program-
ming has been used by the authors for RPP in Parida et al.,

(2008) and Yang et al., (2007) considering power system
security. Operation strategy for reducing the system loss and
improvement of voltage profile has been discussed by the
authors in Zhu et al., (2010). The loss sensitivity of buses
has been used as an index for determining weak buses of the
system and is chosen as the candidate buses for shunt capac-
itor allocation in Bhattacharyya et al., (2009). The optimal
planning of these shunt capacitors along with transformer
tap setting positions and reactive generation of generators
is made using different evolutionary algorithms. Reactive
power/voltage control problem under uncertain environment
has been discussed in Viswanadha Raju and Bijwe (2008).
The covariance matrix is developed by authors and evolu-
tionary programming incorporating covariance matrix has
been used in Jeyadevi et al., (2011) for RPP considering
voltage stability. LP-based method for the optimal alloca-
tion of reactive power sources has been presented in Jabr
(2011). Iterative solution approaches for optimal planning of
Var sources are presented in Lin and Horng (2012). Algo-
rithmic and heuristic approaches are hybridized and a new
methodology for voltage and reactive power control has been
presented inBie et al., (2006). PSOandother variants of PSO-
based algorithms are tested for RPP inBhattacharyya andRaj
(2016). A recently developed teaching learning-based opti-
mization method has been applied for RPP in Bhattacharyya
and Babu (2016). Authors have used oppositional-based grey
wolf optimization techniques for the solution of the Var plan-
ning problem in Raj and Bhattacharyya (2018). InMahapatra
et al., (2021), Harris hawk optimization technique is sug-
gested for reducing transmission losses by optimal allocation
of shunt compensator. DE algorithm has been discussed in
Abou El Ela et al., (2011) for optimal setting of control vari-
ables for optimal reactive power dispatch (OPRD) such that
losses are minimized, voltage profile improved, and stability
of the system is enhanced. This work has been extended in
Duman et al.,2012) by considering the transformer tap set-
tings using gravitational search algorithm (GSA). Further, to
enhance the convergence ability of GSA, oppositional-based
gravitational search algorithm (OGSA) has been proposed
to ORPD problem in Shaw et al., (2014). The computation
efficiency of seeker optimization algorithm-based reactive
power dispatch method has been studied in Dai et al., (2009).
In this work, the algorithm’s performance is judged based
on evaluated of standard benchmark function and the same
is applied on standard IEEE 57 and 118 bus power systems.
The potential benefits ofGA for optimal setting of all reactive
power reserves have been studied in Bhattacharyya and Kar-
makar (2019) and Bhattacharyya et al., (2016). Here, shunt
VAR compensator placement positions are determined by a
fast voltage stability index method. The capability of a two-
phase hybrid PSO approach has been used to solve OPRD
problem that has been studied in Subbaraj and Rajnarayanan
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(2010). In Karmakar and Bhattacharyya (2018), metaheuris-
tic method has been proposed for management of Var.

Transmission expansion planning model along with
second-order cone programming has been proposed in Zhang
et al., (2019) for high penetration of wind energy. Opti-
mal reconfiguring of Algerian distribution electrical system
with flexible AC transmission system devices has been pro-
posed in Mahdad (2019) using fractal search algorithm.
Artificial bee colony algorithm has been proposed in Ettap-
pan et al., (2020) for the solution of ORPD problems. Two
stage strategy like dynamic multiyear transmission expan-
sion planning and transmission expansion planning problem
has been developed in Gomes and Saraiva (2020). Bhat-
tacharyya andKarmakar (2020) proposes a planning strategy
based on soft computing techniques to determine the system
energy loss and economic benefit for standard test system.
The proposedwork inMahapatra et al., (2019) describes vari-
ations in PSO technique to improve the reduction in total cost
of energy loss and real power loss for standard New England
39 bus system. Optimal allocation of distributed generations
like photo-voltaic andwind turbine generations are presented
in Samala and Kotapuri (2020). Voltage constrained reactive
power planning problem for different reactive Loading has
been presented in Shekarappa et al. (2021a, 2021b).

1.3 Motivations Behind the PresentWork

Fuzzy-based concept is one of the methods to determine
optimal location for the placement of shunt capacitors. The
determination of proper position for the placement of addi-
tional shunt capacitors is one of the challenging tasks in RPP.
The capacitance values of the shunts have a major impact on
Ybus matrix. Thereby, the proposed work uses fuzzy mem-
bership value which is calculated based on loss sensitivity
factor of each bus of the test network.

In the work done, shunt capacitors are placed at the appro-
priate place to provide reactive power near the inductive load
which reduces the total current flowing on the distribution
feeder, which improves the voltage profile along the feeder,
provides additional feeder capacity, and reduces transmis-
sion loss in the line. At the transmission and sub-transmission
system levels, the installed shunt capacitors provide supports
in the more power transfer capability without necessitating
the new lines or larger conductors. The long lead-time prob-
lems associated with the transmission line construction and
high cost have driven to make use of high-voltage capacitors.
The use of highvoltage capacitors ensures increased trans-
mission bus operating voltages. As the transmission voltage
increases, less current is necessary to supply a typical load,
and so transmission losses decrease again.

In parallel, proper RPP seeks an optimal set of control
variables related to the proposed objective function. It is a
difficult task to find out the optimal values of the variables,

simultaneously, by conventionalmethods.Hence, the authors
have used the soft computing techniques to get a best solution
of the objective function. For the proposed work, the crow
search algorithm (CSA) is adopted because of its features
like simple and straightforward to implement, avoid prema-
ture convergence and avoided local minima. The details of
CSA have been introduced in Askarzadeh (2016). However,
CSA suffers from exploitation capability, thus, it converges
slowly to optimum solution. Thus, to enhance the exploita-
tion capability of CSA, the concept of opposition-based
learning (OBL) is adopted in the present work. The concept
of OBL is described in Ganguly et al., (2018), Nandi et al.,
(2017) and Tizhoosh (2005). Solution for the RPP problem
has been discussed in Babu et al., (2021), Badi et al., (2021),
Raj et al., (2021) and Shekarappa et al. (2021a, 2021b).
OBL is a new machine learning strategy for intensifying
the convergence speed of diversified heuristic optimization
techniques. The implementation of OBL implicates interpre-
tation of current population and opposite population to obtain
excels/enhanced candidate solution of the given problem in
the same generation. The following are the advantages of
CSA to enforce to use in the proposed work and expected to
be better than other standard methods.

(a) Lesser number of control parameters.
(b) Faster convergence characteristics.
(c) Same parameter settings for the different problems.
(d) Its ability not to be trapped in local minima thus explor-

ing wider search area.
(e) Algorithmmust be simple and straightforward to imple-

ment.
(f) Derivative free algorithm which can be ratified easily.
(g) Provides almost same approximate optimal solution

consistently even after several trials.

Further, in the present work, the objective is not only to
reduce active power loss by improving voltage profile of the
power network but also to optimize the total systemoperating
cost. The total system operating cost includes the cost of the
energy loss due to active power loss and the cost of newly
added Var sources at weak nodes. The method of finding
the weak nodes is determined by a new technique in where
the idea of fuzzy logic is implemented. In fuzzy logic imple-
mentation, both trapezoidal and triangular fuzzymembership
values of loss sensitivity of buses are calculated. Based on
these membership values, highly loss sensitive buses are
identified as weak buses and are treated as candidate nodes
for shunt Var support.

1.4 Contributions of this Study

In this study, the concept of fuzzy membership is introduced
which is based on loss sensitivity factor of the test network.

123



Journal of Control, Automation and Electrical Systems (2022) 33:1576–1591 1579

This is one of the different methods in determining the opti-
mal location for the placement of shunt capacitors. Removing
all burdens and difficulties, determination of proper position
for the placement of additional shunt capacitors is one of
the challenging tasks in RPP. Once the appropriate locations
are determined, then, the newly developed CSA and OCSA
techniques are proposed to solve RPP problem which is for-
mulated as a nonlinear optimization problem with equality
and inequality constraints in a studied power system. The
implementation of OBL enhances the candidate solution of
the given problem. The objective functions are based on
minimization of transmission loss and operating cost while
maintaining themagnitude of each buswithin the permissible
limit. The performance of the proposed approach is sought
and tested on the standard IEEE 30 and IEEE 57 bus sys-
tem. Based open the above interactions, the work done in
this paper is summarized as followed.

(a) A fuzzy logic-based novel approach is studied for Var
planning to determine the capacitor placement position.

(b) The computational efficiency of CSA and OCSA is
studied to obtain the optimal setting of transformer tap
positions, reactive generations of the generators and
magnitude of shunt capacitors placed at the weak nodes.

(c) The simulation results obtained by the proposed tech-
nique are compared with the methods subjected to Var
planning.

The rest of the paper is documented in the following
sequences. For the optimization task, the mathematical prob-
lem formulation is presented in Sect. 2. A short description
of the fuzzy approach for the Var problem is stated in
Sect. 3. Section 4 details the application of CSA and OCSA.
Simulation-based results/observations of the present work
are discussed in Sect. 5. Finally, the resultant pieces of out-
comes of the present work are concluded in Sect. 6.

2 Mathematical Problem Formulation

The key to RPP is the optimal allocation of reactive power
sources considering the locations. In recent works, loca-
tions for the placement of Var sources have become difficult
task for the power system engineers. The important role of
RPP problem is to minimize the active power loss of all the
Var sources in the system by satisfying equality, as well as
inequality constraints. Also, the optimization has to be done
concerning the operating cost and improve the voltage devia-
tion in the system. Apart from this, the objective is to reduce
the cost of the shunt capacitors.

2.1 Minimization of Active Power Loss

To minimize the active power loss in transmission lines, it
can be formulated as follows:

Minimize

Ploss �
m∑

k�1

gk
[
V 2
x + V 2

y − 2VxVy cos
(
δx − δy

)]
(1)

where Ploss is active power loss; gk is conductance of branch
kth which is connected between xth and yth bus; Vx is the
voltage magnitude of xth bus; Vy is the voltage magnitude of
yth bus; δx is the voltage phase angle of xth bus and δy is the
voltage phase angle of yth bus.

2.2 Minimize Operating Cost

Total operating cost � SEnergy + SCap (2)

Tominimize the operating cost in transmission lines, it can
be formulated as shown in (2), where SEnergy is the cost due to
the loss of energy; SCap is the cost of capacitors installed at the
nodes which are weak and SEnergy � PLoss × Energy rate

Energy cost � 0.06 $/kWh,

Cost of capacitor/KVar � 3 $,

Test system is considered on 100 MVA base. Cost of
capacitor installed � 1000 $, some of the cost data is col-
lected from (1990b; Chiang et al., 1990a).

Energy rate � 0.06 × 100000 × 8760

The above-mentioned problem formulation is needed to
be optimized by satisfying all the equality and inequality
constraints as mentioned below.

2.3 Equality Constraints

The load flow equation for equality constraints is illustrated
as follows:

PGx − PDx

− Vx

nb∑

y�1

Vy
[
GxyCos

(
δx − δy

)
+ BxySin

(
δx − δy

)] � 0,

x � 1, 2, 3, . . . , nb (3)

QGx − QDx

− Vx

nb∑

y�1

Vy
[
GxySin

(
δx − δy

) − BxyCos
(
δx − δy

)] � 0,
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x � 1, 2, 3, . . . , nb (4)

where nb is the number of buses; PGx is the active power
generation at the xth bus; QGx is the reactive power genera-
tion at the xth bus; PDx is the active power demand at the xth
bus; QDx is the reactive power demand at the xth bus; Gxy

is the transfer conductance between the xth bus and yth bus
and Bxy is the transfer susceptance between the xth bus and
yth bus.

2.4 Inequality Constraints

The inequality constraints include generator voltage mag-
nitude, reactive power output by generator buses, shunt
capacitors and transformer tap positions.

Vmin
Gx ≤ VGx ≤ Vmax

Gx
Qmin

Gx ≤ QGx ≤ Qmax
Gx

Qmin
cx ≤ Qcx ≤ Qmax

cx
Tmin
x ≤ Tx ≤ Tmax

x

⎫
⎪⎪⎬

⎪⎪⎭
(5)

The boundary limits of these constraints must be satisfied
as shown in Eq. (5).

3 Fuzzy Approach in the Present Problem

Fuzzy logic is a logical system which is in a form of multi-
valued logic. It is related with the theory of fuzzy sets, a
theorywhich relates to categorization of objectswith unsharp
boundaries in which membership plays an important role.
There are three main elements in a fuzzy controller as (a)
Fuzzification module, (b) Rule base and inference engine
and (c) Defuzzification module.

The fuzzification converts real-life data input into suit-
able linguistic values.During fuzzification, a fuzzy controller
receives input value, also known as the fuzzy variable, and
analyses it according to user-defined charts called member-
ship functions. The second element in an FLC is the rule
base and inference engine.Rule base gives a decision-making
logic. The third element is the defuzzification. The final out-
put of the defuzzification is in the form of crisp quantity.

�PL �
[

∂PL
∂V1

∂PL
∂V2

· · · ∂PL
∂Vi

][
�V1 �V2 · · · �Vn

]
(6)

Here, the idea of two types of fuzzy membership func-
tion is implemented. One is trapezoidalmembership function
(Trapmf) and the other is triangular membership function
(Trimf). As the transmission loss is a function of the node
voltage (V), the incremental transmission loss (PL) can be
expressed in (6).

From Bhattacharyya et al., (2009), it is realized that the
transmission loss (PL) has inverse relationship with bus volt-

Table 1 Loss sensitivity and their fuzzy membership values of selected
weak buses

Test system Bus No �Ploss/dV Trapmf Trimf

IEEE 30 7 − 0.0881 1 0.9729

15 − 0.0644 1 0.6343

19 − 0.0637 1 0.6243

24 − 0.0682 1 0.6886

IEEE 57 35 − 0.0914 1 0.2750

38 − 0.0990 1 0.5100

53 − 0.1986 1 0.7243

Fig. 1 Plot of triangular fuzzy membership function with ∂PLoss
∂V for

IEEE 30 bus system

age (V). In the proposed approach, loss sensitivity at ith bus
(Si) is defined at each node of the system so that

Si � Fi�Vi � ∂PL
∂V

i � 1, 2, 3, . . . , n (7)

where n is the total number of nodes; Si is the loss sensitivity
of the ith bus.

Table 1 indicates fuzzy membership values (�Ploss/dV )
trapezoidal membership function (Trapmf) and triangular
membership function (Trimf) for IEEE 30 bus system.
Graphical presentation on triangular and Trapezoidal fuzzy
membership function with ∂PLoss

∂V for IEEE 30 bus system
are shown in Figs. 1 and 2, respectively. Similarly, Table 2
indicates fuzzymembership values (�Ploss/dV ) trapezoidal
membership function (Trapmf) and triangular membership
function (Trimf) for IEEE 57 bus system. Graphical pre-
sentation on triangular and Trapezoidal fuzzy membership
function with ∂PLoss

∂V for IEEE 57 bus system are shown in
Figs. 3 and 4, respectively.

Minimization of loss will take place when Si is as neg-
ative as possible which indicates Fi is negative and �Vi
will attain its maximum possible value. Hence, it implies,
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Fig. 2 Plot of trapezoidal fuzzy membership function with ∂PLoss
∂V for

IEEE 30 bus system

Table 2 Loss sensitivity and their fuzzy membership values of selected
weak buses for IEEE 57 bus system

Bus No �Ploss/dV Trapmf Trimf

35 − 0.0914 1 0.2750

38 − 0.0990 1 0.5100

53 − 0.1986 1 0.7243

Fig. 3 Plot of triangular fuzzy membership function with ∂PLoss
∂V for

IEEE 57 bus system

more the value of S at a bus, more will be the voltage devi-
ation at that bus. This idea is incorporated to evaluate the
membership values of loss sensitivity of all the buses using
trapezoidal and triangular membership functions. Based on
this analysis, weak buses are selected for the placement of
shunt capacitors.

Fig. 4 Plot of trapezoidal fuzzy membership function with ∂PLoss
∂V for

IEEE 57 bus system

4 Application of CSA and OCSA

4.1 CSA: Basic Concept

CSA is a new optimization technique for solving optimiza-
tion problems that are based on crow intelligence in storing
and retrieving its food from hidden locations (Askarzadeh,
2016). Crows have widely distributed genus of birds which
are now considered to be among the intelligent animals. They
can memorize faces, communicate in sophisticated ways as
well as hide and retrieve food across seasons. In a group of
crows or a flock of crows, there are many similarities with
an optimization process in their behavior. According to this
behavior, crows hide their excess food in some places of their
environment and retrieve the store and foodwhen it is needed.
Crows are greedy birds since they follow each other to obtain
better food sources. If a crowfinds another one is following it,
the crow tries to fool that crow by going to another position
or late of the environment. The environment is the search
space. Each position of the environment is corresponding
to a feasible location. The quality of the food source is the
objective of the food source of the environment which is the
global solution to the problem. They have unique properties
like they always live in the form of the flock, memorize the
position of their hiding places, they follow each other to do
thievery and they protect their caches from being pilfered by
a probability. The mathematical model of these behaviors is
discussed as follows:

Let us assume that there is a “d” dimensional search space
which includes “N” number of flock size (number of crows).

x iteri � [
x iter1 x iter2 . . . x itern

]
(8)

The position of crow is “i” at time which is represented
as Eq. (8). Each crow has a memory which is termed as its
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hiding place. At each iteration, the position of hiding place
of crow is “i” which is represented asmiter

i . Assume crow “j”
at “iter” visits its hiding place miter

j . At this iteration, crow
“i” decides to follow crow “j” in order to approach its hiding
place of crow “j”. This results in two conditions:

Condition 1: If crow “j” does not know that crow “i” is
following it, then, crow “i” will approach to the hiding place
of crow “j”. Mathematically, ri is greater than awareness
probability of crow “j” then the new position of the crow “i”
is obtained as shown below.

Condition 2: If crow “j” knows that crow “i” is following
it, then in order to protect its food from being pilfered, crow
“j” will try to fool crow “i” by going randomly to another
position of search space.

x iter+1i �
{
x iteri + ri × f l iteri ×

(
miter

j − x iteri

)
r j ≥ APiterj

a randomposition
(9)

Algorithmic steps for implementation of CSA are given
as follows:

Step 1: The adjustable parameters of CSA like flock size
(N), maximum number of iterations (itermax), flight length
( f l) and awareness probability (AP) are defined.

Step 2: Initialize population matrix in dimension (d)
search space which contains reactive power generation by
generator bus (Qg), transformer tap position (tap) and Var
sources (Qc).

Step 3: The memory of each crow is initialized. At initial
iteration, since each crow does not have any experience, so
it is assumed that they have hidden at their initial position.

Step 4: Evaluate fitness function using Eqs. (1) and (3)
while satisfying equality constraints equation (3–4) and
inequality constraints equation (5).

Step 5: Generate new position of crow in search space
using Eq. (9).

Step 6: Update test system data. Then evaluate fitness
function using Eqs. (1) and (3) while satisfying equality con-
straints equation (3–4) and inequality constraints equation
(5).

Step 7: Compare current fitness value with pervious fit-
ness value. Store the minimum fitness value along with its
positions.

Step 8: Repeat step 4 to step 7, until it reaches maximum
iteration.

Step 9: When the termination criterion is met. Display the
best fitness value and best position of control variables of
crow.

4.2 Oppositional-Based CSA

In the present work, in order to further improve the conver-
gence characteristics of CSA, the CSA is modified to OCSA.

The oppositional-based (Ganguly et al., 2018; Nandi et al.,
2017; Tizhoosh, 2005) concept is applied in CSA, the cur-
rent population (PN ) is divided into two halves, i.e., the first
half population (PN1) is created randomly within the search
space and the remaining half population (PN2) is generated
with flipped or opposite side of first half population (PN1)
so as to improve the exploration capability in identifying the
optimum solution region. This characteristic is incorporated
into the basic CSA to obtain OCSA.

If X(x1, x2, x3, x4, . . . , xd) is a candidate solution of

PN1 generated within interval
[
Xmin

j , Xmax
j

]
, where j �

1, 2, 3, 4 . . . , d. Then, opposite variable
(
ox j

)
of each vari-

able in X is calculated in the following manner to obtain can-
didate solution OX(ox1, ox2, ox3, ox4, . . . , oxd) of popu-
lation PN2

ox � xmin
j + xmax

j − x j j � 1, 2, 3, 4 . . . , d (10)

where d is the dimension of the search space Then, finally,
the population set PN1 and PN2 form the actual population
PN , i.e., PN � PN1 U PN2. Further, the algorithmic steps of
the OCSA remain the same as CSA given above in Sect. 4.1.

After surveying the recent articles, it is found that CSA
is very efficient in searching the proper value of the vari-
ables from a wide search space. However, CSA suffers
from exploitation capability and, thus, it converges slowly
to optimum solution. Thus, to enhance the exploration and
exploitation capability of CSA, the concept of oppositional-
based learning (OBL) is adopted in thiswork.OBLconcept is
a new machine learning strategy for intensifying the conver-
gence speed of diversified heuristic optimization techniques.
The implementation of OBL connects current population and
opposite population to obtain improved candidate solution
of the given problem in the same generation. It works effi-
ciently on different engineering problems. OBL primarily
benefits by increasing the probability of even visiting the
unproductive regions. It has also been established through
research work that opposite solution has greater possibility
to move toward global optimal as compared to random solu-
tion. In short, OCSA engages opposite points for initializing
the population and generation jumping and incorporates fitter
candidate solution from the start of the optimization.

5 Result and Discussion

To verify the performance and efficiency of the proposed
CSAandOCSA techniques, tests are carried out on the IEEE-
30 bus and IEEE-57 bus test system. The boundary limits of
transformer tap setting and shunt capacitors need to be satis-
fied as stated in Table 3 for standard IEEE 30 and IEEE 57
bus system during the optimization task. The description of
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Table 3 Boundary of transformer tap setting and shunt capacitor

Variables Test system Minimum
value (p.u)

Maximum
value (p.u)

Shunt capacitor
(Raj & Bhat-
tacharyya,
2018)

IEEE 30 0.0 0.15

IEEE 57 0.0 0.30

Transformer
tap setting
(Raj & Bhat-
tacharyya,
2018)

IEEE 30 0.9 1.0

IEEE 57 0.9 1.0

Table 4 Description of the test system

Description IEEE 30 bus system IEEE 57 bus system

No. of buses 30 57

No. of lines 41 80

No. of generator 6 7

No. of shunt capacitor 2 3

No. of tap changer 4 17

No. of load buses 24 50

P Gen (MW) 289.211 800.00

Q Gen (MVAr) 108.922 192.70

P load (MW) 283.40 1251.70

Q load (MVAr) 126.20 335.30

Initial active power
loss (MW)

7.11 27.99

these networks can be found in Table 4. All the simulations
are carried out by using MATLAB 2013b and computed on
core (TM) i7-3520M CPU a 2.90 GHz with 8 GB RAM. In
the proposed work, the fuzzy membership values of loss sen-
sitivity are applied to determine the weak locations for the
placement of shunt capacitors. The CSA and OCSA tech-
niques are employed to ascertain the optimal sizing of shunt
capacitor andVar sources present in the existing transmission
system. To indicate the optimization capability of the CSA
and OCSA techniques, it is made to run for 30 independent
trails with 500 iterations in each of the given test system and
best results are bold faced in the respective tables.

In this work, authors used the capacitors as continuous
variables while they are discrete variables in real life. The
purpose of using the capacitor is to provide reactive power
near the inductive load which reduces the total current flow-
ing on the distribution feeder, which improves the voltage
profile along the feeder, provides additional feeder capac-
ity, and reduces transmission loss in the line. Thereby, the
impacts of capacitors as discrete variables can be studied in
the further study.

5.1 Test System 1: IEEE 30 Bus

The IEEE 30 bus system involves 6 generators, 41 lines, 4
transformers that are located at lines 6–9, 4–12, 9–12 and
27–28 (refer Table 5). Initially, the location for the probable
voltage collapse point is evaluated by using fuzzy member-
ship values of loss sensitivity. Loss sensitivity and fuzzy
membership values are present in Table 1. From this table, it
can be observed that the bus numbers like 7, 15, 19 and 24 are
the most appropriate locations for the placement of reactive
sources. Thereafter, shunt capacitors are placed at these loca-
tions, then, CSA andOCSA techniques are applied to find the
optimal sizing of Var sources. Minimum and maximum limit
settings for tap setting transformers, reactive compensators
and generators voltages are given in Table 5. It also provides
best control variable settings for minimization of real power
loss and system operating cost which occur due to energy
loss offered by the different optimization techniques.

Figure 5 shows the variation in reactive power generation
by generator buses at each iteration. Figures 6 and 7 show
the variation in shunt capacitors and variation in transformer
tap positions at each iteration. From these figures, it can be
observed that all the inequality constraints are satisfied. Fig-
ures 8 and 9 illustrate convergence curve of transmission loss
and system operating cost due to energy loss. These figures
describe the convergence behavior of the real power loss vari-
ation and overall operating cost, respectively, obtained by the
proposed CSA and OCSA. It can be observed that the char-
acteristics of both the algorithms are exponentially decaying
till iteration number 200 and decreases further as the number
of iterations increases till iteration number 500. This ensures
the satisfactory convergence of both the algorithms. Further,
it can be seen that even though CSA exponentially decreases
faster than OCSA during the initial stages till iteration num-
ber 40, however, the OCSA exploited the candidate solution
region faster than CSA due to oppositional-based population
created at each iteration. Thus, due to this behavior OCSA,
it provides best solution than CSA with a smaller number of
iterations.

The comparative analysis of results using different meth-
ods for IEEE 30 bus system is shown in Table 6. The
convergence curve candidly reveals the superiority of the
proposed algorithm and the influence of CSA to avoid pre-
mature convergence and yield solution with accuracy.

5.2 Test System 2: IEEE 57 Bus

The IEEE 57 bus system involves 7 generators, 80 lines, 17
transformers that are located at lines 6–9, 4–12, 9–12 and
27–28 (refer Table 4). At first, the location of probable volt-
age collapse point is evaluated by using fuzzy membership
values of loss sensitivity. The loss sensitivity and fuzzymem-
bership values of the selected weak buses are shown in Table
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Table 6 Comparative analysis of results using different methods for IEEE 30 bus system

Initial active power loss (p.u) Optimization technique Active power loss (p.u) (P1) Reduction in active power loss (p.u) (P
− P1)

0.0711 DE (Bhattacharyya et al., 2016) 0.0707 0.0004

GSA (Shaw et al., 2014) 0.0691 0.0020

OGSA (Shaw et al., 2014) 0.0690 0.0021

CSA (Karmakar & Bhattacharyya,
2018)

0.0689 0.0022

TLBO (Bhattacharyya et al., 2016) 0.0682 0.0029

PSO (Bhattacharyya et al., 2016) 0.0683 0.0028

KH (Bhattacharyya et al., 2016) 0.0686 0.0025

BB-BC (Bhattacharyya et al., 2016) 0.0689 0.0022

HSA (Bhattacharyya et al., 2016) 0.0687 0.0024

L-index GA (Bhattacharyya et al.,
2016)

0.0683 0.0028

L-index DE (Bhattacharyya et al.,
2016)

0.0682 0.0029

Modal-GA (Bhattacharyya et al., 2016) 0.0682 0.0029

Modal-DE (Bhattacharyya et al., 2016) 0.0682 0.0029

GWO (Raj & Bhattacharyya, 2018) 0.0683 0.0028

OGWO (Raj & Bhattacharyya, 2018) 0.0682 0.0029

GA (Karmakar & Bhattacharyya,
2018)

0.0680 0.0031

CSA 0.0680 0.0031

Proposed OCSA 0.0679 0.0032

Fig. 5 Variation in reactive power generation for Qg (2), Qg (5), Qg (8),
Qg (11) and Qg (13)

1. From this table, it can be observed that bus no. 35, 38
and 53 are the most appropriate location for the placement of
reactive sources. Subjected to this, the shunt capacitors are
placed at these locations. After this, CSA and OCSA tech-
niques are applied to find the optimal sizing of Var sources.

Figures 10, 11, 12, 13, 14 and 15 show the variation in
reactive power generation by generator buses at each itera-
tion, the variation in shunt capacitors at each iteration and
the variation in transformer tap positions at each iteration,

Fig. 6 Variation in shunt capacitor

in order. From these figures, it can be observed that all the
inequality constraints are satisfied.

Figures 16 and 17 illustrate the convergence curve of
transmission loss and system operating cost due to energy
loss. These figures describe the convergence behavior of the
real power loss variation and overall operating cost, respec-
tively, obtained by the proposed CSA and OCSA. It can be
observed that the characteristics of both the algorithms are
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Fig. 7 Variation in transformer tap position for 11th, 12th, 15th and 36th
line

Fig. 8 Real power loss variation at each iteration

Fig. 9 Variation in overall operating cost at each iteration

Fig. 10 Variation in reactive power generation for Qg (2), Qg (3), Qg
(6), Qg (8), Qg (9) and Qg (12)

Fig. 11 Variation in shunt capacitor

Fig. 12 Variation in transformer tap position for 19, 20, 31 and 35th
branch
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Fig. 13 Variation in transformer tap position for 36, 37, 41 and 46th
branch

Fig. 14 Variation in transformer tap position for 54, 58, 59 and 65th
branch

Fig. 15 Variation in transformer tap position for 66, 71, 73, 76 and 80th
branch

Fig. 16 Real power loss variation at each iteration

Fig. 17 Variation in overall operating cost at each iteration

exponentially decaying and decreases further as the number
of iterations increases till iteration number 500. This ensures
the satisfactory convergence of both the algorithms. Further,
it can be seen that even though CSA exponentially decreases
faster than OCSA during the initial stages till iteration num-
ber 40, however, the OCSA exploited the candidate solution
region faster than CSA due to oppositional based population
created at each iteration. Thus, due to this behavior OCSA,
it provides best solution than CSA with less number of iter-
ations.

Table 8 provides the best control variable settings for min-
imization of real power loss and system operating cost which
occur due to energy loss offered by the different optimization
techniques. The comparison for optimal setting of control
variables in IEEE 57 bus system is shown in Table 7. The
comparative analysis of results using the different methods
for IEEE 57 bus system is shown in Table 8. From this infor-
mation, it shows robustness of the proposed algorithm as it
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Table 8 Comparative analysis of results using different methods for
IEEE 57 bus system

Initial Active
power loss
(p.u)

Optimization
technique

Active power
loss (p.u) (R1)

Reduction in
active power
loss (p.u.)

0.2799 Hybrid PSO
(Dai et al.,
2009)

0.2658 0.0141

HSA (Bhat-
tacharyya
et al., 2016)

0.2648 0.0151

SSA (Raj
et al., 2021)

0.2584 0.0215

QOSSA (Raj
et al., 2021)

0.2523 0.0276

NLP (Dai
et al., 2009)

0.2590 0.0209

CGA (Dai
et al., 2009)

0.2524 0.0275

PSO (Bat-
tacharyya)

0.2471 0.0328

GWO (Raj
and Bhat-
tacharyya
2018)

0.2483 0.0316

OGWO (Raj
and Bhat-
tacharyya
2018)

0.2472 0.0327

CSA 0.2478 0.0321

Proposed
OCSA

0.2468 0.0331

will be able to handle the complexities of a real-time inter-
connected system.

6 Conclusions and Future ScopeWork

A novel fuzzy-based approach for RPP has been proposed in
this work. Loss sensitivity of each bus of the power network
is calculated, and fuzzy membership values are assigned to
each of the buses. Then, weak buses are selected based on the
higher membership values. Once the weak nodes are deter-
mined, these nodes are treated as the candidate buses for
shunt capacitor placement. Based on the study, the following
conclusions can be made.

(a) CSA and OCSA are made to run for effective co-
ordination of the installed shunt capacitors with other
existing reactive power sources, i.e., transformer tap set-
ting arrangements and reactive generation of generator
buses.

(b) The proposed algorithm determines the optimal setting
of all the Var sources while satisfying equality as well
as inequality constraints.

(c) The results of the proposed method showed that fuzzy-
based RPP active power loss is least, and system
operating cost is also least in both the standard test sys-
tems.

(d) There is also considerable reduction in active power loss
and operating cost. Therefore, the proposed fuzzy-based
RPP can be a useful tool for Var planning.
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