
Journal of Control, Automation and Electrical Systems (2022) 33:282–292
https://doi.org/10.1007/s40313-021-00780-3

Bearing Damage Analysis with Artificial Intelligence Algorithms

A New Feature Extraction Approach for Current-Based Signals

André da Silva Barcelos1 · Fábio Muniz Mazzoni2 · Antonio J. Marques Cardoso1

Received: 23 February 2021 / Revised: 21 May 2021 / Accepted: 7 June 2021 / Published online: 13 September 2021
© Brazilian Society for Automatics--SBA 2021

Abstract
Three-phase inductionmotors arewidely used in industrial facilities, where themaintenance of thesemachines is preponderant
for industrial processes. Recent research reports that vibration-based data acquisition is themost common approach to perform
bearing condition monitoring because it can extract more relevant information. However, the acquisition of vibration-based
signals is expensive, requiring accelerometers and other external devices to transmit and process the signal information.
Otherwise, current-based signals are directly measured by the supply system or inverters, enabling the current-based data
acquisition in most industrial cases. In this context, this work introduces a new current-based method to identify bearing
damages, applying artificial intelligence algorithms. Experimental and on-site tests present promising results, validating this
approach for bearing damage diagnosis.

Keywords Three-phase induction motor · Bearing · Diagnosis · Artificial intelligence

1 Introduction

The conversion of electrical energy into mechanics is present
in most industrial processes. Three-phase induction motors
(TIMs) are the principal equipment responsible for driving
pumps, compressors, valves, conveyors, propellers, eleva-
tors, etc. Recent research estimates that 70% of the European
Union’s industrial energy consumption is directly related to
three-phase electric motor applications due to low-cost man-
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ufacturing and versatility for high-performance applications
(Cardoso, 2018; Merizalde et al., 2017).

These motors present electric faults and mechanical dam-
ages owing to problems from construction and operating
conditions. These problems may result in reduced perfor-
mance or industrial process interruptions. Studies published
by the Institute of Electrical and Electronics Engineers and
by the Electric Power Research Institute report that 40% of
TIM failures and damages are related to bearings (Cerrada
et al., 2018).

Bearing damages can be separated into two categories.
The first category is the punctual damages, which appear
on a delimited bearing surface. The characteristics of these
damages are holes, scratches, particles, corrosion, electrical
discharge,material removal, impact points, and others. These
damages produce impulsive vibration frequencies (Barcelos
& Cardoso, 2021).

The second category is the distributed damages, exempli-
fied by flushing, encrustations, loss of material, corrosion,
wear, generalized roughness, or other forms that propagate
throughout the entire length of the bearings’ raceways. These
types of damages produce continuous mechanical vibrations
with low magnitude harmonics. Recent research allows pre-
dicting distributed damages with models (Cardoso, 2018;
Irfan, 2019; Randall, 2011).
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Fig. 1 Bearings diagnosis overview (Color figure online)

Various approaches acquire signals from electrical,
mechanical, thermal, or other sources tomonitor the bearings
condition. Then, signal processing techniques interpret the
bearings behavior in the time, frequency, and time-frequency
domain. The first three blocks of Fig. 1 introduce the data
acquisition and signal processing overview.

Consequently, after the signal processing task, the feature
extraction methods use statistical tools and signal measure-
ments to extract more relevant information, constructing a
database, as described in Fig. 1. Then, intelligent systems
algorithms may classify this database, performing bearing
damage diagnosis (Bazan et al., 2017).

Several industrial processes acquire vibration-based sig-
nals to extract features and monitoring the bearings con-
dition. Also, the current-based bearings analysis presents
satisfactory results in recent years (Bessous et al., 2018; Leite
et al., 2014). Some advantages of current-based techniques
include real-time, remote, and non-invasivemonitoringwith-
out the need for new sensors and devices (Cardoso, 2018;
Cerrada et al., 2018).

The time-frequency analysis with the wavelet trans-
form (WT) becomes a recurrent signal processing technique
because of the advantage of multiresolution decomposi-
tion (Bessous et al., 2018; Yu et al., 2019). The kurtogram
(Leite et al., 2014), enhanced kurtogram (Chen et al.,
2016), and autogram (Moshrefzadeh & Fasana, 2018) are
time-frequency representations based on spectral kurtosis
(Wang et al., 2019; Zhang et al., 2019). Also, the empiri-
cal mode decomposition (EMD) calculates intrinsic mode
functions (IMFs) to represent the current-based signal behav-
ior with Hilbert transform in the time-frequency domain
(Dragomiretskiy&Zosso, 2013). Both time-frequencymeth-
ods are signal processing techniques that allow the feature
extraction from current-based signals.

Furthermore, data-driven methods as stacked autoen-
coders (Jiang et al., 2018), variational autoencoders (San
Martin et al., 2019), deep convolutional neural networks
(Chen et al., 2020; Zhang et al., 2018), extreme learning
(Zhao et al., 2020), generative models (Cao et al., 2018),
among others, can extract automatic features from raw sig-
nals (Xia et al., 2018).

These signal processing techniques and data-driven algo-
rithms have satisfactory performance in vibration-based

approaches. However, although current-based signals allow
monitoring the bearing behavior, it is difficult to identify the
category, location (inner ring x outer ring), and severity of
distributed and earlier damages (Hoang &Kang, 2019; Leite
et al., 2014).

Current-based signals have a low signal-to-noise ratio
that buries the information and increases the interference
in most cases. Thus, it remains challenging to exclude har-
monic interference when the current-based signal has acci-
dental impulses, non-stationary behavior, quasi-overlapping
impulses, and non-Gaussian noise (Barcelos & Cardoso,
2021; Wang et al., 2019). Another relevant issue is that
in most industrial facilities, the induction motors are pre-
vented from performing under damaged conditions because
of industrial safety reasons. In this condition, it is impracti-
cable to acquire a labeled database from damaged bearings
(Barcelos et al., 2021).

Based on these premises, this work introduces a novel
feature extraction method for current-based signals. This
method calculates the covering dimension (CD) fromwavelet
decomposition and IMFs to construct a database. The CD is
an index based on the fractal theory that measures the asymp-
totic or periodic local behavior of signals. Indeed, bearing
damages from current-based signals produce low magnitude
harmonics that increase the CD. Experimental and on-site
tests are performed with a support vector machine (SVM)
and an artificial neural network (ANN) to identify bearing
damages from a labeled database. Subsequently, this work
performs on-site tests with the support vector data descrip-
tion (SVDD) algorithm to identify bearing damages from an
unlabeled database.

In summary, this paper introduces a new feature extrac-
tionmethod that employs theCD fromorbits to detect bearing
damage in current-based signals. Thewavelet transforms and
the EMD are the signal processing techniques used in this
work, while the ANN and SVM are the supervised learn-
ing classifiers. In addition, the SVDD is used in the novelty
detection framework to conduct positive unlabeled learning
when the labeled database is unavailable. The KLD and FDR
measure the centers and boundary behavior of distributions,
improving the SVDD accuracy. After the SVDD detects the
novelty, which in this case is the damaged bearing signal,
the ANN and SVM may perform classification, enabling a
supervised learning classifier to solve a complex PUL prob-
lem.

The following sequence introduces the bearing’s models
in Sect. 2. The wavelet transform and EMD are presented in
Sect. 3. The feature extraction and the covering dimension are
reported in Sect. 4. Section 5 presents the ANN, SVM, and
SVDD formulation. Section 6 summarizes the methodology,
introduces the databases, test procedure, and the results from
experimental and on-site tests. Section 7 contains the main
conclusions.
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Fig. 2 Geometric details from bearings with 10 spheres (Color figure
online)

2 Data Acquisition

Bearing damages cause dysfunctions in the induction motor
magnetic field resulting in harmonics in the stator currents.
These harmonics depend on the supply frequency, motor
speed, and geometric characteristics of bearings, such as
inner raceway (IR) radius, sphere diameter (Db), cage assem-
bly, number of spheres, and outer raceway (OR) radius.
Figure 2 presents the principal geometric details of bearings
with ten spheres (Rao et al., 2019).

The characteristic frequency (f c) for the outer ring (f o),
inner ring (f i), and spheres (f b) is defined in (1), (2), and (3),
as follows:

fc � fo � Nb

2
fr

(
1 − Db

Dp
cosβ

)
(1)

fc � fi � Nb

2
fr

(
1 +

Db

Dp
cosβ

)
(2)

fc � fb � Dp

Db
fr

(
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b

D2
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cos2 β

)
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where f r is the rotor frequency, Dpis the primitive diameter,
Dbis the sphere diameter,Nbis the number of spheres, andβ is
the contact angle (Bessous et al., 2018). The punctual damage
frequencies (f p) and harmonics are calculated as follows:

f p � | fr ± k fc| where k ∈ N (4)

The inner ring (f di) and outer ring (f do) frequencies and
harmonics from distributed damages are calculated as fol-
lows:

f di � n fr [ (Nb − Dir

Db
) (

Dp − Db

2Dp
) +

Dir

Db
− 1 ] (5)

fdo � n fr [(Nb − Dor

Db
) (

Dp − Db

2Dp
)] (6)

where n ∈ Z, the inner diameter is Dir , and the outer diam-
eter is Dor . With these models, it is possible to search for

the predicted-model harmonics in the time-frequencydomain
(Irfan, 2019).

3 Signal Processing

3.1 Wavelet Transform

The Fourier transform (FT) is a recurrent approach to acquire
stationary information from signals in the frequency domain.
The short-time Fourier transform (STFT) uses a constant res-
olution window to acquire non-stationary information in the
time-frequency domain (Aimer et al., 2019).

The STFT becomes inadequate in several applications
with non-stationary signals that require a variable resolution
window. The multiresolution analysis overcomes the con-
stant window drawbacks introducing windows with different
resolutions (Bessous et al., 2019; Kamiel & Howard, 2019).

In this context, the wavelet transform is a multiresolu-
tion signal processing technique that uses different resolution
windows to represent information in the time-frequency
domain. The inner product between wavelets and functions
is the wavelet transform, as follows:

〈
f (t), ψa,b(t)

〉 � 1√
a

∫
f (t)ψ

(
t − b

a

)
dt (7)

whereψa,b(t) is the wavelet function, a and b are scaling and
shifting parameters. Also, the wavelet function must belong
to the Lebesgue space L2, with regularity, and finite energy,
as follows:

∫ +∞

−∞
ψ(t)dt � 0 (8)

∫ +∞

−∞
|ψ(t)|2dt < ∞ (9)

An admissible wavelet ψ(t)dt implies that ψˆ(0)dt � 0,
where hat is the Fourier transform operator.

3.2 DiscreteWavelet Transform

The discrete wavelet transforms (DWTs) define the param-
eters a and b as integers, where b depends on a. This
redefinition allows obtaining the discrete wavelet ψm,n(t)
with integer parameters for scaling (m) and shifting (n)
according to (10). The inner product of (11) performs the
discrete wavelet transform as follows:

ψm,n(t) � a−m/2
0 ψ(a−m

0 t − nb0) (10)

〈 f (t), ψm,n(t)〉 � 1√
am

+∞∑
k�−∞

f (k)ψ

(
t − nboamo

amo

)
(11)
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Fig. 3 The multiresolution decomposition of successive wavelets trans-
forms into approximation and details coefficients (Color figure online)

Therefore, the DWT decomposes the function f (t)
throughout low-pass (Lp) and high-pass (Hp) filters. This
decomposition generates two new signals with coefficients
l[k] and h[k] from Lp and Hp filters (BayroCorrochano,
2019).

The construction of Lp and Hp filters demands that a scal-
ing functionϕ(t) depends on l[k] coefficients, and thewavelet
ψm,n(t) depends on ϕ(t) and h[k] as follows:

φ(t) � √
2

∑
k∈ Z

l[k]φ(2t − k) (12)

ψ(t) � √
2

∑
k∈ Z

h[k]φ(2t − k) (13)

The l[k] coefficients from Lp filters are the approxima-
tion coefficients (cA). Also, the g[k] coefficients from Hp
filters are the details coefficients (cD) (Gupta et al., 2019).
The multiresolution decomposition of Fig. 3 consists of suc-
cessive discrete wavelet transforms of the signal S to extract
several levels of details coefficients.

The parameter m of DWT rescales every successive
decomposition, narrowing the frequency resolution. In the
bearing diagnosis context, the last level of successive decom-
position with non-redundant information is defined by (14)
as follows:

L(cD) � int

⎡
⎣ log

(
fa
fr

)
log(2)

⎤
⎦ + 1 (14)

where L(cD) is the last level of cD, f ais the sampling fre-
quency, and f r is the rotor frequency (Bessous et al., 2019;
Ghods & Lee, 2016).

Fig. 4 Daubechies wavelet with order N � 12

3.3 Daubechies wavelets

The Daubechies wavelets are functions ψa,b(t) in orthonor-
mal bases with compact support, regularity, and the max-
imum number of vanishing moments (Daubechies, 1988).
Fig. 4 presents the Daubechies wavelet with order N � 12,
compact support N − 1 � 11, and N/2 vanishing moments.

This wavelet has maximum and minimum, finite energy,
and zero average, according to (8) and (9). The existence of
k vanishing moments from wavelets is defined by (15) as
follows:
∫

xkψ(x)dx � 0 (15)

The number of vanishing moments is related to the
smoothness for time-frequency representation and the capac-
ity to approximate polynomials (Narendiranath et al., 2017).

3.4 Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) decomposes a function
into a complex plane, keeping the instantaneous frequency
and localizing phenomena in time (Bessous et al., 2019). The
HHT is calculated with (16) to represent the non-stationary
signals in time-frequency domain.

z(t) � s(t) +
i

π
P

∫ ∞

−∞
s(τ )

t − τ
dτ � a(t)eiθ(t) (16)

where i is the imaginary number, P is the Cauchy principal
value, and s(t) is the signal. The function a(t) contains the
variablemagnitude, and θ (t) represents the angular variations
in the complex plane.

The empirical mode decomposition (EMD) is a recurrent
technique that breaking down a signal to extract intrinsic
mode functions (IMFs), allowing the HHT for sampled sig-
nals (Bessous et al., 2019).A function is defined as IMFwhen
the number of extrema and zero-crossings differ at most by
one.
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Fig. 5 The enveloping procedure to obtain IMFs with sifting algorithm
(Color figure online)

Fig. 6 Subsequent IMFs in blue and sifting residual in red (Color figure
online)

The proceedings to construct IMFs are named sifting. The
maxima and minima cubic spline interpolation connects the
extrema points of the sampled signal. Figure 5 shows the
enveloping and the average.

The first proto-IMF is the difference between the signal
and the envelope average. The sifting is repeated with the
first proto-IMF that becomes data and generates the second
proto-IMF. Figure 6 presents the IMF’s and the summation
of the residuals from sifting process.

A recurrent stop criterion for EMD compares the energy
of each IMF. Different values for subsequent IMFs mean
orthogonality loss. Furthermore, each IMF contains a part
of the information from the signal behavior allowing feature
extraction without HHT calculation.

4 Feature Extraction

A time series x(t) can be transformed into circular trajectories
to form an orbit representation in a multidimensional space
(Alligood et al., 1998). With this premise, x(t) is sampled
into a discrete series x(n) to build a D-dimensional vector
z(n) with time delay τ , as follows:

z(n, τ ) � [x(n), x(n − τ ), ..., x(n − (D − 1)τ )] (17)

The parameter τ can be calculated by mutual informa-
tion minimization between each vector pairs (Alligood et al.,
1998). This procedure unfolds z(n) projections in orbital rep-
resentation, allowing new insights from geometric shapes,
distributions, periodicity, and trajectories.

TheMinkowski–Bouligand dimension is an intrinsicmea-
sure, which consists of covering orbits and surfaces, with an
overlapping set of open disks with area A(e) and radius that
lies on surface. Specifically, the covering dimension (CDM )
is defined as:

DM � lim→0
(
log[A()]

log()
) (18)

Replacing the disks by boxes with cover area ε2N(ε) to
perform well-behavior computation, the covering dimension
is redefined as follows:

DM ≈ lim∫→0

(
log[N (∫)]
log(1/ ∫)

)
≤ lim∫→0

(
log[A(∫)]
log(∫)

)
(19)

whereN(ε) is the number of boxes with maximum size ε that
cover the surface. The k-grid zoommethodP(kε) rescales the
size ε to estimate N(kε) at each k-scale as follows:

P(k ∫) �
n/k∑
i�1

max{xk(i−1)+1, xk(i−1)+2, ..., xk(i−1)+k+1}

− min{xk (i − 1) + 1, xk (i − 1) + 2, ...xk (i − 1)

+ k + 1}

N (k) � P(k)

k
+ 1 (20)

where k ∈ Z+ is the grid scale in the discrete space and n
is the number of samples. The geometric interpretation of
log(k ∫) − log(N (k ∫)) finds the section with better linearity
at end points k1 and k2 as follows:

log(N (k ∫)) � a log(k ∫) + b, k1 ≤ k ≤ k2 (21)
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The least square method fit the data to obtain the slope ˆa
≈ a � CDMas follows:

â � −
g(k)

M∑
k�1

{ f (k, N (k)) −
M∑
k�1

f (k, N (k)}

g(k)
M∑
k�1

log2(k) − {
M∑
k�1

log(k)}2
(22)

where the g(k) and f (k, N (k ∫)) functions are described as
follows:

g(k) � (k2 − k1 + 1) (23)

f (k, N (k ∫)) � log(k) log(N (k ∫)) (24)

During the k-scale reducing proceeding, nonlinear sig-
nals with asymptotic or periodic behavior change the
CDM iteratively. Therefore, the CDMmeasures local persis-
tent behaviors as brown noises, pink noises (|f |−n), har-
monics, or others asymptotically persistent structures over
rescaled shorter periods (Maragos & Sun, 1993; Shen et al.,
2020).

Thus, this work calculates the average, harmonic aver-
age, kurtosis, skewness, energy, and entropy from sixwavelet
details coefficients (cDs) and six IMFs. Also, it transforms
the cDs and IMFs into orbits to calculate the CDMand con-
struct two databases with 42 features each.

5 Intelligent Artificial Algorithms

5.1 Artificial Neural Network

In this work, after the feature extraction step, the artificial
neural network (ANN) performs supervised learning from
the databases. Indeed, the features input the ANN, which is
responsible for output an accurate classification, separating
the healthy and damaged bearing signals, considering differ-
ent speed and loading conditions.

Moreover, the ANN output is a measure for the sep-
aration possibility, reflecting the accuracy for performing
bearing damage diagnosis in similar conditions. This algo-
rithmuses neurons inmultiple layers architectures to perform
classification. This algorithm uses neurons in multiple lay-
ers architectures to perform classification. A cost function
J(w) relates the predicted output g(wT

ixi+bi) of ANN with
a labeled output yjin a set with n inputs as follows:

min J (w) � 1

n

n∑
i�1

f (g(wT
i xi + bi ), y j )) (25)

where wiis a weight vector, xiis the random variable from
the ith feature, and biis the bias. The function f (·,·) search

for convex distances between predicted and labeled output,
while the activation function g(·) inserts nonlinear behavior
on the weighted features (Witten et al., 2016).

The backpropagation algorithm adjusts the weights with
a learning rate based on misclassification. The regulariza-
tion can provide sparsity and penalize the overfitting. Other
internal procedures can improve the learning rate, avoid
underfitting and overfitting, and improve accuracy (Haykin
et al., 2009; Witten et al., 2016).

5.2 Support vector machine

The support vector machine (SVM) is a machine learning
algorithm that builds separation hyperplanes based on an
optimumweight vectorwo(Haykin et al., 2009). In this paper,
the SVM is used to classify the bearing damages, contrasting
accuracy with the ANN algorithm. It is possible to estab-
lish an optimization problem with Lagrange multipliers (λi)
limited by a constant V, as follows:

max
n∑

i�1

λi − 1

2

n∑
i�1

n∑
j�1

λiλ jdid jxTi x j

s.t.
N∑
i�1

λidi � 0 and 0 ≤ λi ≤ V

(26)

where xiis a vector with label di. The optimal weight vectors
woand the bias boare according to Eqs. 27 and 28:

wo �
N∑
i�1

λidixi (27)

bo � 1 − wT
o xi iff di � 1 (28)

The kernel xiT xj from (26) can be replaced by symmetri-
cal functions k(x,x0). Also, k(x,x0) must be continuous, have
eigenfunctions ϕ(x) and ϕ(x0) with positive eigenvalues, and
satisfy the Mercer’s condition (Witten et al., 2016).

5.3 Support Vector Data Description

Support vector data description (SVDD) is a one-class algo-
rithm from positive unlabeled learning (PUL) models. The
SVDD search a minimal volume hypersphere containing
most of the positive data in a trade-off between volume and
outlier rejection (Benkedjouh et al., 2012; Noumir et al.,
2012). The hypersphere can be described by a center c and
radius r as follows:

min J (r ) � r2 +
1

vn

n∑
i�1

hi

s.t.|| f (xi ) − c|| ≤ r2 + hi and hi ≥ 0.

(29)
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Fig. 7 The methodology for this work (Color figure online)

where hiare slack variables, v is the trade-off between hyper-
sphere volume and the number of data points rejected in a
set with n elements. With Karush–Kuhn–Tucker conditions,
Lagrange multipliers λ, and kernel trick K(·,·), the dual opti-
mization problem is obtained as follows:

max L(x) �
n∑

i�1

λi K (xi , xi ) −
n∑

i�1

n∑
j�1

λiλ j K (xi , x j )

s.t. 0 ≤ λi ≤ 1

vn
,

n∑
i�1

λi � 1, c �
n∑

i�1

λi f (xi )

(30)

Thus, a new sample xiis typified as an outlier when ||f (xi)
− c|| > r. In this work, two successive SVDDs are calculated
with a Gaussian kernel to detect changes in healthy bearings
signals. The first SVDD uses PU data (healthy) from (− τ ,t0)
interval, while the second SVDD uses the current data from
(t0,τ ) time interval.

The comparison between these two successive SVDDs
with Kullback–Liebler divergence (KLD) and Fisher dissim-
ilarity ratio (FDR) allowsmonitoring the global behavior and
the relative center movement of data distribution (Desobry
et al., 2005; Noumir et al., 2012).

6 Tests and Results

6.1 Methodology

Since the previous sections explain each algorithm sepa-
rately, Fig. 7 summarizes the methodology of this work. The
data acquisition consists of obtaining healthy and bearing
damaged signals, while the signal processing techniques out-
put the IMFs and the wavelets CD, as described in the first
two blocks.

Table 1 Type of bearing damages

Serie Local Damage Severity Type

KA01 OR EDM 1 Earlier

KA07 OR Drilling 1 Punctual

KA08 OR Drilling 2 Punctual

KA05 OR EE 1 Earlier

KA04 OR Pitting 1 Earlier

KA16 IR and OR Pitting 2 Punctual

KA22 OR Pitting 1 Punctual

KI16 IR Pitting 3 Punctual

KI17 IR Pitting 1 Punctual

KI18 IR Pitting 2 Punctual

KA30 OR ID 1 Distrib

KB27 IR and OR ID 1 Distrib

KB24 IR and OR ID 3 Distrib

KI04 IR and OR ID 1 Earlier

UA16 IR and OR ED 1 Earlier

K002 NA NA NA Healhy

U002 NA NA NA Healhy

The feature extraction block consists of measure the IMFs
and CD information, while the orbits of these functions and
coefficients are used to calculate the CDM . In PUL con-
text, the SVDD performs novelty detection with KLD and
FDR measures, while the supervised learning is performed
by ANN and SVM algorithms, as described in the last block

6.2 Paderborn University Dataset

The tests performed in this work use the time series devel-
oped by the Chair of Design and Drive Technology from
the University of Paderborn in Germany, which contains the
current-based signals from an induction motor with healthy
and damaged bearings (Lessmeier et al., 2016). Table 1
presents the damaged bearings time series, with a descrip-
tion of the damage location (inner raceway–IR and outer
raceway–OR).

The third column presents the damages, where an elec-
tric drilling machine (EDM) provides artificial damages, a
drilling machine produces the holes, and an electric engraver
(EE) makes the scratches. The other three types are pitting,
indentations by plastic deformations (ID), and electrical dis-
charge (ED). The severity is an index that considers the
extension and magnitude of each damage, and finally, the
fifth column is the characteristic of the damages.

These time series are available at speeds of 900 rpm and
1500 rpm (N09 and N15), with loading conditions 0.1 Nm
and 0.7 Nm (M01 andM07). KA01, KA04, KI04, and KA05
are time series with earlier bearing damages, which produces
harmonics with low SNR.
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Fig. 8 Test rigwith the current probe, acquisition board, loading system,
and induction motor (Color figure online)

Fig. 9 Bearing with earlier punctual damage caused by electrical dis-
charge. (Color figure online)

6.3 CISE Dataset

The ED is a recurrent punctual damage on industrial motors.
This work uses the test rig available at CISE—Electromecha-
tronic Systems Research Centre at the University of Beira
Interior in Portugal to acquire this type of data.

The test rig (Fig. 8) consists of a three-phase squirrel cage
induction motor with 2.2 hp, four poles, and a supply fre-
quency of 50 Hz. The electric motor couples a load system
that provides a stable load of 0.1 and 0.7 Nm with speed and
torque control. Current probes send the stator currents to an
acquisition board with a sampling frequency of 44 kHz.

The healthy bearing data acquisition from this test rig pro-
duces a healthy time series named U002 in Table 1. The
damaged bearing of Fig. 9, which is namedUA16, has earlier
punctual damages in both rings caused by electrical dis-
charges.

The damage diameter of the inner ring is 1.5 mm. Spheres
and cage remain healthy. The outer ring has two damages
with 2.0 mm and another damage with 1.5 mm of diameter.

6.4 Test Procedure

The discrete wavelets transform and the EMD is applied to
each signal of Table 1 to generate six levels of details coeffi-
cients (cD) and six successive IMFs. These signal processing
techniques create two distinct data set with seven features
(42 variables each) calculated on intervals of 0.05 seconds.

Table 2 Intelligent algorithms accuracy with wavelets for signal pro-
cessing

Serie ANN SVMp1 SVMp2 SVMg

Earlier 0.941 0.952 0.929 0.911

Punctual 0.991 0.986 0.944 0.920

Dist 0.966 0.974 0.968 0.931

Table 3 Intelligent algorithms accuracy with EMD signal processing

Serie ANN SVMp1 SVMp2 SVMg

Earlier 0.930 0.963 0.913 0.904

Punctual 0.988 0.990 0.961 0.936

Dist 0.958 0.943 0.963 0.932

These data sets are separated by 70% for training, 15% for
validation, and 15% for tests.

The ANN algorithm contains one hidden layer that
changes within a range from eight to sixteen neurons to
allow accuracy improvement. The training is limited to 1000
epochs with an adaptive learning rate from 0.32 to 0.08 and
momentum from 0.2 to 0.1. The backpropagation algorithm
has stopping criteria at 300 seconds, and the Lasso regular-
ization controls the overfitting.

The soft margin SVM algorithm is performed with Gaus-
sian kernel (SVMg) and polynomial [1, xy, x,y]p (SVMp)
kernel, where p1 � 1 and p2 � 2. The parameter V starts at n
� 1 with n ∈N and changes 2nper epoch with stop criteria of
0.01 %. The SVDD algorithm starts with Gaussian kernel at
τ � 0.25 seconds and t0 � 0. The restriction is the Euclidean
distance ||f (xi− c||, while hiregularizes the cost function J(r).

The approach to performing a supervised test in SVDD
is to insert a batch of healthy signals into the algorithm to
construct the hyperplanes. Then, a batch of mixed signals
(healthy and damaged) is provided to algorithm perform out-
lier rejection and change detection.

6.5 Results from Experimental Tests

The average accuracy classification with wavelets can be
seen in Table 2. Although the results are similar, SVMp1
has superior performance for earlier and distributed dam-
age identification, while ANN has the best performance for
punctual damage identification.

Next, Table 3 presents the bearing damage accuracy clas-
sification with EMD. The SVMp1 algorithm has superior
performance for earlier and punctual damages, while SVMp2
reaches the best accuracy for distributed damages identifica-
tion.

The wavelet transform and EMD present similar results
with different algorithms, attesting that these methods can
be applied in bearing diagnosis from current-based signals.
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Fig. 10 Intelligent algorithms accuracy improvement withCDM (Color
figure online)

Table 4 On-site test accuracy with EMD and wavelet signal processing

ANN SVMp1 SVMp2 SVMg

EMD 0.915 0.939 0.887 0.873

Wavelet 0.948 0.951 0.923 0.899

Figure 10 compares the accuracy of wavelets and EMD asso-
ciating the contribution of the CDMas a feature.

With this feature, the average accuracy rises 1.1% for the
wavelet signal processing and 1.45% for the EMD.

6.6 On-Site Tests Results

On-site tests were performed in two industrialmotors of a gas
processing facility. These motors have current-based condi-
tion monitoring without vibration data acquisition. One of
these motors is kept in operation, while a spare remains on
hot standby due to uninterrupted processing demand.

Initially, only the positive unlabeled database is available
to collect data (healthy). Therefore, the stator current of these
motors was monitored by the SVDD algorithm to identify
changes in the data behavior. During testing, the SVDD algo-
rithm identifies changes in the data distribution caused by
wear.

This type of damage increases the bearings temperature
and motor vibration until a pre-establish limit for mainte-
nance scheduling. Therefore, this motor is kept operating,
while the features acquired after wear damage identification
are labeled as damaged.

In this context, the ANN and SVM algorithms have suf-
ficient information to perform off-line training on healthy
versus damage dichotomy with a labeled database. Table
4 presents the accuracy of the intelligent algorithms from
wavelet and EMD.

The wavelet signal processing produces the superior
result, and the SVMp1 is the best algorithm to perform
classification. When the bearing temperature surpasses the
pre-established limit, the damaged bearing was replaced by

a new one. Then, SVDD, ANN, and SVM monitoring the
new bearing behavior in real-time. These algorithms iden-
tify a new distributed bearing damage caused by overload
misalignment a week later.

7 Conclusion

This paper proposes a new feature extraction approach for
current-based signals using the Daubechies wavelet trans-
form and empiricalmode decomposition as signal processing
techniques. The covering dimension is introduced as a fea-
ture that can improve the accuracy of the ANN and SVM for
detecting bearing damage. The experimental results confirm
that the detection of incipient damage is a difficult task, reach-
ing 96.3% of accuracy for the EMD-SVMp1 configuration,
although other setups yield similar results.

The detection of punctual damages yields promising
results, reaching 99.0% of accuracy for EMD-SVMp1
and wavelet-ANN setup. Furthermore, distributed damages
present better results for wavelet-SVMp1 configuration,
reaching 97.4% of accuracy, and therefore, the wavelet or
EMD are appropriate for bearing damage detection with
current-based signals and ANN or SVM as classifiers.
Another relevant aspect to note is that the EMD produces
quasi-orthogonal IMFs, which provide cross-information
and therefore can reduce the efficiency of classifiers. Indeed,
most of the experiments in this study demonstrate that
Daubechies wavelets, which are always orthogonal by defi-
nition, perform better than EMD.

The on-site tests are performed in the SVDD frame-
work to attain novelty detection when a labeled database
is unavailable. Since the classifiers in this case are based on
SVDD performance, these on-site experiments are predicted
to perform slightly worse than supervised learning. As a
result, the wavelet-SVMp1 and EMDSVMp1 configurations
achieve 95.1% and 93.9% of accuracy, respectively, which
are remarkable results in a positive unlabeled learning con-
text. The main advantage of these methods is the capability
to perform current-based bearing condition monitoring and
earlier damage detection for different bearing damage types,
damage location, and severity within a supervised learning
or positive unlabeled learning context.
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