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Abstract
The monitoring of voltage and current signals in the electric power system (EPS) is a fundamental step for studies on power
quality. Thus, the rootmean square (RMS) value of a signal is one of the crucial quantities in the analysis of EPS. In the presence
of distortions, voltage and current signals are discrepant from the sinusoidal waveform, which motivates the monitoring of
signals’ harmonic distortion. Therefore, it is necessary to perform a correct estimation of RMS values in each frequency
component that composes the signals. This work presents a study aiming to evaluate the application of Stationary Discrete
Wavelet Transform (SDWT) and Stationary Discrete Wavelet Packet Transform (SDWPT) for estimation of RMS values in
different frequency ranges. From synthetic signals, the accuracy of the estimation of RMS values obtained via SDWT and
SDWPT is analyzed. Additionally, the performance of SDWT and SDWPT was compared to Discrete Fourier Transform
(DFT). The effects of mother wavelet choice are assessed from the frequency response of wavelet filters. Furthermore, the
effects of the sampling frequency choice, magnitude variation, and noisy conditions on the estimation of RMS values are also
evaluated. The results indicate the existence of discrepancies between estimated values via SDWT and SDWPT and exact
values when the estimation is applied to individual frequency components. In contrast, as the DFT analyzes each frequency
component individually, its performance was superior to that of the SDWT and SDWPT to estimate RMS values.

Keywords Power quality · Harmonic distortion · RMS values · Wavelet transform · Stationary discrete wavelet transform ·
Stationary discrete wavelet packet transform

1 Introduction

The electric power system (EPS) and its loads are suscepti-
ble to failures and disturbances that can affect their operating
conditions. The power quality (PQ) concept emerges in this
context, assessing voltage and current deviations from a pure
sinusoidal waveformwith constant frequency andmagnitude
(Dugan et al. 2004). Thus, the analysis of the frequency con-
tent of signals is a fundamental task for PQ monitoring.

In this scenario, consideringwaveform distortions, the tra-
ditional power calculation presented in Steinmetz (1897) is
not suitable (de Almeida Coelho and Brito 2020). One of the
primary properties of the traditional power theory is power
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calculation assuming the root mean square (RMS) values of
signals in its integrity, i.e., not considering separately the
RMS values of each frequency component. On the other
hand, in non-sinusoidal conditions, it is important to distin-
guish the RMSvalues of each frequency component. Thus, to
improve the powermeasurement under non-sinusoidal condi-
tions, somemethods defined on frequency-domain have been
proposed (Budeanu 1927; Shepherd and Zakikhani 1972;
Sharon 1973; Czarnecki 1983), which are based on Fourier
analysis.

Besides the approaches based on the Fourier Transform,
some methods employ the Wavelet Transform (WT) and its
variants to power measurement (Yoon and Devaney 1998,
2000; Hamid et al. 2002; Driesen and Belmans 2003; Morsi
and El-Hawary 2007, 2008; Vatansever and Ozdemir 2008;
Morsi and El-Hawary 2009; Alves et al. 2014, 2017), in
which the estimation of power components usually does not
consider individual frequency components of voltage and
current signals.

In a preliminary paper (de Almeida Coelho and Brito
2020), the authors have presented an analysis of the accu-
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racy of RMS values estimated using the Stationary Discrete
Wavelet Packet Transform (SDWPT). This work extends the
previous study, comprehensively addressing the estimation
ofRMSvalues in frequencybands according to theStationary
Discrete Wavelet Transform (SDWT) and the SDWPT. Fur-
thermore, the RMS values estimated via SDWT and SDWPT
were compared to the ones calculated using the Discrete
Fourier Transform (DFT). Thus, the main contributions of
the present paper include the following three aspects:

– From the frequency response of filters based on Daube-
chies and Coiflets families (Daubechies 1992), an anal-
ysis of the effects of mother wavelet choice on RMS
values estimation is addressed, indicatingwhichwavelets
of these families are more susceptible to a magnitude
damping and spectrum leakage;

– An analysis of the accuracy of RMS values estimated via
SDWT and SDWPT is performed, evincing the specific
conditions of signals which can cause misrepresentation
of this parameter. The results consistently demonstrate
that the SDWT and SDWPT have some limitations
to the estimation of RMS values of fundamental and
non-fundamental components defined in IEEEStd. 1459-
2010;

– The effects of different aspects on the estimation of RMS
values are also investigated, namely noisy conditions,
magnitude variation, and sampling frequency.

The remainder of this paper is organized as follows. In
Sect. 2, the WT is briefly introduced. The methodology
adopted in this work is presented in Sect. 3. In Sect. 4, the
obtained results are presented, as well the related analysis
and discussions. Finally, in Sect. 5, the conclusions extracted
from the obtained results are presented.

2 Wavelet Transform

The Wavelet analysis is based on the decomposition of a
signal using aprototype functionwith adaptable scalingprop-
erties (Littler and Morrow 1999), called the mother wavelet.
The wavelets are generated in the form of translations and
dilations of the mother wavelet, providing a local represen-
tation in both time and frequency domains of a given signal.
Both the SDWT and SDWPT use low- and high-pass filters
associatedwith amotherwavelet to divide the frequencyband
of the input signal. The features of these two wavelet-related
transforms are described below.

2.1 Stationary DiscreteWavelet Transform (SDWT)

The multiresolution algorithm proposed in Mallat (1989)
allows the Discrete Wavelet Transform (DWT) to decom-

pose a discrete signal in scaling and wavelet coefficients in
different decomposition levels. The scaling coefficients are
related to low-frequency components, whereas the wavelet
coefficients are associated with high-frequency components.
However, in each decomposition level, the DWT performs a
down-sampling process by a factor of two; hence, a subse-
quent coefficient is represented by only half the amount of
samples. That is, the DWT is a time-variant transform and
its application is restricted to signals in which the number of
samples is a power of two.

On the other hand, the SDWT is a time-invariant trans-
form, which allows its application to a discrete signal
regardless of the number of samples. At them decomposition
level, the scaling, sm[n], and wavelet, wm[n], coefficients of
the SDWT are defined by

sm[n] = 1√
2

∞∑

k=−∞
hϕ[k − n]sm−1[k], (1)

wm[n] = 1√
2

∞∑

k=−∞
hψ [k − n]sm−1[k], (2)

where hϕ[n] and hψ [n] are the low- (scaling) and high-pass
(wavelet) filters, respectively.

The scaling and wavelet filters are associated with a
mother wavelet and satisfy the following properties (Percival
and Walden 2000):

L∑

l=1

hϕ[l] = √
2,

L∑

l=1

h2ϕ[l] = 1,
L∑

l=1

hϕ[l]hψ [l] = 0, (3)

L∑

l=1

hψ [l] = 0,
L∑

l=1

h2ψ [l] = 1,
L∑

l=1

hψ [l]hϕ[l] = 0, (4)

where L denotes the length of the filter. Furthermore, the
scaling and wavelet filters satisfy a quadrature mirror filter
(QMF) relationship, namely

hϕ[l] = (−1)l+1hψ [L − l − 1], (5)

hψ [l] = (−1)l hϕ[L − l − 1]. (6)

Figure 1 depicts the three-level SDWT decomposition
tree of a signal s0[n], sampled at a rate of fs . According
to Fig. 1, the SDWT presents a drawback associated with the
non-uniform frequency bandwidth of scaling and wavelet
coefficients. Consequently, the resulting RMS value with
respect to individual bands contains a different number of
harmonic components (Hamid et al. 2002), hindering har-
monic identification and power calculation.
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Fig. 1 Three-level SDWT decomposition tree

Fig. 2 Three-level SDWPT decomposition tree

2.2 Stationary DiscreteWavelet Packet Transform
(SDWPT)

The wavelet packets represent a generalization of the WT
(Jensen and la Cour-Harbo 2001) in which both scaling and
wavelet coefficients are decomposed. Therefore, the SDWPT
corresponds to an extension of the SDWT algorithm, as
presented in Fig. 2. Thus, the SDWPT presents uniform fre-
quency bandwidths, overcoming this limitation from SDWT.

The SDWPT coefficients, at the m decomposition level,
are defined as (Mallat 2008):

s2pm [n] = 1√
2

∞∑

k=−∞
hϕ[k]s pm−1[n − k], (7)

s2p+1
m [n] = 1√

2

∞∑

k=−∞
hψ [k]s pm−1[n − k], (8)

where p is the node number (0 ≤ p ≤ 2m−1 − 1, p ∈ N).
Therefore, the SDWPT decomposition allows to prop-

erly isolate frequency ranges within the spectrum analyzed
(Branco et al. 2013). Further, this property is appropriate to

Fig. 3 Methodology

evaluate frequency components separately, as related in Bar-
ros and Diego (2006), Barros and Diego (2008).

3 Methodology

The overview of the methodology adopted in this work is
depicted in Fig. 3. The frequency response of wavelet fil-
ters was computed in order to assess the effects of mother
wavelet choice for SDWT and SDWPT decompositions. Fur-
thermore, synthetic signals were generated to evaluate the
estimation of RMS values via SDWT and SDWPT decom-
positions. Then, the accuracy of RMS values estimated via
SDWT and SDWPT for the synthetic signals was analyzed.
Additionally, the effect of a magnitude variation of a signal,
the effect of sampling frequency choice, and the noise effect
in the RMS estimation were also assessed.

3.1 Frequency Response ofWavelet Filters

The first step of this study dwells in determining the fre-
quency response of wavelet filters. This is important because
the wavelet-related transforms have an inherent energy leak-
age in their decompositions (Peng et al. 2009), i.e., depending
on the mother wavelet, the energy of a particular frequency
may leak into neighboring frequencies and can affect various
coefficients (Qiu et al. 1995). Thewavelet families adopted in
this work were Daubechies and Coiflets (Daubechies 1992),
which are appropriated to analyze the power system wave-
forms (Morsi and El-Hawary 2008). Five mother wavelets
from each family were applied in the SDWT and SDWPT
decompositions: db2 (Haar), db4, db20, db40, db90, coif1,
coif2, coif3, coif4, and coif5 (dbN refers to a wavelet for the
Daubechies family with L = N coefficients, whereas coifN
is related to a function from the Coiflet family with L = 6N
coefficients).

Besides determining the frequency response of QMFs
associatedwith eachwavelet, the subband frequency response
of wavelet filters for three-level SDWT and SDWPT decom-
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positions was computed. Thus, the effects of mother wavelet
choice are assessed.

3.2 Synthetic Signals

Electrical signals may include harmonics and DC offset. The
harmonic distortion is the most significant power quality
problem (Dugan et al. 2004), where odd-frequency com-
ponents are typically dominant in supply voltage and load
current (Bollen and Gu 2006). Besides, especially on a tran-
sient state, as from faulty events, the current waveforms have
exponentially decaying DC offsets (Benmouyal 1995; Gu
and Yu 2000; Argüelles et al. 2006; Al-Tallaq et al. 2011).
Likewise, DC level can occur in the output signals from
power converters (Lin et al. 2012; Li et al. 2015; Chang et al.
2019). DC offset and harmonic distortion can influence the
accuracy of frequency components estimation according to
WT, motivating the incorporation of these characteristics in
test signals adopted in this study.

As commonly used in the literature (Morsi and El-Hawary
2007; Vatansever and Ozdemir 2009; Alves et al. 2017),
the synthetic signals were arbitrarily defined. However, its
parameters were adopted considering the features of EPS,
namely prevalence of odd-frequency components and an
eventuality of DC offset occurrence. Hence, four synthetic
signals were considered, including a sinusoidal signal, a(t),
a sinusoidal signal with DC offset, b(t), a signal containing
multiple odd-frequency components and a DC offset, c(t),
and a signal with multiple odd-frequency components, d(t).
Each signal is defined as follows:

a(t) = √
2 {100 sin (ωt)} V, (9)

b(t) = √
2
{
5/

√
2 + 100 sin (ωt)

}
V, (10)

c(t) = √
2
{
5/

√
2 + 100 sin (ωt) + 1 sin (3ωt)

+5 sin (5ωt) + 3 sin (7ωt) + 2 sin (9ωt)

+1 sin (11ωt) + 0.50 sin (13ωt)

+0.25 sin (15ωt)
}
V, (11)

d(t) = √
2

{
25 sin (ωt + 70◦) + 2 sin (3ωt − 160◦)

+1.7 sin (5ωt + 150◦) + 0.1 sin (7ωt − 105◦)
+0.2 sin (9ωt + 180◦) + 0.1 sin (11ωt − 110◦)
+ 0.1 sin (15ωt + 160◦)

}
A, (12)

where ω = 2π f and f = 60Hz. The sampling frequency is
fs = 1920Hz, which corresponds to 32 samples per cycle of
60Hz. Then, the discrete signalswere decomposed according
to SDWT and SDWPT approaches.

3.3 SDWT and SDWPT Decompositions

The extraction of the desired harmonic components corre-
lates to both sampling rate and maximum wavelet decompo-
sition level (Alves et al. 2017). As the sampling frequency
adopted is 1920Hz, three decomposition levels (m = 3)
are required to extract the fundamental component of sig-
nals using both SDWT and SDWPT. Table 1 presents the
odd-frequency components associated with each coefficient
considering three-level SDWT and SDWPT decompositions.

As presented in Table 1, whereas the odd-frequency com-
ponents are centered in the bandwidth associatedwith SDWT
and SDWPT coefficients, the even-harmonics are situated in
the edges of the frequency bands where the spectral leakage
is higher. For this reason, the synthetic signals adopted in this
work do not contain even-frequency components.

The mother wavelets adopted are the same as described in
Sect. 3.1. After the decomposition of the signals via SDWT
and SDWPT, the next step is the estimation of RMS values.

3.4 Estimation of RMSValues

The estimationofRMSvalues viawavelet decomposition can
be performed according to Yoon andDevaney (1998), Barros
and Diego (2006), Morsi and El-Hawary (2007), Vatansever
and Ozdemir (2008), Alves et al. (2017). Therefore, consid-
ering SDWT and SDWPT decompositions, the total RMS
values of a given signal are obtained by

SSDWT =

√√√√√ 1

2N

⎡

⎣
∑

k

sm[k]2 +
m∑

q=1

∑

k

wq [k]2
⎤

⎦, (13)

SSDWPT =

√√√√√ 1

2N

⎡

⎣
2m−1∑

p=0

∑

k

s pm[k]2
⎤

⎦, (14)

where SSDWT and SSDWPT are the RMS values estimated via
SDWT and SDWPT, respectively.

The RMS value of a given coefficient represents the RMS
value of the frequency components contained in its frequency
range. Thereby, the RMS values of the odd-frequency com-
ponents presented in Table 1 can be obtained via SDWT and

123



1592 Journal of Control, Automation and Electrical Systems (2021) 32:1588–1602

Table 1 Odd-frequency
components associated with
three-level SDWT and SDWPT
decompositions

Coefficient Bandwidth Odd-frequency components

SDWT s3[n] [0; 120]Hz 1st

w3[n] [120; 240]Hz 3rd

w2[n] [240; 480]Hz 5th and 7th

w1[n] [480; 960]Hz 9th, 11th, 13th, and 15th

SDWPT s03 [n] [0; 120]Hz 1st

s13 [n] [120; 240]Hz 3rd

s23 [n] [240; 360]Hz 5th

s33 [n] [360; 480]Hz 7th

s43 [n] [480; 600]Hz 9th

s53 [n] [600; 720]Hz 11th

s63 [n] [720; 840]Hz 13th

s73 [n] [840; 960]Hz 15th

SDWPT as follows:

SSDWT
1 =

√
1

2N

∑

k

s3[k]2, SSDWT
3 =

√
1

2N

∑

k

w3[k]2

(15)

SSDWT
5;7 =

√
1

2N

∑

k

w2[k]2, SSDWT
9;15 =

√
1

2N

∑

k

w1[k]2,

(16)

SSDWPT
h =

√
1

2N

∑

k

s p3 [k]2, (h = 2p + 1), (17)

where: Sγ

h denotes the RMS value for h-th odd-frequency
component obtained via γ (γ = SDWT or γ = SDWPT);
and SSDWT

h;i represents the RMS value for odd-frequency
components contained in the frequency range of [(h − 1) f ;
(i + 1) f ]Hz.

It is important to emphasize that the RMS values of even-
frequency components cannot separately be computed, once
they are located on the edges of each bandwidth associated
with SDWT and SDWPT coefficients (Figs. 1 and 2 , and
Table 1). Thereby, the RMS values of even-harmonics are
partially included in the RMS values of the neighboring odd-
harmonic components (Barros and Diego 2008).

According to, the RMS value of the non-fundamental
components quantifies the overall amount of harmonics on
a given signal. This quantity can be estimated from SDWT
and SDWPT (Morsi and El-Hawary 2008; Alves et al. 2017),
namely

SSDWT
H =

√
SSDWT
3

2 + SSDWT
5;7

2 + SSDWT
9;15

2
, (18)

SSDWPT
H =

√∑

h>1

SSDWT
h

2
. (19)

Note that, regardless of the signal, the values of Sγ , Sγ
1 , S

γ
3 ,

and Sγ

H will converge for both γ = SDWTand γ = SDWPT.
For this reason, these quantities were presented grouped for
SDWT and SDWPT.

For comparison purposes, the previouslymentioned quan-
tities estimated via SDWT and SDWPT were compared to
the ones calculated using DFT. The DFT is the classical
technique to analyze harmonics and is adopted by some PQ
meters, as the Nexus® 1500+. The DFT of a given signal s[n]
is defined as Bollen and Gu (2006):

S[g] =
N−1∑

n=0

s[n]e− j2πgn
N , g = 0, 1, · · · , N − 1, (20)

thus, for a s[n] signal, the RMS value of a given multiple of
the fundamental frequency, Sq , the RMS value, S, the RMS
value of the non-fundamental components, SH , and the RMS
value of a set of frequency components, Sx;y , are obtained
as:

Sq = |S[q f ]|, S =
√∑

q

S2q , (21)

SH =
√∑

q �=1

S2q , Sx;y =
√√√√

y∑

q=x

S2q . (22)

3.5 Sensitivity to aMagnitudeVariation

A sensitivity test was performed to evaluate the influence of
the magnitude of the frequency components in RMS estima-
tion from SDWT and SDWPT. For that, the c(t) signal was
multiplied by a factor, α,

e(α, t) = αc(t), α = 1, 2, 4, 6, 8, 10. (23)
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Then, the percent error of each quantity was calculated as:

ε
(
ξγ (α)

)
=

∣∣∣∣∣
ξγ (α) − ξ (α,True)

ξ (α,True)

∣∣∣∣∣ × 100(%), (24)

where ξγ (α) is the quantity estimated for e(α, t) and ξ (α,True)

is its respective true value. As it is expected that the results
obtained using mother wavelets with the highest length are
more accurate (Morsi and El-Hawary 2008), this test was
performed using the longer wavelets of each family adopted
in this work, namely db90 and coif5.

3.6 Noise Effect on Estimation of RMSValues

Noise corresponds to any unwanted electrical signals which
produce undesirable effects in the circuits and represents one
of the main factors limiting the accuracy in signal measure-
ment systems (Vaseghi 2006). As the noise is random, it must
stay evenly distributed over all levels of the wavelet decom-
position (Jensen and la Cour-Harbo 2001), contaminating all
coefficients equally (Donoho and Johnstone 1994).

To assess the influence of noise on SDWT and SDWPT
decompositions, an additive white Gaussian noise (AWGN)
was superimposed to signal d(t). Different values of signal-
to-noise ratio, SN R, varying from 20 to 50dB by 10dB step
have been considered. After the superimposition of AWGN
into d(t), the signal was again decomposed using SDWT
and SDWPT, then the quantities defined in Sect. 3.4 were
recalculated. This process was performed 10 times and the
mean of the values was considered for analysis. Next, the
percentage difference has been determined as

Δ
(
ξγ (SN R)

)
=

∣∣∣∣∣
ξγ (SN R) − ξγ

ξγ

∣∣∣∣∣ × 100(%), (25)

where ξγ is the quantity calculated without noise and
ξγ (SN R) is the mean of the quantity estimated with a noise
level indicated by SN R.

3.7 Effect of Sampling Frequency Choice

Although the sampling frequency for synthetic signals
adopted in this work satisfies the Nyquist criterion (Bollen
and Gu 2006), a test was performed to assess the influence of
this parameter in the results. It is important to notice that any
change in the sampling frequency implies a different decom-
position tree than introduced in Figs. 1 and 2 to obtain the
same output bandwidths. To preserve the bandwidths pre-
sented in Table 1, the value of fs was increased by a factor
of two. Thereby, the following set of sampling frequencies

Fig. 4 Frequency response of Daubechies QMFs

was adopted:

Fs = [1920, 3840, 7680, 15360, 30720] Hz. (26)

Then, the synthetic signals were sampled using fs ∈ Fs
and the RMS values were calculated. Thereafter, the percent
error of each quantity was calculated:

ε
(
ξγ ( fs )

)
=

∣∣∣∣∣
ξγ ( fs ) − ξTrue

ξTrue

∣∣∣∣∣ × 100(%), (27)

where ξγ ( fs) is the quantity estimated using the sampling fre-
quency indicated by fs and ξTrue is its respective true value.
Similar to the sensitivity test, Sect. 3.5, this test was fulfilled
using only db90 and coif5 mother wavelets.

4 Results Analysis

This section presents the results obtained from the method-
ology presented in Sect. 3.

4.1 Frequency Response ofWavelet Filters

Figures 4 and 5 depict the frequency response of the QMFs
associated with the Daubechies (from db2 to db90) and
Coiflets (from coif1 to coif5) wavelet families, respectively.
According to Figs. 4 and 5 , the frequency response of QMFs
tends to an ideal filter when L increases. That is, a long
mother wavelet provides a better frequency representation of
a given signal.

Although long mother wavelets provide filters with a
frequency response closer to the ideal filters, they present
a high computational burden, notably for a higher num-
ber of decomposition levels. Hence, for real-time analysis,
the wavelet answer is slower for long wavelets (Costa and
Driesen 2013; Costa et al. 2017; Leal et al. 2019), which may
represent a limitation for its application. That is, from a com-
putational burden point of view, the choice of long mother
wavelets is appropriate only for offline analysis purposes.

Figures 6 and 7 show the subband frequency response
of filters for a three-level decomposition of the SDWT and
SDWPT, respectively. As shown in Figs. 6 and 7 , there is
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Fig. 5 Frequency response of Coiflets QMFs

an inter-band spectrum leakage between coefficients. That
is, the coefficients contain information of the frequencies
located near the outskirts of the ideal frequency range of the
filters. This effect is more intense for short mother wavelets,
whereas long wavelets present a more appropriate frequency
separation.

Furthermore, according to Figs 6a–c, 7a–c, the mother
wavelets db2, db4, db20, coif1, coif2, and coif3 present an
accentedmagnitude damping on frequency response for both
SDWT and SDWPT. This outcome can be reduced with the
choice of longer wavelet functions, which provides a more
accurate representation of the input signal in the frequency
domain.

4.2 Estimation of RMSValues

Table 2 shows the RMS values calculated for the signal a(t)
according to the equations presented in Sect. 3.3 as the true
values, derived from the analytical calculation according to
definitions of IEEE Std. 1459-2010. The values that corre-
spond exactly to the true values, i.e., with a null error, are
highlighted in Table 2.

According to Table 2, the total RMS values of the signal
a(t), Aγ , exactly match their true values, except the value
estimated using the mother wavelet db90. This is because
the adoption of a mother wavelet from the Daubechies fam-
ily with a too-large L may lead to instability in the algorithm
used for computation of QMFs (Morsi and El-Hawary 2009),
which affect the filter’s frequency response. On the other
hand, the mother wavelet db90 was the only one that pro-
vided an estimate with a zero error of Aγ

H . Moreover, in
general, the choice of a longmother wavelet reverberates in a
more accurate estimation of Aγ

H and Aγ
1 for both SDWT and

SDWPT decompositions. The obtained results using DFT
exactly match the true values.

Table 3 presents the estimated quantities considering the
signal b(t), which corresponds to a DC offset superimposed
to the signal a(t). As shown in Table 3, the estimation of the
RMS values of the signal b(t), Bγ , was similar to the per-
formed for the signal a(t), where only the mother wavelet
db90 does not provide an RMS value exactly equal to the
true value. However, neither mother wavelet used in this
work accurately estimated the values of Bγ

H , and Bγ
1 . This

(j)

(i)

(h)

(g)

(e)

(d)

(c)

(b)

(a)

(f)

Fig. 6 Subband frequency response of filters of the SDWT for three-
level decomposition: a db2; b db4; c db20; d db40; e db90; f coif1; g
coif2; h coif3; i coif4; j coif5

occurs because DC offset is located on the frequency range
of the coefficients that represent the fundamental frequency
([0; 120]Hz), s3[n] for SDWT and s03 [n] for SDWPT. On the

123



Journal of Control, Automation and Electrical Systems (2021) 32:1588–1602 1595

(j)

(i)

(h)

(g)

(e)

(d)

(c)

(b)

(a)

(f)

Fig. 7 Subband frequency response of filters of the SDWPT for three-
level decomposition: a db2; b db4; c db20; d db40; e db90; f coif1; g
coif2; h coif3; i coif4; j coif5

other hand, the performance of DFT was superior, since the
estimated quantities are the same as true values.

Thereby, the fundamental component representationbased
on the SDWT and SDWPT is affected for any DC offset
present in the input signal. This inconsistency affects the
RMS value of the non-fundamental components and can
represent a limitation for the application of wavelet-related
transforms to the estimation of RMS values defined accord-
ing to the IEEE Std. 1459-2010.

Comparing the results of a(t) and b(t), Tables 2 and 3 ,
it can be inferred that the differences were caused only by
the DC offset of the b(t) signal. Thus, if the DC component
would be removed before the SDWT and SDWPT decompo-
sitions, the fundamental frequency RMS value of b(t) signal
would be properly represented.

Nevertheless, considering other types of signals, an accu-
rate representation of the fundamental frequency RMS value
via SDWT and SDWPT can be obtained if only the funda-
mental component (60Hz) is located in the frequency range
of [0; 120]Hz. That is, this frequency range cannot contain
DC offset, subharmonics, or interharmonics.

Table 4 summarizes the obtained results for the signal c(t),
which contains multiple odd-frequency components and a
DC offset. The effects observed for signals a(t) and b(t)
(Tables 2 and 3 ) remain for the signal c(t). Furthermore,
for SDWT decomposition, the estimation of the RMS value
corresponding to an individual frequency band was the same
as the true value only for CSDWT

3 considering the mother
wavelet db90. This is due to the non-ideal characteristics of
the QMFs that cause spectral leakage and lead to errors in
the estimation of RMS values.

Moreover, according to Table 4, the SDWPT provides
a more accurate representation of RMS values, since their
decomposition separately isolates the odd-frequency com-
ponents on the frequency bands associated with each coef-
ficient. Even so, an exact estimation is still related to the
choice of long mother wavelets. Considering the signal c(t),
CSDWPT
3 ,CSDWPT

5 ,CSDWPT
11 ,CSDWPT

13 , andCSDWPT
15 were esti-

mated accurately by the mother wavelet db90. However, for
both SDWT and SDWPT decompositions, the fundamen-
tal RMS value (Cγ

1 ) estimated contains errors due to DC
offset in the signal c(t), leading to a poor representation of
the non-fundamental RMS value. Furthermore, as previously
observed for a(t) and b(t), the results obtained by DFT esti-
mation for c(t) signal have a null error.

Table 5 lists the results for the signal d(t), which con-
tains multiple odd-frequency components. This signal does
not have a DC offset, which allows an accurate representa-
tion of all quantities according to SDWTdecomposition with
the mother wavelet db40. On the other hand, for SDWPT,
the most accurate calculation was provided by the mother
wavelet db90.
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Fig. 8 Percent error as a function of α for γ = SDWT: a db90; b coif5

Nevertheless, some errors still occur in the calculation
results of RMS values in some frequency bands. As shown
in Sect. 4.1, the QMFs associated with short mother wavelets
can cause spectrum leakage andmagnitude damping on some
frequency bands. This explains the better performance of
db40 and db90mother wavelets concerning the other wavelet
functions analyzed in this work. Even so, the performance of
SDWTandSDWPTwas inferior to that ofDFT,which results
are the same as the true values.

Further, in general, the Coiflets family has not provided
an appropriate representation of RMS values considering
the frequency bands individually. Thus, for this purpose, the
Daubechies family performs a more accurate representation
of frequency components of a given signal.

4.3 Sensitivity to aMagnitudeVariation

Figures 8 and 9 present the percent error of RMS values
estimated for e(α, t) signal using the SDWT and SDWPT,
respectively.

As presented in Figs. 8 and 9 , independently of α, the
percent error does not vary. This shows that the errors on the
RMSestimationviaSDWTandSDWPTare not a result of the
small magnitudes of the frequency components of a signal.
Thus, the errors on the RMS estimation are associated with
the mother wavelet choice, not with the signal parameters.

4.4 Noise Effect on Estimation of RMSValues

Figure 10 depicts the percentage difference for several SN R
values for the common quantities estimated via SDWT and
SDWPT: Dγ , Dγ

H , D
γ
1 , and Dγ

3 . According to Fig. 10a and
c, the errors in the estimation of Dγ and Dγ

1 are affected
only for the SN R values, i.e., are independent of the mother
wavelet choice.Moreover, still considering Dγ and Dγ

1 , even
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Fig. 9 Percent error as a function of α for γ = SDWPT: a db90; b
coif5

for SN R = 20 dB, the errors are small. On the other hand,
as shown in Fig. 10b and d, the errors associated with Dγ

H
and Dγ

3 estimation are more significant. Furthermore, still
considering Dγ

H and Dγ
3 , the longer mother wavelets have

more pronounced errors. This occurs because the values of
Dγ

H and Dγ
3 are small in magnitude, mainly for the longer

mother wavelets (Table 5), so that a small variation in mag-
nitude can represent a large percentage variation.

Figure 11 presents the percentage difference as a func-
tion of SN R for DSDWT

5;7 and DSDWT
9;15 . The behavior of the

errors for different SN R valueswas similar to the ones shown
in Fig. 10c and d, in which the differences are greater for
longer mother wavelets. As presented in Table 5, the values
of DSDWT

5;7 and DSDWT
9;15 are higher when estimated from short

mother wavelets. Thus, considering short wavelets, the dif-
ference between the values estimated for a noiseless signal
and a noisy signal tends to a small valuewhen compared to its
respective values estimated from long mother wavelets. This
explains the reason forΔ

(
ξγ (SN R)

)
is higher for ξ estimated

using long mother wavelets.
Figure 12 shows the percentage difference calculated for

DSDWPT
5 , DSDWPT

7 , DSDWPT
9 , DSDWPT

11 , and DSDWPT
15 . As

the value of DSDWPT
5 is more significant than DSDWPT

7 ,
DSDWPT
9 , DSDWPT

11 , and DSDWPT
15 (Table 5), the differences

calculated for DSDWPT
5 were similar to each other, regard-

less of the mother wavelet, as shown in Fig 12a. On the other
hand, considering DSDWPT

7 , DSDWPT
9 , DSDWPT

11 , and DSDWPT
15

(Fig. 12b–e), the values of Δ
(
ξγ (SN R)

)
were lower for short

mother wavelets, presenting a similar behavior to the ones
observed in Figs. 10b, d, 11a and b.

It was demonstrated that the noise affected the estimation
ofRMSvalues in all frequency ranges. Considering both total
and fundamental RMS values, the noise effect was indepen-
dent of the mother wavelet choice. On the other hand, the

123



Journal of Control, Automation and Electrical Systems (2021) 32:1588–1602 1599

(d)

(c)

(b)

(a)

Fig. 10 Percentage difference as a function of SN R for SDWT and
SDWPT: a Dγ ; b Dγ

H ; c Dγ
1 ; d Dγ

3

(b)

(a)

Fig. 11 Percentage difference as a function of SN R for γ = SDWT:
a Dγ

5;7; b Dγ

9;15

RMS values in some frequency ranges were affected in dif-
ferent ways by the noise, depending on the adopted mother
wavelet. Then, the RMS values estimated using both SDWT
and SDWPT can present errors due to the noise, affecting the
confidence level of results. To avoid this issue, de-noising
strategies must be applied to a more accurate estimation. For

(e)

(d)

(c)

(b)

(a)

Fig. 12 Percentage difference as a function of SN R for γ = SDWPT:
a Dγ

5 ; b Dγ
7 ; c Dγ

9 ; d Dγ
11; e Dγ

15

instance, simple thresholding and shrinkage schemes for sig-
nal decomposition can be performed to eliminate noise in
the wavelet domain, as presented in Donoho and Johnstone
(1994), Santoso et al. (1997), Littler and Morrow (1999),
Huang and Cressie (2000).

4.5 Effect of Sampling Frequency Choice

Figures 13 and 14 show the percent error of RMS values
of c(t) signal (sampled according to Fs set) estimated via
SDWT and SDWPT, respectively.

According to Fig. 13, the percent error of the RMS
values calculated via SDWT from different sampling fre-
quencies does not vary significantly. As shown in Fig. 13a,
ε
(
CSDWT( fs )

)
presents a slight increase between 1920 and

3840Hz, being constant for others sampling frequencies.
Considering the RMS values calculated using the mother

123



1600 Journal of Control, Automation and Electrical Systems (2021) 32:1588–1602

(b)

(a)

Fig. 13 Percent error as a function of fs for γ = SDWT: a db90; b
coif5

(b)

(a)

Fig. 14 Percent error as a function of fs for γ = SDWPT: a db90; b
coif5

wavelet db90, Fig. 13a, the percent error of CSDWT
1 and

CSDWT
3 presents a small variation for the different values of
fs . This occurs because an increase in sampling frequency
implies a higher number of decomposition levels,which leads
to amore significant spectral leakage.As the percent errors of
RMS values of odd-frequency components calculated using
SDWT and the coif5 mother wavelet are higher than the ones
obtained using the db90 wavelet (Fig 13b), the increase of
ε
(
ξSDWT( fs )

)
due to the enhance on fs is less meaningful.

As shown in Fig. 14, the percent errors associated with
the RMS values calculated via SDWPT present a slight vari-
ation with an increase in sampling frequency, except for
the values related to CSDWPT

15 . According to Fig. 7e and j,
the filters associated with the coefficients on the edge of
the decomposition tree (Fig. 2) present good flat pass-band
characteristics and a lower inter-band spectrum leakage.Con-
sidering fs = 1920 Hz, the frequency band associated with

CSDWPT
15 is located on the edge of the decomposition tree

(s73 [n] in Fig. 2). With an increase in fs , the coefficient
related to CSDWPT

15 will be situated closer to the center of
the decomposition tree, where the spectral leakage is more
accentuated. Thus, an increase in fs implies a higher value

of ε
(
CSDWPT( fs )
15

)
.

Therefore, as regards the estimation of RMSvalues, is suf-
ficient that the sampling frequency adopted complieswith the
Nyquist frequency since higher values of fs do not provide
a significant improvement in results accuracy.

5 Conclusions

This paper presented a study to evaluate the RMS measure-
ment based on SDWT and SDWPT. From simulated signals,
the accuracy of estimation of RMS values was analyzed. The
RMS values estimated using SDWT and SDWPT were com-
pared to the ones obtained via DFT. The outcome of mother
wavelet choicewas also addressed in this work. Furthermore,
the effects of the sampling frequency choice, magnitude vari-
ation, and noisy conditions on the estimation of RMS values
were assessed.

The analysis of the frequency response of wavelet fil-
ters evinced that an inter-band spectrum leakage can occur
between coefficients. This fact can represent a frequency
misrepresentation of a given coefficient since it contains
information about the frequencies located near the outskirts
of the ideal frequency range. Moreover, depending on the
mother wavelet adopted, the frequency response of filters can
present magnitude damping for both SDWT and SDWPT.
Although these two effects can be minimized by adopting
longer wavelets, they cannot be completely mitigated.

Furthermore, when the signal has a DC offset, the fun-
damental RMS value estimated via SDWT and SDWPT
contains errors. In this condition, DC offset will be located in
the frequency range used to estimate the fundamental RMS,
which leads to errors in its representation. Thus, the SDWT
and SDWPT may not be appropriate to analyze frequency
components individually. On the other hand, as the DFT
specifically analyzes each frequency component, its perfor-
mance was superior to that of the SDWT and SDWPT to
estimate RMS values.

As wavelet-related transforms analyze a given signal in
frequency bands, different effects associated with specific
frequency components cannot be properly evaluated using
SDWT and SDWPT. This characteristic reverberates in an
incorrect value of the non-fundamental RMS value, evincing
a limitation of the application of wavelet-related transforms
to the estimation of quantities defined in IEEE Std. 1459-
2010.
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This study also demonstrated that an increase in sampling
frequency does not imply an improvement in results. More-
over, the test of sensitivity to a magnitude variation revealed
that the accuracy of the results is related to themotherwavelet
choice, despite the signal parameters.

In summary, although the frequency bands of SDWT and
SDWPT decompositions can represent frequency compo-
nents in some cases, the RMS values estimated using these
transforms may not represent appropriately the characteris-
tics of certain signals, such as those that have harmonics and
DC offset. Moreover, the reliability of the values estimated
is also affected by noisy conditions. Therefore, the assump-
tion that the frequency bands of wavelet-related transforms
correspond to individual harmonics is valid only in specific
conditions and can cause misinterpretation on the analysis of
power system signals.
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