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Abstract
In this work, an efficient constrained nonlinear predictive control algorithm, based on themeta-heuristic optimization strategy,
is proposed. The aim is to develop a predictive control algorithm having a simple design and implementation procedure on the
one hand, and that can give satisfactory performance with a large class of nonlinear systems on the other hand. To achieve this
goal, a feedforward multilayer neural network is used to predict the future outputs of the system, and the optimization problem
of predictive control is resolved using teaching–learning-based optimization strategy. Due to their interesting proprieties,
feedforward neural networks are widely used in nonlinear systems identification and control. Indeed, they have a simple
structure and can accurately approximate any nonlinear mapping. The teaching–learning-based optimization is used in a
large number of applications in different fields of engineering and has gained wide acceptance among the optimization
researchers community. Unlike other metaheuristic algorithms, this algorithm requires only common controlling parameters
like population size and number of generations for its working; it does not require any algorithm-specific parameters. To
assess the effectiveness of the proposed control algorithm, the control of the model of the continuous stirred tank rector
and the 2-DOF manipulator robot model is considered. A comparative study, using the conventional PID controller, the
fuzzy logic control, the computed torque control and the neural network-based model predictive control using particle swarm
optimization, is carried out. To further demonstrate the effectiveness of the proposed controller, the control algorithm is
numerically implemented and applied to a system with fast dynamics, namely the induction motor. The obtained results,
through the simulation and the experimental study, indicate that the proposed controller presents better control performance
than the other controllers. Furthermore, the experimental study shows that the developed control strategy can be effectively
used to control, in real time, systems with fast dynamics.
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1 Introduction

Model-based predictive control (MPC) is a modern and suc-
cessful control strategy that is characterized by its ability to
control constrainedmultivariable systems. To obtain the opti-
mal control sequence, it uses an explicit model to predict the
system future behaviour over a given horizon and then min-
imizes a given constrained cost function. Usually, this cost
function is a quadratic function of the error between the pre-
dicted response and the reference trajectory and includes in
most cases the control energy (Camacho and Bordons 2007;
Maciejowski 2002; Katz et al. 2018).

Due to its industrial success, considering a wide range of
complex systems, a lot of attention was given to this con-
trol strategy and several control algorithms, based on linear
models, were developed. Richalet et al. (1978) have proposed
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the model algorithmic control (MAC) technique. Two years
later, a step response model-based predictive control, called
dynamic matrix control (DMC), has been developed by Cut-
ler andRamaker (1980).Ydstie (1984) proposed the extended
horizon adaptive control (EHAC). Taking into account the
disturbances effect, the EHAC algorithm has been improved
by De Keyser and Van Cauwenberghe (1985). After that, the
famous generalized predictive control (GPC) was introduced
(Clarke et al. 1987a, b). Since then, several techniques and
improvement on the developed algorithms have been pro-
posed (Kansha and Chiu 2009; Li and Wang 2017; Li et al.
2017). The success of theMPC strategy is related to its capa-
bility of handling different types of constraints and its ability
to handle multivariables systems, systems with no-minimum
phase behaviour and systems with variable or unknown time
delays.

Although linear MPC techniques give satisfactory per-
formance in many practical applications (Lucia et al. 2014;
Han and Qiao 2014; Subramanian et al. 2018), in the case of
highly nonlinear process, severe degradation in control per-
formance can be observed. To ensure higher performance,
MPC methods that use a nonlinear prediction model must
be investigated. In fact, a lot of attention was given to non-
linear MPC (NMPC), and several control techniques were
proposed (Mazinan 2012; Lu et al. 2015; Thangavel et al.
2018;Abdennour et al. 2002). Themain difficulties in design-
ing NMPC are obtaining an adequate nonlinear model for
the system to be controlled, and online solving the nonlinear
and the non-convex optimization problem. Obviously, the
efficiency and computational requirement of the controller
depend extremely on the accuracy and simplicity of the used
model. In fact, there is no clearly suitablemodelling approach
to represent general nonlinear systems. Among the various
nonlinear models developed and used in predictive control,
we can find: Volterra series (Maner et al. 1994; Gruber et al.
2013; Diaz-Mendoza and Budman 2009), fuzzy models (Lu
et al. 2015;Ait Sahed et al. 2016;Huang et al. 2000), neuronal
models (Mazinan 2012; Patan 2018; Han et al. 2013), etc.
Due to their flexibility, simplicity and good performances,
artificial neural networks (ANN) were extensively used in
modelling (Mohammadi et al. 2018; Mahmoudi et al. 2016;
Ghorbani et al. 2017) and controlling nonlinear systems (Var-
gas et al. 2019; Qin et al. 2020; Yuan et al. 2019; Kumpati et
al. 1997; Narendra and Parthasarathy 1989). Moreover, it has
been shown that neural networks can approximate any given
function with arbitrary precision ( Kumpati et al. 1997).

Solving the non-convex optimization problem of non-
linear constrained predictive control is difficult and time-
consuming task. Since an analytical solution cannot be
obtained, several suboptimal methods were used to deal
with this optimization problem (Botto et al. 1999; Liu et
al. 1998; Soloway and Haley 1996; Sorensen et al. 1999).
To obtain a convex quadratic optimization problem, some of

the suboptimal methods use prediction models of particular
structure (Botto et al. 1999; Liu andKadirkamanathan 1998).
Some others are based on numerical optimization algorithms,
which are known to have a slow convergence rate and could
easily be trapped in local minima (Soloway and Haley 1996;
Sorensen et al. 1999). An optimization strategy that could
mitigate the non-convex and nonlinear optimization problem
of predictive control is based on the meta-heuristic algo-
rithms. These algorithms, such as genetic algorithms (GA)
(Sarimveis and Bafas 2003; Li et al. 2012), particle swarm
optimization (PSO) (Mazinan2012;Coelho et al. 2005;Zhix-
iang et al. 2008), artificial bee colony (ABC) (Ait Sahed et
al. 2015,2016) and evolutionary algorithm (EA) (Zimmer et
al. 2015), are easy to implement, have good performance and
could locate adequate solutions in a reasonable time. In fact, a
lot of researches have been conducted on solving the NMPC
optimization problem using meta-heuristic algorithms (Ait
Sahed et al. 2016; Jiang et al. 2012; Wang et al. 2019).

A relatively recent efficient optimization method, called,
teaching–learning-basedoptimization (TLBO),wasdesigned
for solving complex, constrained and nonlinear optimization
problems (Rao et al. 2011,2012). It is based on classroom
teaching–learning process in the form of two phases, a
teacher phase, where students learn from their teacher, and
a learners phase, where the students learn by interacting
between themselves. Furthermore, this algorithm was found
to be more efficient than several other meta-heuristic algo-
rithms such as ABC, multimembered evolutionary strategy
(M-ES), particle evolutionary swarm optimization (PESO),
cultural differential evolution (CDE), co-evolutionary differ-
ential evolution (CoDE) and genetic algorithm (Rao et al.
2011; Rao and Waghmare 2014; Patel and Savsani 2016).
Another interesting advantage of using the TLBO algorithm
is the fact that, except the common control parameters (pop-
ulation size and number of generations), and unlike to other
meta-heuristic algorithms, this algorithm does not require
any algorithm-specific parameters (Rao 2016). A bad choice
of any value of the specific parameters of the meta-heuristic
algorithms leads to a slow convergence rate and could easily
be trapped in local minima. Therefore, before implementing
a meta-heuristic algorithm which depends on some specific
parameters, an optimization step of these parameters is nec-
essary. However, this is not required in the case of the TLBO
algorithm.

In this work, a TLBO-based neural network model pre-
dictive controller (NNMPC-TLBO) is proposed. The aim is
to develop a simple and an efficient controller that can be
used to control any nonlinear system. The proposed control
algorithm uses a simple static neural network, namely the
multilayer perceptron (MLP), as a prediction model of the
system to be controlled, and the TLBO strategy to solve the
obtained constrained optimization problem. The efficiency
and performance of the developed control algorithm are
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assessed by considering the control of two nonlinear systems:
the continuous stirred tank reactor (CSTR) model and the
two-degree-of-freedom manipulator robot model. To further
demonstrate the effectiveness of the proposed controller, the
control algorithm is numerically implemented and applied
to the speed control of an induction motor. Furthermore,
a comparative study with the conventional PID, the fuzzy
logic control (FLC), the computed torque control (CTC)
and the PSO-based neural network model predictive con-
troller (NNMPC-PSO) controllers is carried out. The paper
is organized as follows. The TLBO algorithm is described
in Sect. 2. The proposed NNMPC-TLBO algorithm is pre-
sented in Sect. 3. In Sect. 4, the simulation results are given
and discussed, while the experimental results are presented
in Sect. 5. Finally, some conclusions are given in Sect. 6.

2 Teaching–Learning-Based Optimization
Algorithm

TLBO is a teaching–learning process inspired algorithm that
was proposed by Rao et al. (2011; 2012). Like other meta-
heuristic methods, TLBO is a population-based method that
uses a population of solutions to search for the global solu-
tion. The population is considered as a group of learners, and
the search process is divided into two phases: the teacher and
the learners phases. In the teacher phase, the learners learn
from their teacher, while in the learners phase, the learners
learn by interacting between themselves. The taught subjects
are considered to be the cost function variables, and the fit-
ness value of the optimization problem is considered as the
learners’ results. The teacher is considered to be the best
solution in the entire population.

2.1 Teacher Phase

The algorithm startswith the teacher phasewhere the learners
learn from their teacher.Assuming thatm subjects (variables)
exist with n learners (population size), at any iteration i , this
phase can be decomposed into five sub-steps:

1. A teacher is selected from the population by choosing the
best learner Xi

j kbest
( j = 1, 2, ...,m, k = 1, 2, ..., n) in

each subject.
2. The learner mean result Mji , for each subject j , is calcu-

lated using the following equation:

Mji =
∑n

l=1 X
i
jl

n
. (1)

3. The distance between the teacher and the learners mean
result, named the difference mean, is evaluated, for each
subject, as follows:

dij k = ri (X
i
j kbest − TFMji ) (2)

where ri is a random number between 0 and 1, TF
is a random integer number, called the teaching fac-
tor, and its purpose is to determine the changed mean
value. According to Rao (2016), good performances are
obtained when TF is chosen to be 1 or 2, where TF =
round(1 + rand(0, 1)).

4. The existing solutions are updated by adding the differ-
ence mean to each one of them:

Xnewi
j k = Xi

j k + dij k . (3)

5. Finally, greedy selection is applied between the old and
new updated solution (Xnewi

j k and Xi
j k) in order to

only keep the best solution.

2.2 Learners Phase

It is the phase where the learners try to improve themselves
by interacting with each other. The learner XA chooses ran-
domly to interact with the learner XB and learn from him.
This phase can be decomposed into three sub-steps:

1. Choose randomly q pairs of solutions such that Fi
A �= Fi

B ,
where Fi

A and Fi
B are the objective function values of XA

and XB at the i t h iteration, respectively.
2. For each pair, update the solutions using the following

equations (in case of a minimization problem):

Xnewi
j A = Xi

j A + ri (X
i
j A − Xi

j B), if Fi
A < Fi

B

(4)

Xnewi
j A = Xi

j A + ri (X
i
j B − Xi

j A), if Fi
B < Fi

A.

(5)

3. For each updated solution, evaluate the objective func-
tion. Accept the updated solution only if it enhances the
solution.

2.3 Initialization Step

Before starting the TLBO algorithm, an initialization step is
required to initialize the following parameters:

– The dimension m of the optimization problem (m =
number of optimized variables).

– The population size n. The choice of the population size
has a large impact on the meta-heuristic algorithms per-
formance. So, choosing the population size depending on
some factors, two of them are the converging speed and
the solution accuracy (Chen et al. 2014; Bolufé-Rohler
and Chen 2013).
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– The maximum number of iterations kmax. The choice of
this parameter value depends on the chosen sampling
time.

– The admissible maximum and minimum values for each
variable X jmin and X jmax .

– The initial solutions X1
j k are randomly chosen using the

following equation:

X1
j k = rand(0, 1) · (X jmax − X jmin) + X jmin . (6)

– The minimum value of the termination criterion ε.

To illustrate the TLBO algorithm, a flowchart is given in
Fig. 1.

Fig. 1 TLBO algorithm flow chart

3 Neural NetworkModel Predictive Control
based on TLBO Algorithm

3.1 Principle

Two main steps are common to almost all MPC algo-
rithms: the explicit model used to predict the future process
behaviour and the optimization problem from which a con-
trol sequence is derived. The different steps to design a MPC
law are given as follows:

– At each sampling time, a reference trajectory is specified
over a given prediction horizon.

– Using the system model, the future values of the system
outputs are computed over a given prediction horizon.

– A future control sequence is calculated, over a given con-
trol horizon, by minimizing a given cost function.

– Only the first element of the calculated control sequence
is to be applied on the system.

The NMPC optimization problem is generally defined as fol-
lows:

min
u(k)

J (Δu(k), ŷ(k), c(k))

=
N2∑

i=N1

[(
ŷ(k + i/k) − c(k + i)

)T
Q

(
ŷ(k + i/k) − c(k + i)

)]

+
Nu∑

i=1

[

ΔuT (k + i − 1)RΔu(k + i − 1)

]

(7)

subject to

Δu(k + i − 1) = 0 for i > Nu

ymin < ŷ(k) < ymax

umin < u(k) < umax

Δumin < Δu(k) < Δumax for i ≤ Nu

where
u(k) is the control input.
Δu(k) is the control increment, and it is defined by:

Δu(k) = u(k) − u(k − 1) for i ≤ Nu

Δu(k) = 0 for i > Nu

N1 and N2 are the minimum and the maximum prediction
horizon.

Nu is the control horizon.
Q and R are positive definite matrix and positive semi-
definite matrix, respectively.
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ŷ(k) is the estimated value of the system output at time k.
c(k) is the reference trajectory value at time k.

3.2 Constraints Handling

Predictive control is known by its ability to efficiently and
directly handle the constraints by incorporating theme in
the formulation of the optimization problem. Inputs and
outputs constraints are due to physical limitations, safety
reasons, economical and environmental objectives. Several
approaches can be envisaged to handle these constraints
(Coello 2002; Michalewicz and Schoenauer 1996; Koziel
et al. 1999). In the proposed NNMPC-TLBO algorithm,
the input constraints are directly handled by bounding the
search space, while for handling the output ones, the penalty
function approach is used. This penalty approach is based
on adding new variables, called slack variables, to the cost
function, that will heavily penalize any constraints violation.
Using this approach, the optimization problem given in Eq.
7 will be reformulated to have the following expression:

min
u(k)

J (Δu(k), ŷ(k), c(k))

=
N2∑

i=N1

[(
ŷ(k + i/k) − c(k + i)

)T
Γy

(
ŷ(k + i/k) − c(k + i)

)]

+
Nu∑

i=1

[

ΔuT (k + i − 1)RΔu(k + i − 1)

]

(8)

subject to

Δu(k + i − 1) = 0 for i > Nu

umin < u(k) < umax

Δumin < Δu(k) < Δumax for i ≤ Nu

where the output-dependent weight function Γy(y)was cho-
sen to replace the imposed output constraint, and it has the
following expression:

⎡

⎢
⎢
⎢
⎣

Γy1(y1) 0 . . . 0
0 Γy2(y2) . . . 0
...

...
. . .

...

0 0 . . . Γyn (yn)

⎤

⎥
⎥
⎥
⎦

where

Γyi (yi ) =
{

Γyi (0) if ymini ≤ yi ≤ ymaxi
Γyi (0)[1 + Ciy ] if yi < ymini or yi > ymaxi

.

i = 1, 2, . . . , n (n is the outputs number).

y(k) = [y1(k), y2(k), . . . , yn(k)]T .
Ciy is used to define the penalization degree: Ciy = 0 indi-
cates no constraint, whileCiy = ∞ indicates hard constraint.
In population-based algorithms, the input constraints can be
systematically handled by bounding the search space to the
inputs admissible values. The inputs constraints to be handled
are:

– constraints on the input increment:

Δumin < Δu(k) < Δumax (9)

– constraints on the input magnitude:

umin < u(k) < umax

umin − u(k − 1) < u(k) − u(k − 1) < umax − u(k − 1)

→ umin − u(k − 1) < Δu(k) < umax − u(k − 1).

(10)

Hence, from Eqs. 9 and 10, the upper and the lower bounds
of the input increments will be given by:

Lmin(k) < Δu(k) < Lmax(k)

where

Lmin(k) =
{

Δumin if Δumin > umin − u(k − 1)
umin − u(k − 1) otherwise

Lmax(k) =
{

Δumax if Δumax < umax − u(k − 1)
umax − u(k − 1) otherwise.

3.3 Control Algorithm

Assuming that the MPC parameters (Nu , N1, N2 and Ciy ),
the TLBOparameters (m, n and kmax) and the neural network
model have been established, the proposed NNMPC-TLBO
algorithm can be described by the following steps:

– Step 1: Initialization

– Let us take the control inputs, at the sampling time k,
for the i th iteration, as Xi

j k ,( j = 1, . . . ,m), where
m denotes the number of control inputs.

– For j = 1 : m
• For k = 1 : n

. Choose the initial solution X1
j k using Eq. 6.• End

– End
– i = 1

– Step 2: Reference trajectory

– Specify the reference trajectory between k + N1 and
k + N2.
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– Step 3: Teacher phase

– Step 3_1: Determination of the teacher
• For k = 1 : n

. 1.Calculate the predicted values of the sys-
tem outputs using the prediction model.

. 2.Evaluate the objective function Fi
k using

Eq. 8.
• End
• Fkbest = Fi

1
• For k = 2 : n

. If Fi
k < Fkbest

. Fkbest = Fi
k

. X j kbest = Xi
j k

. End if
• End

– Step 3_2: Mean result calculation
– For j = 1 : m

– Calculate the mean result Mji using Eq. 1.
– End

– Step 3_3: difference mean calculation
• For j = 1 : m

. For k = 1 : n
Calculate dijk using Eq. 2.

. End
• End

– Step 3_4: Solution updating
• For j = 1 : m

. For k = 1 : n
Calculate the new solutions Xnewi

j k using
Eq. 3.

. End
• End

– Step 3_5: Greedy selection
• For k = 1 : n

. 1.Using Xnewi
j k , calculate the predicted

values of the system outputs using the pre-
diction model.

. 2.Evaluate the objective function new_Fi
k

using Eq. 8.
. If new_Fi

k < Fi
k

Fi
k = new_Fi

k
Xi

j k = Xnewi
j k

. End if

. IfFi
k < Fkbest

Fkbest = Fi
k

X j kbest = Xi
j k

. End if
• End

– Step 4: Learner phase

– Step 4_1: choosing the pairs to interact

• Choose randomly q pairs of solutions such that
Fi
A �= Fi

B , where Fi
A and Fi

B are the objective
function values of XA and XB , respectively.

– Step 4_2: Solutions updating
• For h = 1 : q

Update the solution Xnewi
j k using Eqs. 4 and

5.
• End

– Step 4_3: evaluating the new solutions
• For k = 1 : n

. 1.Using Xnewi
j k , calculate the predicted

values of the system outputs using the pre-
diction model.

. 2.Evaluate the objective function new_Fi
k

using Eq. 8.
• End
• For k = 1 : n

. If new_Fi
k < Fi

k
Fi
k = new_Fi

k
Xi

j k = Xnewi
j k

. End if

. If Fi
k < Fkbest

Fkbest = Fi
k

X j kbest = Xi
j k

. End if
• End

– Step 5: iterative process

– if Fkbest < ε or i > kmax

i = 1
Go to step 6.

– else
i = i + 1
Go back to step 3.

– End if

– Step 6:

– 1. Apply the obtained control value (the first element
of X j kbest on the system.

– 2. Wait for the next sampling time, and then go back
to step 2.

4 Simulation Study

The efficiency of the proposed NNMPC-TLBO control algo-
rithm is investigated in this section, by considering the
control of the models of two highly nonlinear systems. The
obtained results are then compared to those obtained using
the NNMPC-PSO, the conventional PID controller, the com-
puted torque control and the fuzzy logic controller. The
first system is the continuous stirred tank reactor; it is a
highly nonlinear chemical process. The second one is the
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two-degree-of-freedom manipulator robot; it is a coupled
multi-input multi-output mechanical system.

4.1 Continuous Stirred Tank Reactor

The CSTR is a chemical process where a product A will be
converted to another product B via an exothermic chemical
reaction. The reactor volume v is constant, and the mixture is
considered perfectwith a uniform temperature T . The reactor
operates continuously, its output (the mixture concentration
Ca) changes nonlinearly according to the mixture tempera-
ture T , and the temperature changes according to the system
input coolant flow qc. This process is depicted in Fig. 2.

The CSTR is described by the following equations:

Ċa(t) =q

v

(
Ca0 − Ca(t)

) − k0Ca(t)e
−E
RT (t)

Ṫ (t) =q

v

(
T0 − T (t)

) + k1Ca(t)e
−E
RT (t)

+ k2qc(t)

(

1 − e
−k3
qc(t)

(
Tc0 − T (t)

)
)

(11)

where

k1 = −ΔHk0
ρCp

, k2 = ρcCpc

ρCpv
, k3 = ha

ρcCpc

where v is the reactor volume expressed in litre, Ca0 is the
initial mixture concentration expressed in mol/l, T0 is the ini-
tial temperature expressed in Kelvin, Tc0 is the initial jacket
temperature expressed in Kelvin, Tc is the jacket tempera-
ture expressed in Kelvin, Ca(t) is the mixture concentration
expressed inmol/l, T (t) is themixture temperature expressed
in Kelvin and qc(t) is the coolant flow expressed in l/min.

The constants values are given in Table 1.

Fig. 2 Continuous Stirred Tank Reactor

Table 1 CSTR constants values

Constant Value Constant Value

q 100 ρ 1000

v 100 ρc 1000

k0 7.2e10 Cp 1

E 10,000 Cpc 1

T0 350 ha 700,000

Tc0 350 Ca0 1

4.1.1 Process Identification

The first step of any MPC design is obtaining a model for
the system to be controlled. This model is used to predict
the future values of the system outputs. In the proposed
NNMPC-TLBO controller, a static MLP with the following
configuration is used.

– The input layer contains four inputs :
(
qc(k), qc(k −

1), Ca(k − 1), Ca(k − 2)
)
.

– One hidden layer containing ten neurons with a sigmoid
activation function.

– The output layer, which contains a single neuron with
a linear activation function, gives the estimated output
Ĉa(k).

Two different datasets, which cover all possible systemwork-
ing regimes, are generated using the systemmodel expressed
in equation (11). The first one is used to train the neural net-
work, and the second one is used to test the trained model.
Figure 3 gives the system and the model outputs which are
superposed and the modelling error which is quite small. The
values of the rootmean square of themodelling error (RMSE)
and the correlation coefficient (R2), which are 6.909e-5 and
0.99999943, respectively, show the good accuracy of the
obtained model.

Fig. 3 Test results of the obtained model
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4.1.2 Controller Implementation

Four controllers are designed to control the mixture con-
centration Ca(t), namely the proposed NNMPC-TLBO, the
NNMPC-PSO, the fuzzy logic controller (FLC) and the con-
ventional PID controller. In case of the first two controllers,
the control block diagram is given in Fig. 4. The parame-
ters of the PSO algorithm used in the second controller are
gathered in Table 2. The design procedure and the parame-
ters values of the FLC and the PID controllers can be found
in Benrabah et al. (2019). Both NNMPC controllers use the
same control parameters values given in Table 3. In this case,
no constraint on the output was imposed. The obtained con-
trol results are given in Fig. 5, when the reference trajectory
moves to 0.08, 0.11, 0.14, 0.11 and 0.08 mol/l. For each con-
troller and for the same initial conditions, the average values,
over a thousand runs, of the mean squared error (MSE), the
mean absolute error (MAE) and the RMSE are given in Table
4. The execution time is very important in order to evaluate
the computing efficiency and the real-time applicability of
the proposed controller. Starting the NNMPC-TLBO and the
NNMPC-PSO from the same initial conditions, the required
time to obtain a value of the control signal is evaluated for
both controllers and given in Table 5.

From Fig. 5 and Table 4, it can be seen that a good track-
ing accuracy of the reference trajectory is obtained for both

Fig. 4 CSTR control block diagram

Table 2 PSO parameters values

Parameter Value Parameter Value

c1 2 ω 1

c2 2 ωd 0.99

Table 3 MPC parameters values

Parameter Value Parameter Value

Nu 2 kmax 10

N1 1 n 8

N2 3 m 2

R 9.1809e-04 Sampling time 6 s

umin 88 umax 112

Fig. 5 Control results of the CSTR model using NNMPC-TLBO,
NNMPC-PSO, FLC and PID controllers

NNMPC-TLBO and NNMPC-PSO controllers. However, in
case of the FLC and the PID controllers, a degradation in
the control performance for large amplitude of the reference
trajectory is observed. Comparing the MSE, the MAE and
the RMSE values given in Table 4, we note that the pro-
posed controller is more efficient in this experiment than the
NNMPC-PSO, the FLC and the PID controllers. From Table
5, we notice that the computing time of the NNMPC-TLBO
is lower than that of the NNMPC-PSO.

In a second case, an output constraint limiting the over-
shoot to no more than 2% is imposed. Since the FLC and the
PID controllers cannot handle constraints, the comparison is
only made between the NNMPC-TLBO and NNMPC-PSO.
The NNMPC-TLBO and NNMPC-PSO are implemented
using the parameters values given in Tables 2 and 3. The
constraints handling parameter C1y is taken equal to 100.
The obtained results are summarized in Fig. 6. Table 6 gives
the maximal values of the process output and the maximal
values of the control input, for both controllers, when the ref-
erence trajectory moves to 0.08, 0.11 and 0.14 mol/l. Using
the same initial conditions, the average values, over a thou-
sand runs, of the computing time, the MSE, the MAE and
the RMSE are given in Table 7.

It can be observed from Fig. 6 and Table 6 that the
imposed constraints are respected for both controllers, and
the obtained overshoots for the NNMPC-TLBO controller
when the reference trajectory is set to 0.11mol/l or 0.14mol/l
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Table 4 MSE, MAE and RMSE
values for each controller

Controller NNMPC-TLBO NNMPC-PSO FLC PID

MSE 3.523e-06 4.670e-06 6.47e-05 1.67e-04

MAE 7.225e-04 9.635e-04 0.0042 0.0058

RMSE 0.0018 0.0021 0.0080 0.0130

Table 5 Computing time for NNMPC-TLBO and NNMPC-PSO algo-
rithms

Controller NNMPC-TLBO NNMPC-PSO

Computing time (ms) 6.3588 6.4003

Fig. 6 Control results using NNMPC-TLBO and NNMPC-PSO con-
trollers for the case of imposed output constraints

are smaller than those obtained in the case of the NNMPC-
PSO controller. Comparing the computing time, MSE, MAE
and RMSE values given in Table 7, we note that the proposed

Table 7 Computing time, MSE, MAE and RMSE values in case of an
imposed output constraint

Controller NNMPC-TLBO NNMPC-PSO

MSE 1.1534e-06 3.2040e-06

MAE 2.5586e-04 3.3341e-04

RMSE 9.7822e-04 0.0015

Computing time (ms) 3.9463 5.0843

algorithm is faster and more efficient than the NNMPC-PSO
controller.

4.2 Two-Degree-of-FreedomManipulator Robot

The dynamic model of the considered manipulator (Fig. 7),
is expressed as follows (Lin. 2007):

[
Q11 Q12

Q21 Q22

] [
θ̈1
θ̈2

]

+
[
P11
P21

]

+
[
f1
f2

]

+
[
g1q
g2q

]

=
[
τ fin1
τ fin2

]

(12)

where
τ fin1 , τ fin1 are the control torques for joints 1 and 2, respec-
tively,

Q11 =I1 + I2 + m1l
2
c1 + m2l

2
1 + m2l

2
c2 + 2m2l1lc2 cos θ2

+ m33(l
2
1 + l22 + 2l1l2 cos θ2).

Q12 =I2 + m2l
2
c2 + m2l1lc2 cos θ2 + m33(l

2
2 + l1l2 cos θ2).

Q21 =Q12.

Q22 =I2 + m2l
2
c2 + m33l

2
2 .

P11 = − l1(2θ̇1 + θ̇2)θ̇2 sin θ2(lc2m2 + l2m33).

P21 =l1lc2θ̇
2
1 sin θ2(m2 + m33).

Table 6 Input and output CSTR
limits values using both
NNMPC_TLBO and
NNMPC_PSO controllers

NNMPC_TLBO NNMPC_PSO

Reference = 0.08 (mol/l) Maximal value of Ca (mol/l) 0.0807 0.0806

Overshoot (%) 0.875% 0.75%

Reference = 0.11 (mol/l) Maximal value of Ca (mol/l) 0.1101 0.1121

Overshoot (%) 0.0909% 1.9091%

Reference = 0.14 (mol/l) Maximal value of Ca (mol/l) 0.1404 0.1408

Overshoot (%) 0.2857% 0.5714%
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Fig. 7 Two-degree-of-freedom planar robotic manipulator

Table 8 Parameters values of the considered manipulator

Parameter Value Parameter Value

m1 0.392924 (kg) lc1 0.104648 (m)

m2 0.094403 (kg) lc2 0.081788 (m)

m33 0.2 (kg) I1 0.0011411 (kg m2)

g 9.81 (m/s2) I2 0.0020247 (kg m2)

l1 0.2032 (m) b1q 0.141231 (N)

l2 0.1524 (m) b2q 0.353078 (N)

f1 =b1q θ̇1.

f2 =b2q θ̇2.

g1q =m1lc1g cos θ1 + m2g(lc2 cos (θ1 + θ2) + l1 cos θ1)

+ m33g(l2 cos (θ1 + θ2) + l1 cos θ1).

g2q =(m2 + m33)glc2 cos (θ1 + θ2).

The numerical values for the different constants are given
in Table 8.

4.2.1 System Identification

Two static MLPs are used to emulate the dynamics of the
consideredmanipulator. Their structure is defined as follows:

– Both MLPs have the same input vector, which is given
by:

[τ fin1(k), τ fin1(k − 1), τ fin2(k), τ fin2(k − 1), θ1(k),

θ1(k − 1), θ2(k), θ2(k − 1)].

– Each MLP has one hidden layer containing 20 neurons
with a sigmoid activation function.

– EachMLPhas one neuron in the output layerwith a linear
activation function.

Fig. 8 Joint1 NN model validation result

Fig. 9 Joint2 NN model validation result

– The first MLP gives the estimated value θ̂1(k) of joint1
angle, while the second one gives the estimated value
θ̂2(k) of joint2 angle.

The neuronal models are trained using the dataset gener-
ated from the state model given in Eq. 12. Figures 8 and 9
show the test results of the obtained models, where it can
be seen that the modelling error is quite small. The values
of the RMSE and R2 for the model of θ1 and the model
of θ2 are : 0.00200654, 0.99999950718, 0.00211524 and
0.99999277711, respectively. The RMSE values are close
to zero, and R2 values are close to one, which indicates that
the obtained models have good accuracy.

4.2.2 Controller Implementation

Three controllers, namely computed torque control (CTC),
NNMPC-TLBO and NNMPC-PSO, were designed to con-
trol the angular positions of joints 1 and 2 of the considered
manipulator.
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Fig. 10 Robot manipulator control block diagram

Table 9 MPC parameters values

Parameter Value Parameter Value

Nu 1 kmax 10

N1 1 n 8

N2 3 m 2

R 0 Sampling time 0.01 s

τ fin1min −30 τ fin2min −20

τ fin1max 30 τ fin2max 20

The CTC control law is given by:

[
τ fin1
τ fin2

]

=
[
Q11 Q12

Q21 Q22

] ( [
θ̈d1
θ̈d2

]

+ kv

[
θ̇d1 − θ̇1
θ̇d2 − θ̇2

]

+ kp

[
θd1 − θ1
θd2 − θ2

] )

+
[
P11
P21

]

+
[
f1
f2

]

+
[
g1q
g2q

]

where θd1 and θd2 are the desired references trajectories. The
kv and kp values, optimized using the PSO algorithm, are
26.3077 and 2.6853e+02, respectively. The control block dia-
gram of the NNMPC-TLBO and NNMPC-PSO is given in
Fig. 10, and the design parameters for both controllers are
given in Table 9. The parameters of the PSO algorithm are
given in Table 2.
The efficiency of the proposed controller is evaluated by con-
sidering the two following cases.

In the first case, no outputs constraints are imposed and
two different reference trajectories are used. The obtained
results are shown in Fig. 11 for the multistep trajectory and
Fig. 12 for the sinusoidal trajectory.

A good tracking accuracy of the reference trajectories is
obtained for all controllers. However, the tracking error of
the proposed controller is slightly smaller than that of the
other controllers.

Fig. 11 Control performance using NNMPC-TLBO, NNMPC-PSO
and CTC controllers with a multistep trajectory

Fig. 12 Control performance using NNMPC-TLBO, NNMPC-PSO
and CTC controllers with a sinusoidal trajectory

To see the difference in the control performance between
the three controllers, the same experiment is repeated thou-
sand times, and at each run, the population of the PSO and
TLBO algorithm is randomly initialized. The average values
of the MSE, the MAE and the RMSE are given in Table 10,
where it can be seen that the NNMPC-TLBO controller has
better tracking accuracy than the NNMPC-PSO and the CTC
controllers. The computing time for both NNMPC-TLBO
andNNMPC-PSOalgorithms is calculated andgiven inTable
11, and it can be seen that the computing time of the proposed
controller is smaller than that of theNNMPC-PSOalgorithm.

In the second case, output constraints, limiting the over-
shoot to no more than 1%, are imposed. The design param-
eters given in Table 9 are used for both controllers. The
output-dependent weight function Γy(y) has the following
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Table 10 MSE, MAE and
RMSE values using
NNMPC-TLBO, NNMPC-PSO
and CTC controllers

NNMPC-TLBO NNMPC-PSO CTC

Multistep trajectory MSE 0.0125 0.0153 0.1525

MAE 0.0284 0.0361 0.1838

RMSE 0.1116 0.1195 0.3905

Sinusoidal trajectory MSE 6.69e-05 1.0087e-04 0.0145

MAE 0.0082 0.0085 0.1424

RMSE 0.0082 0.0097 0.1206

Table 11 Computing time for
NNMPC-TLBO and
NNMPC-PSO algorithms in
case of reference and multistep
trajectories

NNMPC-TLBO NNMPC-PSO

Computing time (ms) Multistep trajectory 4.7905 6.0743

Sinusoidal trajectory 6.389 6.8098

Fig. 13 Control performance usingNNMPC-TLBOandNNMPC-PSO
controllers with output constraints

Table 12 Computing time, MSE, MAE and RMSE values using
NNMPC-TLBO and NNMPC-PSO controllers with output constraints

NNMPC-TLBO NNMPC-PSO

MSE 0.0874 0.0939

MAE 0.1108 0.1264

RMSE 0.2956 0.3064

Computing time (ms) 6.6749 7.7482

parameters: C1y = 100,C2y = 100. Figure 13 gives the
obtained control performance, and Table 12 gives the aver-
age values, over thousand runs, of the computing time, the
MSE, the MAE and the RMSE.
From Fig. 13 and Table 12, it can be concluded that the
TLBO-based controller has better control performance than
the PSO-based controller.

Remark The following set-up has been used to calculate all
computing times cited above:

1. MATLAB environment.
2. Desktop computer with the following hardware:

– Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz.
– 4.00 Go of RAM
– Windows 10 Pro x64.

5 Experimental Study

To further demonstrate the effectiveness of the proposed con-
troller, the experimental set-up shown in Fig. 14 is used to
control the speed of an induction motor. In addition to the
three-phase squirrel-cage induction motor, this experimen-
tal set-up contains the following elements: a three-phase
voltage source inverter, a TMS320F28335 DSP board and
a single computer board RASPBERRY PI 3B+. The con-
trol algorithm is implemented in the single computer board
RASPBERRY, and the DSP board is used to generate the six
required pulse width modulated (PWM) signals and measure
the motor speed. The control block diagram is given in Fig.
15.

5.1 Identification of the System

A neural network model, for the considered induction motor,
is derived using the experimental collected data. This model
is a simple static MLP with an input layer containing four
inputs [v1(k), v2(k), v3(k), ω(k − 1)], a hidden layer of four
neurons with sigmoid activation function and an output layer
that contains one linear neuron representing the estimated
angular speed ω̂(k). v1(k), v2(k) and v3(k) are the applied
voltages on the motor at the sampling time k and ω(k − 1)
is the measured angular speed of the motor. The response of
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Fig. 14 Experimental set-up

Fig. 15 The induction motor control block diagram

Fig. 16 Model testing results for the induction motor

the obtained model to the input test is given in Fig. 16, where
it can be seen the modelling error is quite small. The RMSE
and the R2 values of the obtained model are 11.19669 and
0.99976, respectively. Since the amplitude of the system out-
put ranges between− 1500 and 1500 tr/min, the RMSE value
is acceptable. The R2 value is close to one, which indicates
that the model has good accuracy.

Table 13 Values of the design parameters

Parameter Value Parameter Value

Nu 1 kmax 10

N1 1 n 10

N2 3 m 3

R 10 Sampling time 0.01 s

Fig. 17 NNMPC-TLBO controller performance for the case of a mul-
tistep trajectory

5.2 Controller Implementation

The controller is implemented using the design parameters
given in Table 13 and the obtained neural network model.
The control objective is to force the motor speed to track
two different reference trajectories: the sinusoidal and the
multistep trajectories. The results are given in Figs. 17 and
18.

Figures 17 and 18 show that good tracking accuracy is
obtained for both trajectories, and the maximal value for the
overshoot does not exceed 4%. For both (step and sinusoidal)
reference trajectories, the maximum values of the computing
time are 5.225ms and 6.402ms, respectively,which indicates

123



Journal of Control, Automation and Electrical Systems (2021) 32:1228–1243 1241

Fig. 18 NNMPC-TLBO controller performance for the case of a sinu-
soidal trajectory

that the proposed controller can be implemented in real time
to control systems with fast dynamics.

In a second experiment, to further reduce the observed
overshoot, a constraint on the output limiting the overshoot to
nomore than 2% is included.Amultistep reference trajectory
and the parameter Cy = 100 of the output-dependent weight
function Γy(y) are used in this experiment. The obtained
control results are given in Fig. 19, where it can be seen that
the overshoot value does not exceed 2% and the maximum
value of the computing time is 5.839ms.

Table 14 gives the values of the MSE, the MAE and the
RMSE for the released experiments. From this table, we can
conclude that the proposed controller gives good control per-
formances and the imposed constraints are respected.

6 Conclusion

An efficient constrained nonlinear predictive control algo-
rithm, called neural network model predictive control using
teaching–learning-based optimization, has been proposed.

Fig. 19 NNMPC-TLBO controller performance in the presence of out-
put constraints

This controller uses a neural network model to predict the
future values of the system outputs and the TLBOmethod to
solve the resulting optimization problem. Neural networks
are known for their simplicity and precision in approximat-
ing any nonlinear mapping, and the TLBO method does
not require any algorithm-specific parameters. Although the
proposed controller incorporate in its design the imposed
constraints, its structure is simple and can be easily imple-
mented to control, in real time, nonlinear systems with
fast dynamics. It has been shown, using both simulation
and experimental studies, that the proposed controller gives
good control performance in terms of the tracking accu-
racy, computing time, constraints handling and the overshoot
amplitude. The NNMPC-TLBO algorithm can be success-
fully used to control different classes of nonlinear systems.
Indeed, the control of a highly nonlinear chemical process,
a coupled multivariable mechanical system and an electrical
machine were considered.
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Table 14 MSE, MAE and
RMSE using NNMPC-TLBO
controller

MSE MAE RMSE

Multistep trajectory (without constraints) 101.3805 0.2908 10.0688

Sinusoidal trajectory (without constraints) 67.3236 0.1897 8.2051

Multistep trajectory (with constraints) 86.6623 0.2888 9.3093
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