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Abstract
In this work, the trajectory tracking control scheme is the framework of optimal control and robust integral of the sign of
the error (RISE); sliding mode control technique for an uncertain/disturbed nonlinear robot manipulator without holonomic
constraint force is presented. The sliding variable combining with RISE enables to deal with external disturbance and reduced
the order of closed systems. The adaptive reinforcement learning technique is proposed by tuning simultaneously the actor–
critic network to approximate the control policy and the cost function, respectively. The convergence of weight as well as
tracking control problem was determined by theoretical analysis. Finally, the numerical example is investigated to validate
the effectiveness of proposed control scheme.

Keywords Adaptive dynamic programming (ADP) · Robotic systems · Robust integral of the sign of the Error (RISE) ·
Sliding mode control (SMC)

1 Introduction

The motion of a physical systems group such as robotic
manipulators, ship, surface vessels and quad-rotor can be
considered as mechanical systems with dynamic uncer-
tainties and external disturbances (Dupree et al. 2011).
Furthermore, the actuator saturation and full-state constraint
and finite time control have been mentioned in Hu et al.
(2019), Yang and Yang (2011), Guo et al. (2019), He et al.
(2015), He and Dong (2017), He et al. (2015). Dealing with
unknown parameters and disturbances, the terminal slid-
ing mode control (SMC) is one of the remarkable solutions
with the consideration of finite time convergence. In Mon-
dal and Mahanta (2014), the non-singular terminal sliding
surface was employed to obtain the adaptive terminal SMC
for a manipulator system. The work in Galicki (2015) was
also based on the non-singular terminal sliding manifold to
investigate the finite time control, which seems to be effec-
tive in counteracting not only uncertain dynamics but also
unbounded disturbances. Authors in Madani et al. (2016)
have extended terminal sliding mode technique to establish
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control design for exoskeleton systems to ensure the trajec-
tory of the closed-loop system can be driven onto the sliding
surface in finite time. In order to tackle the challenges of
external disturbance, the classical robust control design was
investigated the input-state stability (ISS) with equivalent
attraction region. However, in the situation that the external
disturbance can be a combination of finite number of step sig-
nals and sinusoidal signals, the closed-loop system inLu et al.
(2019) is asymptotic stability. InHuang et al. (2018), the opti-
mal gain matrices-based disturbance observer, combining
with SMC, was presented for under-actuated manipulators.
Authors in Wang et al. (2018) considered the frame of
generalized proportional integral observer(GPIO) technique
and continuous SMC to overcome the matched/mismatched
time-varying disturbances guaranteeing a high tracking per-
formance in compliantly actuated robots. SMC technique is
not only employed for classical manipulators but also for
different types including bilateral teleoperators (BTs) and
mobile robotic systems (wheeled mobile robotics, tractor–
trailer systems) (Liu et al. 2020; Nguyena et al. 2019; Binh
et al. 2019). Several control schemes have been considered
for manipulators to handle the input saturation disadvantage
by integrating the additional terms into the control structure
(Hu et al. 2019; Yang and Yang 2011; Guo et al. 2019; He
et al. 2015). In Hu et al. (2019), a new desired trajectory has
been proposed due to the actuator saturation. The additional
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term would be obtained after taking the derivative of initial
Lyapunov candidate function along the state trajectory in the
presence of actuator saturation (Hu et al. 2019). Furthermore,
a new approach was given in Hu et al. (2019) to tackle not
only the actuator constraints but also handling external dis-
turbances. The given sliding manifold was realized the Sat
function of joint variables. The equivalent SMC scheme was
computed, and then, the boundedness of input signal was
mentioned. This approach leads to adjust absolutely input
bound by choosing appropriate several parameters. Thework
in He et al. (2015) gives a technique to tackle the actuator
saturation using a modified Lyapunov candidate function.
Due to the actuator saturation, the Lyapunov function would
be integrated more in the quadratic form from the relation
between the input signal from controller and the real signal
applied to object. The control design was obtained after con-
sidering the Lyapunov function derivative along the system
trajectory. In order to tackle the drawback of state constraints
in manipulator, the framework of barrier Lyapunov function
and Moore–Penrose inverse matrix, fuzzy-neural network
techniquewas proposed in Guo et al. (2019), He et al. (2015),
Hu et al. (2019). Furthermore, these techniques are also
developed for the situation of output feedback control with
the appropriate virtual control input (He et al. 2020; Yu
et al. 2020).On the other hand, the uncertainties/disturbance
terms in control design are approximated by neural network
and fuzzy method (He et al. 2020; Yu et al. 2020). However,
these aforementioned classical nonlinear control techniques
have several challenges, such as appropriate Lyapunov func-
tion and additional terms dynamic (He et al. 2015; He and
Dong 2017; He et al. 2015). Optimal control solution has the
remarkable way that can solve above constraint problems by
considering the constraint-based optimization (Yang et al.
2020; Sun et al. 2017; Vamvoudakis et al. 2014; Yu et al.
2018; Zhu et al. 2016; Lv et al. 2016; Sun et al. 2017; Li et al.
2020) and model predictive control (MPC) is one of the most
effective solutions to tackle the these constraint problems for
manipulators (Yu et al. 2018). The terminal controller as well
as equivalent terminal region has been established for a nom-
inal system of disturb manipulators with finite horizon cost
function (Yu et al. 2018). This technique of robust MPC was
also considered for wheeled mobile robotics (WMRs) with
the consideration of kinematic model after adding more dis-
turbance observer (DO) (Sun et al. 2017). This work has been
extended for the inner loopmodel by backstepping technique
(Yang et al. 2020). Thanks to the advantages of the event-
triggering mechanism, the computation load of robust MPC
has been reduced in control systems for uni-cycle (Sun et al.
2017). The optimal control algorithm has been mentioned in
the work of Dupree et al. (2011) after using classical nonlin-
ear control law. However, the online computation technique
has not considered yet in Dupree et al. (2011). Furthermore,
it is difficult to find the explicit solution of Riccati equa-

tion and partial differentialHJB (Hamilton–Jacobi–Bellman)
equation in general nonlinear systems (Vamvoudakis et al.
2014). The reinforcement learning strategy was established
to obtain the controller by Q learning and temporal differ-
ence learning and then was developed to a novel stage by the
approximate/adaptive dynamic programming (ADP), which
has been the appropriate solution in recent years. Thanks
to the neural network approximation technique, authors in
Vamvoudakis et al. (2014) proposed the novel online ADP
algorithm which enables to tune simultaneously both actor
and critic terms.The trainingproblemof critic neural network
(NN) was determined by modified Levenberg–Marquardt
technique tominimize the square residual error. Furthermore,
the weights convergence and convergence problem were
shown by the weights in actor and critic NN tuning the need
of persistence of excitation (PE) condition (Vamvoudakis
et al. 2014). Considering the approximate Bellman error, the
proposed algorithm in Vamvoudakis et al. (2014) enables
to online simultaneously adjusted with unknown drift term.
Extending this work, by using the special cost function, a
model-free adaptive reinforcement learning has been pre-
sented without any information of the system dynamics (Zhu
et al. 2016). Furthermore, by integrating the additional identi-
fier, the nonlinear systemswere controlled by online adaptive
reinforcement learning with completely unknown dynamics
(Lv et al. 2016; Bhasin et al. 2013). However, these three
above works have not mentioned for robotic systems as well
as non-autonomous systems yet (Zhu et al. 2016; Lv et al.
2016; Bhasin et al. 2013). In the work of Li et al. (2020),
under the consideration of approximation and discrete time
systems, online ADP tracking control was proposed for the
dynamic of mobile robots. Inspired by the above works and
analysis from traditional nonlinear control technique to opti-
mal control strategy, the work focuses on the frame of online
adaptive reinforcement learning for manipulators and non-
linear control with main contribution which are described in
the following:

1) In comparison with the previous papers (Dupree et al.
2011; Hu et al. 2019; Yang and Yang 2011; Guo et al.
2019; He et al. 2015; He and Dong 2017; He et al.
2015; Mondal and Mahanta 2014; Lu et al. 2019; Gal-
icki 2015; Madani et al. 2016; Huang et al. 2018; Wang
et al. 2018), which were presented classical nonlinear
controller in manipulator control systems, an adap-
tive reinforcement learning (ARL)-based optimal control
design is proposed for a uncertain manipulator system in
this paper. Compared with the proposed optimal control
in Dupree et al. (2011) using Kim–Lewis formula in spe-
cial case of cost function, ARL-based optimal control
design has the advantage in that it is able to deal with
general performance index for non-autonomous system
with appropriate transform.
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Fig. 1 2-DOF Planar Robot Manipulator

2) Unlike the reinforcement learning scheme-based optimal
control in Vamvoudakis et al. (2014), Zhu et al. (2016),
Lv et al. (2016), Li et al. (2020), Bhasin et al. (2013)
is considered for mathematical systems of a first-order
continuous-time nonlinear autonomous system without
any external disturbance, the contribution is described
that the adaptive dynamic programming combining with
the sliding variable and the robust integral of the sign
of error (RISE) was employed for second-order uncer-
tain/disturbed manipulators in the situation of trajectory
tracking control and non-autonomous systems.

The remainder of this paper is organized as follows. The
dynamicmodel of roboticmanipulators and control objective
are given in Sect. 2. The proposed adaptive reinforcement
learning algorithm and theoretical analysis are presented in
Sect. 3. The offline simulation is shown in Sect. 4. Finally,
the conclusions are pointed out in Sect. 5.

2 Dynamic Model of Robot Manipulator

Consider the planar robot manipulator systems described by
the following dynamic equation:

M (η) η̈ + C (η, η̇) η̇ + G (η) + F (η̇) + d (t) = τ (t) (1)

where M(η) ∈ R
n×n is a generalized inertia matrix,

C(η, η̇) ∈ R
n×n is a generalized centripetal-Coriolis matrix,

G(η) ∈ R
n is a gravity vector, F(η̇) ∈ R

n is a generalized
friction, d(t) is a vector of disturbances, and τ (t) is the vec-
tor of control inputs. It is worth emphasizing that the above
manipulator belongs to the class of Euler–Lagrange systems,
which has the following special property (Guo et al. 2019):

Property 01: The inertia symmetric matrix M(η) is pos-
itive definite and satisfies ∀ξ ∈ R

n:

a‖ξ‖2 ≤ ξTM(η)ξ ≤ b(η)‖ξ‖2 (2)

ξT (Ṁ(η) − 2C(η, η̇)ξ = 0 (3)

where a ∈ R is a positive constant, and b(η) ∈ R is a positive
function with respect to η. Several following assumptions
will be employed in considering the stability later (Fig. 1).

Assumption 1 If η(t), η̇(t) ∈ L∞, then all these functions
C(η, η̇), F(η̇), G(η) and the first and second partial deriva-
tives of all functions of M(η),C(η, η̇), G(η) with respect to
η(t) as well as of the elements of C(η, η̇), F(η̇)with respect
to η̇(t) exist and are bounded.

Assumption 2 The desired trajectory ηd(t) as well as the
first, second, third and fourth time derivatives of it exists and
is bounded.

Assumption 3 The vector of external disturbance term d(t)
and the derivatives with respect to time of d(t) are bounded
by known constants.

The control objective is to ensure the system tracks a desired
time-varying trajectory ηd(t) in the presence of dynamic
uncertainties by using the frame of online adaptive rein-
forcement learning-based optimal control design and distur-
bance attenuation technique. Considering the sliding variable
s (t) = ė1+λ1e1,

(
λ1 ∈ R

n×n > 0, e1 (t) = ηre f − η
)
, and

the corresponding sliding surface is as follows:

M = {
e1 (t) ∈ R

n : s (t) = 0
}

(4)

According to (1), the dynamic equation of the sliding variable
s(t) can be given as:

Mṡ = −Cs − τ + f + d (5)

where f (η, η̇, ηre f , η̇re f , η̈re f ) is nonlinear functiondefined:

f = M(η̈re f + α1 ė1) + C(η̇re f + α1e1) + G + F (6)

Remark 1 The role of the above sliding variable is consid-
ered to reduce the order of second-order uncertain/disturbed
manipulator systems. It enables us to employ the adap-
tive reinforcement learning for a first-order continuous-time
nonlinear autonomous system. Additionally, the external dis-
turbance d(t) and nonlinear function f are handled by RISE
in the next section.
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3 Adaptive Reinforcement Learning-Based
Optimal Control Design

Assume that the dynamic model of robot manipulator is
known, the control input can be designed as

τ = f + d − u (7)

where the term u is designed by using optimal control algo-
rithm and the remaining term f + d will be estimated later.
Therefore, it can be seen that

Mṡ = −Cs + u (8)

According to (4) and (8), we obtain the following time-
varying model

ẋ =
[−λ1e1 + s

−M
(
ηre f − e1, η̇re f + λ1e1 − s

)
s

]
+

[
0n×n

M−1

]
u

(9)

where x = [eT1 , sT ]T and the infinite horizon cost function
to be minimized is

J(x, u) =
∞∫

0

(
1
2
xT Qx + 1

2
uT Ru

)
dt (10)

where Q ∈ R
2n×2n and R ∈ R

n×n are positive definite sym-
metric matrices. However, in order to deal with the problem
of tracking control, some additional states are given. This
work leads us to avoid the non-autonomous systems. Sub-
sequently, the adaptive reinforcement learning is considered
to find optimal control solution for autonomous affine state-
space model with the assumption that the desired trajectory
ηre f (t) satisfies η̇re f (t) = f re f (ηre f ):

Ẋ = A(X) + B(X)u (11)

where X = [xT , ηre f T , η̇re f T ]T

A(X) =

⎡

⎢⎢
⎢
⎣

−λ1e1 + s
ϒ

f re f (ηre f )

ḟ
re f

(ηre f )

⎤

⎥⎥
⎥
⎦

,

ϒ = −M(ηre f − e1)−1C(ηre f − e1, η̇re f + λ1e1 − s)s,

B(X) =
⎡

⎣
0n×n

M−1

02n×n

⎤

⎦ ,

Define the new infinite horizon integral cost function to
be minimized is

J(X, u) =
∞∫

t

(
1
2
XT QT X + 1

2
uT Ru

)
dτ (12)

where

QT =
[
Q 0
0 0

]
. (13)

In order to guarantee the stability in optimal control design,
we can consider the class of “Admissible Policy” described
in Vamvoudakis et al. (2014), Zhu et al. (2016):

Definition 1 Vamvoudakis et al. (2014), Zhu et al. (2016),
(Admissible Policy):A control inputμ(X) is called as admis-
sible in terms of (12) on U , if μ(X) is continuous on U and
the affine system (11) was stabilized by this control signal
μ(X) on U and J(X) is finite for any X ∈ U .

The optimal control objective can now be considered find-
ing an admissible control signal μ∗ (X) such that the cost
function (12) associated with affine system (11) is mini-
mized. According to the classicalHamilton–Jacobi–Bellman
(HJB) equation theory (Bhasin et al. 2013), the optimal con-
troller u∗ (X) and equivalent optimal cost function V ∗ (X)

are derived as:

u∗(X) = −1
2
R−1BT (X)

∂V ∗(X)

∂X

T

(14)

H∗
(
X, u∗, ∂V ∗

∂X

)
= ∂V ∗

∂X

(
AX + Bu∗) + 1

2
XT QT X

+ 1
2
u∗T Ru∗ (15)

However, it is hard to directly solve the HJB equation as well
as offline solution which requires complete knowledge of the
mathematical model. Thus, the simultaneous learning-based
online solution is considered by using neural networks to
represent the optimal cost function and the equivalent optimal
controller (Bhasin et al. 2013):

V (X) = WTψ(X) + εv(X), (16)

u∗ (X) = −1
2
R−1BT (X)

((
∂ψ

∂x

)T

W +
(

∂ευ (x)

∂x

)T
)

(17)

where W ∈ R
N is vector of unknown ideal NN weights,

N is the number of neurons, ψ(X) ∈ R
N is a smooth NN

activation function, and εv(X) ∈ R is the function recon-
struction error. The objective of establishing the NN (16) is
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to find the actor–critic NN updating laws Ŵ a, Ŵ c to approx-
imate the actor and critic parts obtaining the optimal control
law without solving the HJB equation. (For more details, see
(Bhasin et al. 2013).) Moreover, the smooth NN activation
function ψ(X) ∈ R

N is chosen depending on the descrip-
tion of manipulators (see chapter 4). In Bhasin et al. (2013),
the Weierstrass approximation theorem enables us to uni-
formly approximate not only V ∗ (X) but also ∂V ∗(X)

∂X with

ευ (x) ,
(

∂ευ (x)
∂x

)
→ 0 as N → ∞. Consider to fix the num-

ber N , the critic V̂ (X) and the actor û(X) are employed to
approximate the optimal cost function and the optimal con-
troller as:

V̂ (X) = Ŵ
T
c ψ(X) (18)

û (X) = −1
2
R−1BT (X)

(
∂ψ

∂x

)T

Ŵ a (19)

The adaptation laws of critic Ŵ c and actor Ŵ a weights
are simultaneously implemented to minimize the integral
squared Bellman error and the squared Bellman error δh jb,
respectively.

δh j b = Ĥ

(

X, û,
∂ V̂
∂X

)

− H∗
(
X, u∗, ∂V ∗

∂X

)

= Ŵ
T
c σ + 1

2
XT QT X + 1

2
ûT Rû (20)

where σ (X, û) = ∂ψ
∂x (A+Bû) is the critic regression vector.

Similar to the work in Bhasin et al. (2013), the adaptation law
of critic weights is given:

d

dt
Ŵ c = −kcλ

σ

1 + νσ Tλσ
δh jb (21)

where ν, kc ∈ R are constant positive gains, and λ ∈ R
N×N

is a symmetric estimated gain matrix computed as follows

d
dt

λ = −kcλ
λσ T

1 + νσ T�σ
λ; λ(t+s ) = λ(0) = ϕ0 I (22)

where t+s is resetting time satisfyingαmin {λ (t)} ≤ ϕ1,ϕ0 >

ϕ1. It can be seen that ensure λ(t) is positive definite and
prevent the covariancewind-up problem (Bhasin et al. 2013).

ϕ1 I ≤ λ(t) ≤ ϕ0 I (23)

Moreover, the actor adaptation law can be described as:

d
dt

Ŵ a = − ka1√
1 + σ Tσ

∂ψ

∂x

BR−1BT ∂ψT

∂x

(
Ŵ a − Ŵ c

)
δh j b

− ka2
(
Ŵ a − Ŵ c

)
(24)

Remark 2 The approximate/adaptive reinforcement learning
(ARL) control law (actor) and approximately optimal cost
function (critic) are obtained in (19), (18), respectively.Based
on the optimization principle, the updated law of actor and
critic are carried out as in (24), (22). Compared with the
optimal control law in Dupree et al. (2011), the ARL control
algorithm has the advantage in that it is able to handle for
general performance index. The convergences of estimated
actor/critic weights Ŵ c and Ŵ a depend on the PE condi-
tion of σ√

1+vσ Tλσ
∈ R

N in Bhasin et al. (2013). Unlike the

work in Bhasin et al. (2013), this algorithm does not mention
the identifier design and focuses on the manipulator control
design. Moreover, the learning technique in adaptation law
(22), (24) is different from data-driven online integral rein-
forcement learning in Vamvoudakis et al. (2014), Zhu et al.
(2016). In order to develop this adaptive reinforcement learn-
ing for manipulator systems in the trajectory tracking control
problem, it is necessary to consider the manipulator dynamic
as affine systems (11).

Consequently, the control design (7) is completed by
implementing the estimation of ε = f +d, which is designed
based on the robust integral of the sign of the error (RISE)
framework (Dupree et al. 2011) as follows:

ε j (t) = (ks j + 1)s j (t) − (ks j + 1)s j (0) + ρ j (t) (25)

where ρ(t) ∈ R
n is computed by the following equation:

d

dt
ρ j = (ks j + 1)λ2 j s j + γ1 j sgn(s j ) (26)

and ks ∈ R
n×n, γ 1 ∈ R

n×n,λ2 ∈ R
n×n are the positive

diagonalmatrices and ζ1 ∈ R, ζ2 ∈ R are the positive control
gains selected satisfying the sufficient condition as::

γ1 j > ζ1 + 1

λ2 j
ζ2. (27)

Remark 3 In early works (Dupree et al. 2011), the opti-
mal control design was considered for uncertain/disturbed
mechanical systems by the RISE framework. The tracking
control objective of this optimal control law is satisfied by
appropriate assumptions 1-3 (Dupree et al. 2011). However,
it should be noted that the work in Dupree et al. (2011) is
extended by integrating adaptive reinforcement learning in
the trajectory tracking problemwith the consideration of non-
autonomous systems, which are not directly applied on the
adaptive reinforcement learning. It can be seen that the pro-
posed control scheme inDupree et al. (2011) only considered
the optimal control in the special case of cost function. It leads
to the optimal control problemwhichwas easily implemented
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by using the formula of Dupree et al. (2011) for this special
case. However, it is worth emphasizing that the method of
Kim and Lewis in Dupree et al. (2011) is not able to carry out
for general case. Compared with the proposed controller in
Dupree et al. (2011), RISE-based uncertainties/disturbance
estimation has the advantage in that it is able to combine with
adaptive reinforcement learning algorithm for HJB equa-
tion to deal with general performance index. Moreover, this
work deals with optimal control problem (9) for the general
performance index (10) required the appropriate algorithm
being adaptive reinforcement learning (ARL) for HJB equa-
tion. Additionally, due to the non-autonomous property of
model (9), it is not able to directly carry out the model (9) by
ARL strategy. Therefore, we proposed the transform method
to obtain the modified autonomous system (11) developed
by ARL algorithm. On the other hand, it should be noted
that authors in Bhasin et al. (2013) considered an online
ARL-based method for a first-order continuous-time non-
linear autonomous system without any external disturbance.
However, unlike the work in Bhasin et al. (2013), a disturbed
manipulator is described by a second-order continuous-time
nonlinear systems (1). Therefore, in order to employ ARL
strategy, the sliding variable is proposed in this work to
reduce the order of manipulator model.

4 Simulation Results

In this section, to verify the effectiveness of the proposed
tracking control algorithm, the simulation is carried out by a
2-DOF planar robot manipulator system, which is modeled
by Euler–Lagrange formulation (1). In the case of 2-DOF
planar robot manipulator systems (n = 2), the above matri-
ces in (1) can be represented as follows:

M(η) =
[
�1 + 2�2 cos η2 �3 + �2 cos η2
�3 + �2 cos η2 �3

]
,

G(η) =
[
�4 cos η1 + �5 cos(η1 + η2)

�5 cos(η1 + η2)

]

C(η, η̇) =
[−�2 sin η2η̇2 −�2 sin η2(η̇1 + η̇2)

�2 sin η2η̇1 0

]
(28)

where �i , i = 1...5 are constant parameters depending on
mechanical parameters and gravitational acceleration. In this
simulation, these constant parameters are chosen as �1 =
5, �2 = 1, �3 = 1, �4 = 1.2g, �5 = g. The two simula-
tion scenarios are considered to validate the performance of
proposed controller as follows:

Case 1: The time-varying desired reference signal is

defined as ηd = [
3sin(t) 3cos(t)

]T
where the vector of

disturbances is given as d(t) = [
50sin(t) 50cos(t)

]T
. For

the control objective of general cost function, the optimal

control problem is implemented with the arbitrary positive
definite symmetric matrices in cost function (10) as:

Q =

⎡

⎢
⎢
⎣

40 2 −4 4
2 40 4 −6

−4 4 4 0
4 −6 0 4

⎤

⎥
⎥
⎦ , R =

[
0.25 0
0 0.25

]

Moreover, due to the stability description of sliding surface,
the design parameters in sliding variable s(t) = ė1 + λ1e1
are chosen to satisfy that λ1 ∈ R

n×n is a constant positive
definite matrix:

λ1 =
[
15.6 10.6
10.6 10.4

]

For the purpose of stability of the closed system as well as
uncertainties/disturbance estimation, the remaining control
gains in RISE framework are chosen satisfying (25), (26),
(27) as:

λ2 =
[
60 0
0 35

]
, ks =

[
140 0
0 20

]
, γ1 j = 5

and the gains in actor–critic learning laws are selected guar-
anteeing (21)-(24) as:

kc = 800, ν = 1, ka1 = 0.01, ka2 = 1,

On the other hand, according to Dupree et al. (2011), the
consideration of V in (16) can be calculated precisely as

V = 2x21 − 4x1x2 + 3x22 + 2.5x23 + x23 cos (η2) + x3x4

+ x3x4 cos (η2) + 0.5x24 (29)

Although we can choose the arbitrary ψ(X) in (16), how-
ever, for the comparison between result from experiences and
result in (29), it leads to that the ψ(X) was chosen as

ψ(X)

=[x21 , x1x2, x22 , x23 , x23 cos (η2) , x3x4, x3x4 cos (η2) , x24 ]T

(30)

and according to (29), exact values of Ŵc in (18) and Ŵa in
(19) are

Ŵc = [
2, −4, 3, 2.5, 1, 1, 1, 0.5

]

Ŵa = [
2, −4, 3, 2.5, 1, 1, 1, 0.5

]
(31)

In the simulation, the covariance matrix is initialized as

�(0) = diag
[
100 300 300 1 1 1 1 1

]
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, while all the NN weights Wc,Wa are randomly initialized
in [−1, 1], and the states and the its first time derivative are
initialized to random matrices q(0), q̇(0) ∈ R

2. It is neces-
sary to guarantee PE conditions of the critic regression vector
(in Remark 1) in using this developed algorithm. Unlike lin-
ear systems, where PE conditions of the regression translate
to sufficient richness of the external input, there is no ver-
ifiable method exists to ensure PE regression translates in
nonlinear regulation problems. To deal with this situation,
a small exploratory signal consisting of sinusoids of vary-
ing frequencies is added to the control signal for first 100
times. Each experiment was performed 150 times, and data
from experiments are displayed in Figs. 2, 4, 5 depicting
the tracking states and the updating of NN weightsWc,Wa,

Fig. 2 System states q(t) and its references qd (t) = ηd with persis-
tently excited input for the first 100 times

Fig. 3 Estimation of the total of external disturbance and nonlinear
function by RISE control input

Fig. 4 The weight of NN for critic

Fig. 5 The weight of NN for actor

respectively. It is clear that the problem of tracking was sat-
isfied after only about 2.5 times through Fig. 2. Meanwhile,
the weights of NNs are compared to (31) as Table 1.

Table 1 Comparison between the proposed algorithm and exact values

W proposed algorithm exact value

W1 2.02 2.00

W2 − 3.95 − 4.00

W3 2.98 3.00

W4 2.50 2.50

W5 1.00 1.00

W6 1.00 1.00

W7 1.00 1.00

W8 0.50 0.50
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Fig. 6 System states q(t) and its references qd (t) = ηd with persis-
tently excited input for the first 100 times

The highest error which is approximately 0.05 is a accept-
able result although the time of convergence is still high.
Furthermore, we obtain the tracking performance of the total
of external disturbance d(t) and nonlinear function f (t),
enabling the disturbance attenuation property of proposed
control scheme in Fig. 3. These results proved the correct-
ness of the algorithm.

Case 2: In this case, we consider for the different
case of disturbance. The time-varying desired reference

signal is defined as ηd = [
3sin(t) 3cos(t)

]T
where

the vector of random disturbances is given as d(t) =[
10rand(1) 10rand(1)

]T
.Based on the simulation method,

the parameters are chosen as described in case 1, and our
algorithm is effectively verified in tracking problem of the
desired reference, weight convergence and disturbance atten-
uation as shown in Figs. 6, 7, 8, 9.

Case 3: In this case, we consider the different case of
desired trajectory. The step function desired reference signal

is defined as ηd = [
2 ∗ 1(t) 3 ∗ 1(t)

]T
where the dis-

turbance is given as d(t) = [
50sin(t) 50cos(t)

]T
. The

parameters in simulation are chosen as mentioned in case 1.
It should be noted that our algorithm is effective in tracking
the desired reference, weight convergence and disturbance
attenuation as described in Figs. 10, 11, 12, 13.

Remark 4 It is worth noting that the simulation results in
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 illustrate the
good behavior of trajectory tracking problem, the conver-
gence in actor–critic neural network weights in the presence
of dynamic uncertainties, external disturbances. This work
is the remarkable extension of the work in Bhasin et al.
(2013), which only mentions the first-order mathematical
model without any disturbances. Additionally, the optimal
control algorithm for manipulators was not considered the

Fig. 7 Estimation of the total of external disturbance and nonlinear
function by RISE control input

Fig. 8 The weight of NN for critic

Fig. 9 The weight of NN for actor
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Fig. 10 Estimation of the total of external disturbance and nonlinear
function by RISE control input

Fig. 11 The weight of NN for critic

Fig. 12 The weight of NN for actor

Fig. 13 System states q(t) and its references qd (t) = ηd with persis-
tently excited input for the first 100 times

adaptive dynamic programming technique (Dupree et al.
2011).

5 Conclusions

This paper addresses the problem of adaptive reinforce-
ment learning design for a second-order uncertain/disturbed
manipulators in connection with sliding variable and RISE
technique. Thanks to the online ADP algorithm based on the
neural network, the solution of HJB equation was achieved
by iteration algorithm to obtain the controller satisfying not
only the weight convergence but also the trajectory tracking
problem in the situation of non-autonomous closed sys-
tems. Offline simulations were developed to demonstrate
the performance and effectiveness of the optimal control for
manipulators.
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