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Abstract
This paper presents an intelligent control technique using a nonlinear neuro-adaptive method. This method is based on a
nonlinear model describing the dynamics of the boost converter, the PV array and the load for maximum power point tracking
(MPPT) under varying environmental conditions. The proposed approach consisted of a radial basis function-neuro observer
for online estimation of unknown PV system parameters (i.e., irradiation and temperature) and an online trained neuronal
controller that ensures a satisfactory MPPT, whatever be the position of the photovoltaic panel. The real-time implementation
of the proposed controller is achieved using Arduino Mega board. The performance of the proposed MPPT method is
analyzed under different operating conditions and compared to those provided by the P&O method. Simulation results using
MATLAB/Simulink software coupled to experimental results demonstrate the feasibility and the robustness of the proposed
controller.

Keywords MPPT · RBF-neuro observer · DC/DC converter · Nonlinear neuro-adaptive · Real-time implementation

1 Introduction

Renewable energy capacity has increased these last years
due to its main objective to alleviate the problem of pollution
caused by traditional energy source (Kenne et al. 2017). Solar
energy has particularly captivated more attention in recent
decades (Le Feuvre and Wieczorek 2011; Yin et al. 2015;
Parra et al. 2015). The lowest environmental impact and the
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significant presence of solar radiation on the earth make pho-
tovoltaic (PV) systems one of the most interesting solutions
to electricity generation (Sajadian and Ahmadi 2017; Chen
et al. 2016;Mills andWiser 2013). Indeed, the electricity pro-
duced by photovoltaic cells is an unstable energy because it
depends on diverse factors such as the temperature, the level
of solar irradiation, shadow, dirt, spectral characteristics of
sunlight, and so on. It is therefore important to operate the
photovoltaic system at the point of maximum power in order
to increase its efficiency. Accordingly, the MPPT controller
is one of the viable solutions to improve the productivity of
PV systems under variable weather conditions.

The literature contains several approaches for MPPT in
photovoltaic systems. These techniques include Hill Climb-
ing (HC) (Kamarzaman and Tan 2013; Liu et al. 2008),
perturb and observe (P&O) (Femia et al. 2009, 2005; Rezaei
and Asadi 2005), incremental conductance (IC) (Li and
Wang 2009; Reisi et al. 2013; Rajabi and Hassan Hosseini
2019), fractional open-circuit voltage (Mutoh et al. 2002;
Yuvarajan and Xuc 2003), fractional short-circuit current
(Kobayashi et al. 2004; Bekker andBeukes 2004), neural net-
work (Hiyama et al. 1995, fuzzy logic methods (Won et al.
1994), and genetic algorithms (Larbes et al. 2009). These
methods differ in several aspects such as oscillation around
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the MPP, required sensors, convergence speed, complexity,
cost and correct tracking.

There are several advantages such as fast tracking, robust
operation, nonlinear systems tolerant and on-line training.
Therefore, various artificial neural network-based PVMPPT
techniques have been elaborated (Cha et al. 1997; Singh et al.
2014).

Nevertheless, the number of sensors required to imple-
ment any MPPT technique affects the decision process since
these sensors induce the major burden for the overall PV
system cost (Giraud and Salameh 1999; Mathew and Sel-
vakumar 2011; Veerachary et al. 2003; Bendib et al. 2014).
The cost, in addition to the lack of robustness of irradi-
ance/temperature sensors, is the main limit for the artificial
neural network-basedMPPTmethods (Mathew and Selvaku-
mar 2011; Baek et al. 2010; Ko et al. 2008; Al-Amoudi and
Zhang 2000; Pachauri and Chauhan 2014), especially when
a wide PV plant, involving several hundreds of PV panels, is
considered.

In this work, an intelligent control technique based on
adaptive neural network for maximum power point tracking
during unexpected changes in atmospheric conditions is pro-
posed. The idea is to evolve a sensorless controller that does
not require climatic variable sensors (i.e., temperature and
solar radiation) and to provide a satisfactoryMPPT,whatever
the position of the photovoltaic panel. Specifically, a sensor-
less nonlinear neuro-adaptive controller is designed using the
RBF-neural network observer technique based on a nonlinear
model describing the whole system, including the PV arrays,
and the boost converter. The proposed adaptive controller
involves online estimation of the model uncertain parame-
ters that depend on radiation and temperature. Based on the
obtained simulation results inMatlab/Simulink environment,
the adaptive neuro-controller actually tracks effectively and
efficiently the maximum power point. Additionally, exper-
imental implementation using an Arduino Mega board is
carried out.

The remainder of the work is organized as follows: Sect. 2
presents in detail the elements of a PV conversion system.
In Sect. 3, the proposed approach is introduced, and the sta-
bility is investigated. Sections 4 and 5 present, respectively,
the simulation and experimental results. The conclusions are
given in Sect. 6.

2 PV SystemModel

Figure 1 shows the basic structure of a photovoltaic system.
It consists of a DC/DC converter, a photovoltaic generator, a
load and the proposedMPPT control unit. The main function
of the converter is to interface the output of the photovoltaic
generator to the load and to track the MPP.

Fig. 1 Photovoltaic system made up of a PV array, a DC/DC converter
and the proposed MPPT control algorithm

Fig. 2 Electrical model of a photovoltaic cell

Photovoltaics is the direct conversion of light into elec-
trical energy. Figure 2 shows the equivalent circuit of a
photovoltaic cell (Rekioua and Matagne 2012; Safari and
Mekhilef 2011; Moura and Chang 2013; Tan et al. 2010). In
the PV system control literature, this circuit has been con-
sidered as a sufficiently good representation of the physical
system for the purposes of MPPT control design (Masters
2004; Vachtsevanos and Kalaitzakis 1987; Villalva et al.
2009; Kwon et al. 2008; Tchouani Njomo et al. 2020). The
solar cell terminal current is expressed as follows:

IPo = IPho − IDo − ISho (1)

where IPho is the photocurrent (current generated by radia-
tion), IDo is the current through the diode, and ISho is the
current through the parallel resistor.

The relationship between the current IPho and the voltage
VPo of equivalent circuit of the photovoltaic cell is given by:

IPo = IPho − Iso

[
exp

(
VPo + IPoRso

nVT

)
− 1

]

−VPo + IPoRso

RSho
(2)

The relation between the current IPo and the voltage VPo
in the ideal conditions (Rso = 0, RSho = ∞) is described by
the following equation:

IPo = IPho − Iso[exp(BVPo) − 1] (3)
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B = q

nKT
(4)

where Iso is the cell reverse saturation current; K is the
Boltzmann’s constant; T is the cell temperature, and q is the
electron charge. The generated photocurrent IPho is given by
the following equation:

IPho = [ISCR + KI (T − Tor)]
G

1000
(5)

The cell saturation current Iso can be shown as:

Iso = Isor

[
T

Tor

]3
exp

[
EG

nK

(
1

Tor
− 1

T

)]
(6)

where ISCR is the short circuit current at 298.15K and
1000W/m2, Tor is the reference temperature, G is the solar
radiation, EG is the bandgap energy of the semiconductor,
and Isor is the nominal saturation current. A photovoltaic
generator is composed of elementary photovoltaic cells con-
nected in series-parallel manner in order to obtain the desired
electronic characteristics such as power, short-circuit current
or open-circuit voltage. This photovoltaic generator exhibits
a nonlinear VPV–IPV characteristics given, approximately
and ideally, by the following equation:

IPV = Iphp − Isp[exp(ApvVPV) − 1] (7)

where IPV and VPV are, respectively, the current and volt-
age of photovoltaic generator. Isp = Np Iso is the saturation
current of the photovoltaic generator, Iphp = Np IPho is the
photocurrent of the photovoltaic generator, and Apv = B/Ns

is photovoltaic generator constant. Ns is the number of PV
connected in series, and Np is the number of parallel parts.

The specifications of the PV module used in this paper
are given in Table 1. The corresponding power value Pmp =
Vmp Imp is calledMPP. The typical IPV−VPV and PPV−VPV
characteristics of theMSX60 PVmodule are shown in Fig. 3.
It can be seen from this figure that an increase in irradiance
results in a power increment. However, an increase in PV
temperature causes power decrement.

A DC/DC boost converter (Fig. 4) increases the PV volt-
age and provides a control actuator for MPPT. At the boost
converter’s output, a capacitor maintains a roughly constant
voltage (Krein et al. 1990).

Applying Kirchhoffś laws to the circuit of Fig. 4, one
obtains the following dynamic model:

diL
dt

= −(1 − k)
RiL
L

+ 1

L
VPV (8)

dVPV
dt

= − 1

C
iL + 1

C
IPV (9)

Table 1 Electrical characteristics of the MSX-60 photovoltaic

Description MSX-60

Maximum power (Pmp) 60 W

Maximum power point voltage (Vmp) 17.1 V

Maximum power point current, (Imp) 3.5 A

Open-circuit voltage (Voc) 21.1 V

Short-circuit current (Isc) 3.8 A

The number of cells (NS) 36

Current/temp. coefficient (Ki) 0.003%/◦C
Voltage/temp. coefficient (Kv) −0.08 V/◦C

Fig. 3 Case of constant temperature and variable irradiation [current–
voltage (a) and power–voltage characteristics (b)] and case of constant
irradiation and variable temperature [current–voltage (c) and power–
voltage characteristics (d)]

Fig. 4 Circuit diagram of DC/DC boost converter model

where iL denotes the inductor current, VPV the PV voltage,
IPV the pv current, and k the duty ratio. For the control design
purpose, it is more convenient to consider the following aver-
aged model:

dy1
dt

= −(1 − k)
Ry1
L

+ 1

L
y2 (10)
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dy2
dt

= − 1

C
y1 + 1

C
IPV (11)

where y1 and y2 denote the averaged value, respectively, of
the current iL , and the input voltage VPV. The duty ratio k is
the average value of the binary control k.

3 Design of Adaptive Controller for PV
System

Combining (7) and (11) yields:

dy2
dt

= − 1

C
y1 + 1

C
ρ1(T ,G) − 1

C
ϕ(T , VPV)ρ2(T ) (12)

ρ1(T ,G) = Iphp (13)

ρ2(T ) = Isp (14)

ϕ(T , VPV) = exp
(
Apv(T )VPV

) − 1. (15)

The parameters ρ2 depends only on the temperature, while
ρ1 depends on temperature T and irradiationG. The function
ϕ depends on T . Because of the slowly fluctuating tempera-
ture, the effect of variation of ϕ is very small compared to the
effect of ρ1 and ρ2. Therefore, the following approximation
can be made:

ϕ(T , VPV) ≈ exp
[
Apv(Tor)VPV

] − 1
.= ϕ(VPV) (16)

where Tor is a constant reference temperature. Combining
(10), (12) and (15), we obtain the following average model
of the PV system:

ẏ1 = −(1 − k)
Ry1
L

+ 1

L
y2 (17)

ẏ2 = − 1

C
y1 + 1

C
ρ1(T ,G) − 1

C
ϕ(y2)ρ2(T ) (18)

Given that the energy produced by PV is heavily depen-
dent on temperature and irradiation, it is absolutely essential
that the sensors used to measure temperature and irradia-
tion are reliable. Hence, to ensure maximum power point
tracking (MPPT), the controller must enforce the voltage
y2 to track as possible the unknown voltage Vmax which
depends on both T and G given by the sensors. However, the
periodic maintenance of the sensors can be very expensive.
The price of the sensors increases with their precision. The
proposed approach aims to reduce the cost of sensor mainte-
nance (eliminate the temperature and irradiation sensors) and
improve the MPPT technique. In fact, the MPP (Vmax, Pmax)

is reached when ∂PPV
∂VPV

|VPV=Vmax with PPV = VPV IPV.

The condition of amaximumpower point can be described
as

∂PPV
∂VPV

= IPV + VPV
∂ IPV
∂VVP

= 0 (19)

It follows, using (7), (13) and (14), that

ρ1 − ρ2
[
(1 + VmaxAPV(Tr )) exp (APV(Tr )Vmax) − 1

] = 0

(20)

If ρ1 and ρ2 are known, Eq. (19) will be used to generate the
optimal value of Vmax. In this approach, ρ1 and ρ2 depending
of T and G are supposed not be accessible to measurement.
So we can estimate ρ̂1 and ρ̂2 using Eq. (18) rewritten as:

ẏ2 = − 1

C
y1 + F(y2, ρ1, ρ2, t) (21)

with F(y2, ρ1, ρ2, t) = 1
C ρ1(T ,G) − 1

C ϕ(y2)ρ2(T ).
Hence, in Eq. (20), ẏ2 is unknown (Il available in measure-
ment), and it is not possible to use immediately Eq. (20) to
estimate the unknown ρ1 and ρ2.

By applied the approach of neuro-observer as in Ahmed-
Ali et al. (2009), it will be possible to estimate ρ̂1 and ρ̂2,
and get Vmax.

3.1 Design RBF-Neuro Observer

The application of the Taylor formula to Eq. (21) gives

V̇PV = − 1

C
Il + f (y, ρ1, ρ2, t) + � f (VPV, ρ1, ρ2, t) (22)

where the term f (VPV, ρ1, ρ2, t) can be approximated by
RBF-NN and Eq. (21) becomes

˙̂V PV =− 1

C
Îl+Υ

(
χVPV , ω∗)+e f

(
χVPV

)+� f (VPV, ρ1, ρ2, t)

= − 1

C
Îl +

∑
ω∗
jφ

(‖ χVPV − C j ‖, ν j
)

+ e f (χVPV ) + � f (VPV, ρ1, ρ2, t) (23)

with χT
VPV

= (VPV, Il) the input vector or RBF neural net-
work. In the assumption that e f (χVPV) and the time-varying
� f (VPV, ρ1, ρ2, t) are unknown and bounded by unknown
positive value as | e f (χVPV) + �h(VPV, ρ1, ρ2, t) |≤ ζ(t),
we rewrite Eq. (23) as:

˙̂V PV = − 1

C
Îl + Υ

(
χVPV , ω̂

) + p
(
VPV, ˆVPV, t

)
(24)

where the sliding robust terms p(VPV, ˆVPV, t) = −ζ̂ (t)sgn(e2)
are introduced to compensate the effect of the uncertainty
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� f (VPV, ρ1, ρ2, t)which cannot be approximated by a static
neural network.
By taking errors as e1 = Îl − Il , e2 = V̂PV − VPV deriving
e2 with respect to time, we obtain

ė2 = ˙̂V PV − V̇PV

= − 1

C
e1 +

∑
ω̂ jφ

(‖ χVPV − C j ‖, ν j
)

−
∑

ω∗
jφ

(‖ χVPV − C j ‖, ν j
) + ζ

(
VPV, ˆVPV, t

)
− e f (χ) − � f (VPV, ρ1, ρ2, t) (25)

By using Taylor series expansion, Eq. (25) becomes

ė2 = − 1

C
e1 +

∑
(ω̂ j − ω∗

j )
∂ϒ

∂ω
|ω=ω̂ +

+ ζ(VPV, ˆVPV, t) − e f (χVPV) − � f (VPV, ρ1, ρ2, t)(26)

The Lyapunov candidate function is considered as follows:

Π = 1

2
e22 + 1

2

∑ (
ω̂ j − ω∗

j

)2
(27)

Hence,

Π̇ = e2ė2 +
∑ ˙̂ω j

(
ω̂ j − ω∗

j

)

= − 1

C
e1e2 + ζ

(
VPV, ˆVPV, t

) − e2
(
e f

(
χVPV

)
+� f

(
VPV, ρ1, ρ2, t

))

+
∑ (

ω̂ j − ω∗
j

) [
˙̂ω j + e2

∂Υ

∂ω j
|ω=ω̂

]
(28)

By choosing

p(VPV, ˆVPV, t) = −˙̂
ζ (t)sgn(e2) (29)

˙̂ω j = Proj

[
−e2

∂Υ

∂ω j
|( ω j = ω̂ j )

]
, j = 1, . . . , N

=
{

−e2
∂Υ
∂ω j

if | ω̂ j |< Rω

0 otherwise
(30)

˙̂
ζ (t) =

{
αt if e2 �= 0

0 if e2 = 0
(31)

with α(t) > 0, ζ̂ (0) = 0, and Proj(.) the well-known projec-
tion function on the compact set Ωω = {ω :‖ ω ‖≤ Rω}

Π̇ ≤ − 1

C
| e1e2 | − ˙̂

ζ (t) | e2 | . (32)

Hence, the error e2 will converge to the origin.

Remark 1 The width ν j and the center C j of the j-th hid-
den unit are chosen by clustering technique (Jain and Dubes

1988) as:

νi j = �i max − �i min

N
(33)

Ci j = �i min + 2 j − 1

2
νi j (34)

where �i min and �i max are the lower and upper bounds of the
i-th element of the RBF input vector �, respectively.
For the estimation of ρ1 and ρ2, Eq. (21) becomes

Ẑ = λ

P + λ

[
ρ̂T (t)D(VPV)

]
(35)

with D(VPV) = [ 1c ;− 1
cϕ(VPV)], and ρ(t) = [ρ̂1; ρ̂2], Ẑ =

λ
P+λ

[ ˙̂V PV + 1
C Îl ].

Let us define e0 = Ẑ − Z , ρ̃(t) = ρ̂ − ρ(t). The output
estimation error satisfies

e0 = λ

P + λ

[
ρ̃T (t)D(VPV)

]
(36)

which implies that

ė0 = −λe0 + λρ̃T (t)D(VPV). (37)

To apply the Lyapunov synthesis method, we select the
Lyapunov function as

Π1 = 1

2
e20 + 1

2
ρ̃TΓ −1ρ̃ (38)

where Γ = γ I is a positive definite symmetric matrix that
will ultimately appear in the adaptive law for updating ρ̂(t)
as the learning rate or adaptive gain.

Computing the derivative of Π1 yields:

Π̇1 = e0ė0 + ρ̃TΓ −1 ˙̂ρ
= −λe20 + λe0ρ̃

T (t)D(VPV) + ρ̃TΓ −1 ˙̂ρ
= −λe20 + ρ̃T (t)[Γ −1 ˙̂ρ + λe0D(VPV)] (39)

By choosing

˙̂ρ(t) = proj[−λΓ D(VPV)e0] (40)

Equation (39) becomes

Π̇1 = −λe20 < 0 (41)

From Π̇1 < 0, one concludes from the Lyapunov stability
theory that ρ̂(t) remains uniformly bounded, and ρ̃(t) con-
verges to zero in finite time according to Barbalat’s lemma
(Slotin and Li 1991)
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Fig. 5 Block diagram of the nonlinear neuro-adaptive MPPT control
technique for PV systems

3.2 Controller Synthesis by Dynamic Inversion with
Model Estimation

Recall that the control objective is to enforce the voltage VPV
to track the optimal point Vmax, despite the system parameter
uncertainties. To this end, the controller design is performed
using Eq. (20) rewritten in from Eq. (42)

İl = HIl + ZIl k (42)

where the functions HIl = − R
L Il + 1

L VPV and ZIl = R
L Il are

both smooth functions available; k is the input control.
We observed that in Eq. (42) the derivative state İl is not
available. For this reason, the RBF neuro-observer use in

Sect. 3.1 will also be applied to get this derivative state ˙̂I l .
Hence, the control law is given by:

k = 1

ZIl
[ ˙̂I l − HIl ] (43)

The block diagram of the proposed nonlinear adaptive
MPPT control technique for PV systems is depicted in Fig. 5.

4 Simulation Results

To demonstrate the efficiency of the proposed approach,
different simulations are performed inMatlab/Simulink envi-
ronment. TheDC/DC converter is fedwith aMSX-60 (60W)
solar panel from Solarex. The boost converter parameters are
C = 100µF and L = 0.1µH. A nominal value R = 4.9�

is considered for the resistive DC load. The diode of the
boost converter has a snubber resistance of 500 �, an inter-
nal resistance of 0.001 � and a forward voltage of 0.8V.
Internal and snubber resistances of the insulated-gate bipolar
transistor(IGBT), used as the electronic switch of the boost
converter are, 0.001� and 0.1M�, respectively. The switch-
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Fig. 6 The proposed MPPT controller during the irradiation change

ing frequency is set to 50 kHz . The control design parameters
are: γ1 = 1e−3, γ2 = 0.1e−5 , λ = 1 rad/s.

First, the system performances are assessed under two dif-
ferent operating conditions: the tracking under abrupt change
in irradiation and the tracking under abrupt change tempera-
ture condition.

(a) System response to fast changing irradiation. During this
test, a sun irradiation profile comprising various step
changes is applied to the system,while a constant temper-
ature of 25 ◦C is maintained. It is observed in Fig. 6 that
the controller senses and follows the changes by extract-
ing the maximum power corresponding to the given sun
condition. The captured PVpower in this condition varies
between 21,5 W and 56W. These values correspond (see
Fig. 3) to the maximum points on the curves associated
with the considered radiations. Figure 7 shows the esti-
mates of unknownparameters. It is seen that the unknown
parameters are continuously adapted to the changing
operating conditions.

(b) System response to fast changing temperature. Now, a
varying temperature profile, in which the changes are
carried out between 25 and 65 ◦C, is considered. The
radiation is kept constant and equal to 1000 W/m2. The
behavior of the controlled system under this test is shown
in Figs. 8 and 9. It is seen in Fig. 8 that the proposed
controller well manages the PV power by keeping it at
the corresponding maximum value for each temperature
(see Fig. 3). Figure 9 shows that the estimates ρ̂1 and
ρ̂2 of unknown parameters ρ1 and ρ2 are automatically
readjusted inorder tomatch thenewoperating conditions.

Secondly, the proposed MPPT algorithm is tested under
load variation, and the result is presented in Fig. 10. For this
test, the load resistance is varied from 30 to 4.9 � at time
t = 0.2 s (STC: 1000W/m2, 25 ◦C). It is observed in Fig. 10
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Fig. 7 Estimates of unknown parameters in the presence of radiation variations
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Fig. 8 The proposed MPPT controller during the temperature change
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Fig. 9 Estimates of unknown parameters in the presence of temperature
variations
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Fig. 10 Load power and load voltage under load variation
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Fig. 11 Comparison of the proposed approach with P&O

that the load power increases rapidly from 13.3 to 46 W.
Thus, the proposed technique is also able to work under load
variation condition.

Finally, a comparative study between the proposed nonlin-
ear neuro-adaptive control approach and the P&O algorithm
is established. To have a fair comparison, both algorithms
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Table 2 Qualitative comparison between the proposed method and
P&O

MPPT Method P&O Proposed MPPT

Power efficiency (η) 0.953 0.97

RMSE 3.3827 2.6596

run under the same conditions. For these test conditions, The
power curves for both MPPT algorithms are presented in
Fig. 11. It is depicted in this figure that the P&O method
presents similar dynamic response compared to that of the
proposed method. In contrary, power losses are significant,
especially for lower values of irradiation, in the case of P&O
method than that of the proposed one. The MPPs obtained
in this figure are predictable from the MSX60 characteris-
tics illustrated in Fig. 3. The instantaneous irradiation change
imposed on the PV system can bemuch faster than a real sce-
nario, but gives an idea of how long it takes for the proposed
controller to react to an irradiation change. The comparison
of quantitative results obtained from Fig. 11 is presented in
Table 2. Root mean square error (RMSE) and efficiency are
evaluated using the following equations:

RMSE =
√∑

(Pac − Psi)2

N
(44)

η = Pout
PPV

(45)

where Pac is the actual value of maximum power obtained
from the characteristics as in Table 1. Psi is the simulated
value of the maximum power for both proposed and P&O
techniques; N is the number of samples. The analysis of these
results coupled to the fact that temperature and irradiation
sensors are not needed clearly demonstrates the superiority of
the proposedMPPT algorithm compared to the P&Omethod.

Fig. 12 Experimental architecture

Fig. 13 Experimental setup for testing and verification of the results

Fig. 14 Experimental design of the proposed algorithm using Arduino
under Matlab Simulink

5 Experimental Results

To complete the validation of the proposedMPPT algorithm,
experimental system architecture is adopted as shown in
Fig. 12. The experimental device, shown in Fig. 13, is con-
structed using anMSX-60 solar panel, a personal computer, a
BOOSTDC/DCconverter, a resistive load (0–1000�), a con-
trol circuit usingArduinoMega board andHall-effect sensors
of ACS 712 type. Two voltage dividers were exploited to
obtain the array output voltage and the voltage across the
load. An Arduino Mega board is used to execute the pro-
posed MPPT algorithm and deliver the external PWM signal
needed to control the BOOST converter. The analog current
and voltage values of the solar PV array are fed to the 10-bit
ADC module of the Arduino Mega board to be converted
into the digital values using current and voltage sensors. The
proposed nonlinear adaptive controller was implemented and
compiled in the Matlab/Simulink. To control the whole sys-
tem, the program is downloaded in real time on the Arduino
board. The Matlab/Simulink model showing the implemen-
tation of the proposed controller using Arduino Mega board
is illustrated in Fig. 14.
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Fig. 15 Experimental results (voltage, current, power and duty ratio)
of the proposed MPPT controller

Figure 15 shows the experimental results of the proposed
controller. It is observed that the system starts with nearly
constant irradiance. During this stable atmospheric condi-
tions, the results confirm the ability of the proposed controller
to ensure the stability and the efficiency of the system. At
t = 1.36 s, the irradiance is abruptly reduced. It is observed
that during this sudden change, the proposed controller prop-
erly tracks the new maximum power point.

6 Conclusion

In this paper, a new solution to the MPPT issue for PV sys-
tems is developed. The MPPT is achieved using an adaptive
nonlinear controller based on an artificial neural network
approach. The latter takes into account the boost converter
nonlinear dynamics. The controller adaptive feature has
been introduced to lessen the requirements of temperature
and irradiation sensors and also to cope with the chang-
ing operating conditions. Simulations have been executed in
MATLAB/Simulink environment, and a real-time implemen-
tation using Arduino board has been conducted. simulation
results were compared to those obtained with the P&O tech-
nique. Based on both numerical and experimental results, the
proposed control algorithm accurately tracks the maximum
power point with a shorter time during abrupt changes in
atmospheric conditions.
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