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Abstract
Avoiding stagnation at local optimum values is one of the greatest challenges faced by computational intelligence techniques
when solving nonconvex optimization problems. The transition between global and local search may not be effective and
can compromise the performance of optimization algorithms. This work presents a novel manner to update the exploration
coefficient of the meta-heuristic known as grey wolf optimizer (GWO), by replacing the linear update of the exploration
coefficient by a triangular-shaped function, enabling the algorithm to escape from local optima. In order to validate the
proposed grey wolf optimizer (PGWO) methodology, its performance is compared to the original version of GWO and its
chaotic version, as well as to the well-known genetic algorithm, bat algorithm and particle swarm optimization techniques,
in solving 10 nonconvex benchmark functions. Also, in order to verify the proposed methodology’s ability in solving a more
realistic engineering problem, the authors implemented the PGWO to solve the wind farm layout optimization (WFLO)
problem, which is a large-sized optimization problem, of combinatorial nature and nonconvex solution region. The results
indicate that the PGWO improved the performance of the original GWO, as well as all investigated methodologies for the
benchmark functions optimization and for the WFLO problem.

Keywords Grey wolf optimizer · Exploration coefficient · Computational intelligence · Benchmark functions · Wind farm
layout optimization

1 Introduction

Optimization problems can be classified according to the
type of constraints (linear or nonlinear), optimization vari-
ables (continuous, discrete or binary) and solution region
convexity, which is an important factor when determining the
methodology implemented in its resolution (Calafiore and El
Ghaoui 2014).

Classic optimization methods, when applied to solve non-
convex problems, tend to converge to local optima, since they
are highly susceptible to initial conditions (Bazaraa et al.
2013). In order to solve this issue, the union of concepts
from optimization and artificial intelligence made it possible
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to develop more efficient and intelligent heuristic strategies,
named asmeta-heuristics or computational intelligence (Neri
and Cotta 2012). Computational intelligence is defined as the
science that develops methodologies that are able to mimic
similar behaviors of intelligent systems (human or bioin-
spired), aiming at solving complex optimization problems.

Given this context, in the last years, several researchers
have been developing new approaches to solve optimization
problems through computational intelligence techniques,
being inspired by natural existing biological adaptation
mechanisms. Algorithms inspired in the evolution of species
theory, such as the genetic algorithm (GA) (Holland 1992),
swarm intelligence, such as the particle swarm optimiza-
tion (PSO) (Eberhart and Kennedy 1995), bats echolocation,
such as the bat algorithm (BA) (Yang 2010), among oth-
ers have been developed as a result of such an effort. These
algorithms have presented great efficiency in solving not
only engineering-related problems, but also in other fields
of knowledge. Currently, these bioinspired algorithms are a
part of a set of tools associated with a great number of high-
technology projects.
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One of the greatest challenges faced by computational
intelligence techniques is the balance between conducting
local or global search throughout the iterative process, gen-
erally performed through exploration coefficients that are
updated over the course of iterations. This inherent limitation
to the computational intelligence techniques may negatively
affect the efficiency of these algorithms in solving large-sized
optimization problems, making them stagnate at local opti-
mum values.

In this sense, this paper presents an adaptation never seen
in the literature, to perform the update of the exploration
coefficient of the bioinspired computational intelligence
technique known as grey wolf optimizer (GWO) (Seyedali
et al. 2014), being this the main contribution of this work.
The methodology validation will be performed through the
comparison of the proposed approach with the GA, BA and
PSO techniques in 10 benchmark functions. Besides that,
to prove the effectiveness of the proposed methodology on
solving real large-sized engineering optimization problems,
a study case applied to the optimization of the layout of an
offshore wind farm will be presented.

The content of this paper is divided as follows: Sect. 2
presents the computational intelligence technique known as
GWO, as well its chaotic (Kohli and Arora 2018) and the
proposed version by the authors. In Sect. 3, the proposed
methodology is presented and validated on several bench-
mark functions and compared to the original and chaotic
version ofGWO, and also to theGA,BAandPSO techniques.
Section 4.1 presents the wind farm layout optimization
(WFLO) problem formulation, and the results obtained by
the proposed methodology are discussed and compared to
the aforementioned techniques. A conclusion is presented in
Sect. 5.

2 Grey wolf optimizer: novel exploration
coefficient

The GWO is a bioinspired meta-heuristic presented by
Seyedali et al. (2014) in 2014, and it is an algorithm that is
being applied in many researches (El-Fergany and Hasanien
2015; Routray et al. 2019; Faris et al. 2018; Yan et al. 2019;
Mostafa et al. 2018; Verma et al. 2017; Hernndez et al. 2019;
Panoeiro et al. 2020). The algorithm mathematically mod-
els the hunting and social behavior of grey wolves to solve
optimization problems. Greywolves generally live on a pack,
that is basically composed of four types of wolves: alpha (α),
beta (β), delta (δ) and omega (ω).

The hunting strategy of grey wolves is divided into three
steps, as follows: (1) tracking, chasing and approaching the
prey; (2) chasing and encircling until stationary situation and
(3) attacking the prey.

In the optimization context, the three best candidate solu-
tions obtained by the algorithm are depicted by the α, β and
δ wolves. These solutions are used in the algorithm to govern
the searching process. The remaining solutions are called ω,
and over the course of iterations they encircle the α, β and δ

wolves in order to attempt to reach better solutions.
Algorithm 1 depicts a pseudocode of the GWO method.

At first, a random population composed of Nwolves is created
and evaluated through an objective function (OBF). Then,
the hierarchy is established and the iterative process starts,
until a stopping criteria are met. Then, from lines 7–11 the
algorithm emulates the hunting behavior of grey wolves, and
more details of the presented pseudocode can be found in
reference (Seyedali et al. 2014).

Algorithm 1 Grey Wolf Optimizer
1: Initialize Wolves Population: (Xi , with i = 1, 2, ...Nwolves)
2: Evaluate Pack: OBF(Xi ) (Eq. (11))
3: Define Hierarchy: (Xα, Xβ, Xδ)
4: While stopping criteria not met, do:
5: Update exploration coefficient −→a t linearly or through equa-

tions (1), (2) and (3)
6: For each wolf ∈ (i = 1, 2, ...Nwolves) do:

7:
−→
A = 2−→a t · −→r1 − −→a t ,

−→r1 ∈ [0, 1]
8:

−→
C = 2 · −→r2 , −→r2 ∈ [0, 1]

9:
−→
Dα = |−→C1 · −→Xα

t − −→
Xi

t |, −→
Dβ = |−→C2 · −→Xβ

t − −→
Xi

t |, −→
Dδ =

|−→C3 · −→
Xδ

t − −→
Xi

t |
10:

−→
X1 = |−→Xα

t − −→
A1 · −→

Dα |, −→
X2 = |−→Xβ

t − −→
A2 · −→

Dβ |,−→
X3 = |−→Xδ

t − −→
A3 · −→Dδ |

11:
−→
Xi

t+1 =
−→
X1+−→

X2+−→
X3

3
12: Evaluate Pack and Update Hierarchy: (Xα, Xβ, Xδ)
13: end For
14: end While
15: Return Xα

As stated in Seyedali et al. (2014) and depicted in Fig. 1,
the algorithm performs local search, i.e., attacks the prey, if
|−→A | < 1, and global search, i.e., searches for other preys,
if |−→A | > 1. As for the coefficient

−→
C its value attenu-

ates or increases the magnitude of the best solution during
the searching mechanism. Vectors −→r1 and −→r2 are randomly
distributed values ∈ [0,1] and help the algorithm to avoid
stagnation at local minima. Parameters

−→
Dα ,

−→
Dβ and

−→
Dδ rep-

resent the distance between an omega wolf and the dominant
wolves. Parameters

−→
X1,

−→
X2 and

−→
X3 weigh this distance input

by the parameter
−→
A and defines if a local/global search will

be performed. At last, line 11 depicts the position update tak-
ing into account the information from the dominantwolvesα,
β and δ. At the end of the iterative process, the best solution
Xα is returned.
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Fig. 1 Global and local searching components of GWO

Line 5 highlights the importance of the exploration coef-
ficient −→a t , since it governs whether the algorithm will
perform a local or global search. In Seyedali et al. (2014),
the authors proposed a linear decaying function in order to
update the exploration coefficient−→a t . In this paper, however,
the authors propose a triangular-shaped function to update
the exploration coefficient, giving rise to a version called
proposed grey wolf optimizer (PGWO). Also, the concept
of chaotic optimization is taken into account by the authors
and two chaotic maps are implemented to replace the linear-
decaying exploration coefficient −→a t .

Swarm intelligence algorithms have proven themselves as
an excellent tool to solve optimization problems. However,
one of the greatest challenges faced by these algorithms is
related to the stagnation in local optimum values after a cer-
tain number of iterations. To avoid such thing and improve
algorithm’s performance, several works in the literature are
proposing modifications in the original versions of the meta-
heuristics. Within the scope of GWO, this is no different:
in Kaur and Narang (2019), a hybrid version of the GWO,
introducing three mutation strategies, is proposed. In Wen
(2016) and Mittal et al. (2016), the authors propose a nonlin-
ear adjustment of the exploration coefficient −→a t . In Zhang
et al. (2017), the opposite-learning technique is used to obtain
a better set of initial solutions for the studied problem.

In Kohli and Arora (2018) the authors propose the use of
chaotic maps to update parameters

−→
A ,

−→
C and−→a t to explore

the search space more dynamically. The use of chaotic maps
in the exploration parameters update of computational intel-
ligence techniques has been widely studied by researchers
in the past few years. In Gandomi and Yang (2014), chaotic
maps are used to update parameters of the BA. In Gandomi
et al. (2013), the authors evaluate the performance of 12
chaotic maps to update parameters of the firefly optimization
(FO) algorithm. In Amir Hossein et al. (2013), the update is
performed in the PSOmethod. At last, in Emary and Zawbaa
(2016) the authors analyze the impact of chaotically updat-
ing the exploration coefficient in different meta-heuristics,
among them the GWO, the ant lion optimizer (ALO) and
the moth-flame optimizer (MFO). In general, by analyzing
the works that introduce chaos in meta-heuristics, it can be

0

2
GWO PGWO

Iterations
0

2
CGWO1

Iterations

CGWO2

Fig. 2 Exploration coefficient update

observed that the updates following chaoticmaps happen in a
pseudorandom fashion, indicating amore dynamic searching
process, contributing to avoid stagnation.

Following this line of research, this work implements
2 different chaotic maps, taken from Gandomi and Yang
(2014), to update the exploration coefficient −→a t . The algo-
rithms following these chaotic updates are named chaotic
grey wolf optimizer (CGWO) in this paper and are repre-
sented by Eqs. (1) (CGWO1) and (2) (CGWO2). Figure 2
graphically depicts the differences between the chaotic and
linear updates.

xt+1 = cos(tcos−1(xt )) (1)

xt+1 = 1, 07
(
7, 86xt − 23, 31x2t + 28, 75x3t − 13, 3x4t

)
.

(2)

Besides the chaotic version of GWO, this work proposes
the update of the exploration coefficient −→a t in a novel man-
ner, not yet seen in the specialized literature. This novel
approach aims at introducing to the GWO a more dynamic
transition between local and global search, enabling it to
perform local and global searches throughout the entire exe-
cution of the algorithm, improving its capability of avoiding
local optimal values even in the last few iterations. This mod-
ification improves the algorithm’s performance, and it is the
major contribution of this paper. The proposed modification
gives rise to a version named PGWO by the authors and
represents the main novelty and contribution of this paper.
The proposed function consists on a triangle-pulsed wave,
shown in Eq. (3). At this point, it is important to highlight
that the authors have tested different similar functions, but
chose to present this one at this work, since it presented the
best results obtained so far. Figure 2 also depicts the proposed
approach in comparison with the traditional linear update of
the exploration coefficient originally proposed in Seyedali
et al. (2014).

xt+1 = 2

π
|sin−1[sin(π t)]|. (3)
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3 Method validation

In order to validate the PGWOmethod, the authors compared
its performancewith the traditional version of theGWOalgo-
rithm, as well as its chaotic version, both presented in Sect.
2. Besides that, a comparison with respect to the well-known
GA, BA and PSO techniques is also presented, in the opti-
mization of 10 nonconvex benchmark functions.

Table 1 depicts the parameters adopted for each optimiza-
tion method. All techniques populations were composed of
40 individuals, and the stopping criterion adopted for all algo-
rithms was the maximum allowed number of 40 iterations.
The remaining parameters shown in Table 1 are values rec-
ommendedby the authors of themethods. It should benoticed
that the GWO is the method with the least number of param-
eters to adjust.

In order to evaluate the PGWO robustness to solve a wide
range of optimization problems, the authors performed 1000
simulations of each methodology to solve each one of the
10 benchmark functions. It should be highlighted that all
methodologies started from the same initial solutions, in
order to make the comparison with other techniques fairer.
The mathematical functions as well as the coordinates of the
global optimal results and the variables boundaries can be
obtained from Ali et al. (2005).

Themethodologies assertiveness rates, i.e., the percentage
of simulations that achieved the global optimum result for
each function, are depicted in Table 2, and it can be seen that
the PGWO method obtained higher assertiveness rates for
almost every benchmark function tested. In five opportuni-
ties, the proposed methodology reached the global optimum
value for all 1000 simulations performed. The mean value of
assertiveness shows that the PGWOhas shown itself as a very
competitive tool with respect to other methodologies to solve
optimization problems, reaching the global optimumvalue in
97.4% of times, outperforming the original GWO version. It
can also be highlighted that, for the functions under consid-
eration, the chaotic versions of GWO did not have a positive
impact in the algorithm’s overall performance.

Figure 3 depicts, in a form of a boxplot, the results shown
in Table 2. From Fig. 3 it can be observed that the results
obtained from the proposed method were less dispersed with
respect to all other investigated methodologies, reinforcing
the idea that this is a fairly robust method to solve noncon-
vex optimization problems. It can also be highlighted that
the PGWOmethod presented the highest median value. This
improvement is explained by the greater dynamics intro-
duced by the novel exploration coefficient update, enabling
the algorithm to escape from stagnating at local optimum
values over the course of iterations.

It can also be emphasized that the GWO, CGWO1 and
CGWO2 techniques have also outperformed the GA, BA and
PSO algorithms, indicating that the use of the three best solu-
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Fig. 3 Methodologies assertiveness over 10 benchmark functions
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Fig. 4 Methods robustness regarding initial solutions. (Aluffi-Pentini
function)

tions to govern the searching process is indeed effective, as
stated in Seyedali et al. (2014).

3.1 Proposed grey wolf optimizer robustness
regarding initial solution

Besides the capacity of finding good solutions, it is desirable
that a computational intelligence technique performs well
regardless of its initial set of solutions (Vasant et al. 2016).
This characteristic may be understood as a way to measure a
method’s robustnesswith respect to the initial set of candidate
solutions.

To evaluate this important aspect, 1000 simulations of the
4 GWO-based methodologies were performed to minimize
theAluffi-Pentini function in two situations. For thefirst situa-
tion, all techniques (GWO, PGWO, CGWO1 and CGWO2)
start from a fixed initial population, the same way as for
the study regarding all benchmark functions previously pre-
sented. For the second situation, the algorithm’s repetition
was made starting from different random initial solutions,
coming from an uniform distribution.

Figure 4 depicts the boxplot of all methodologies in
obtaining the optimal result of −0.35 for the Aluffi-Pentini
function. In this context, FIP stands for fixed initial popula-
tion and VIP for variable initial population.

In order to verify whether the samples depicted in Fig.
4 are statistically equal, a test hypothesis was performed.
The t test for two samples, described in Montgomery and
Runger (2010), allows one to verify the probability that the
differences between two samples are not caused by chance,
and it is called p value. It is usual to adopt a significance
level of 5%, meaning that if the p value is less than 5%, the
null hypothesis that establishes equality between samples is
rejected.

Considering this significance level, the authors applied
this hypothesis test for the samples obtained for each one of
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Table 1 Parameters adopted for
the compared meta-heuristics

Method Parameter Value Description

GWO, CGWO & PGWO ITE 40 Number of iterations

N 40 Population size

GA ite 40 Number of iterations

n 40 Population size

Cp 0.8 Crossover probability

Mp 0.01 Mutation probability

Rp 0.05 Population reproduction probability

BA ite 40 Number of iterations

n 40 Population size

α 0.9 Amplitude decay coeff.

γ 0.8 Pulse emission coeff.

r0 1 Maximum pulse emission rate

fmin 0 Minimum frequency

fmax 0.15 Maximum frequency

PSO ite 40 Number of iterations

n 40 Population size

c1 0.3 Local info weighing

c2 0.7 Global info weighing

θ 1 Speed inertia factor

Table 2 Methodologies assertiveness rates

Function GWO (%) CGWO1 (%) CGWO2 (%) PGWO (%) GA (%) BA (%) PSO (%)

Ackley 99.5 99.2 84.1 100 11.5 52.3 43.0

Aluffi-Pentini 92.8 93.3 82.0 96.2 100 41.4 41.6

Becker and Lago 98.9 99.3 99.4 86.5 100 24.9 23.0

Bohachevsky 1 98.5 95.9 87.9 100 88.3 37.1 38.9

Bohachevsky 2 92.6 91.3 85.7 95.3 91.0 15.9 35.0

Camel Back 3 77.8 74.4 68.9 98.8 69.2 55.6 65.1

Cosine Mixture 100 100 100 100 100 54.0 67.2

Easom 99.8 100 100 97.4 100 24.3 16.8

Eggcrate 81.1 82.7 79.1 100 58.5 40.3 44.5

Exponential 100 100 100 100 100 69.1 94.0

Mean 94.1 93.6 88.7 97.4 81.8 38.3 44.9

Bold values highlights the solutions found by PGWO

the 4 methodologies. The p values obtained were: (1) GWO:
0.09%; (2) PGWO: 90.37%; (3) CGWO1: 32.64%; and (4)
CGWO2: 40.46%. For the PGWO, CGWO1 and CGWO2,
the p values obtained were greater than 5%, meaning that the
null hypothesis cannot be rejected.

The results from the t test for two samples indicate that, for
the proposedmethod, the samples do not have significant dif-
ferences, indicating the method’s robustness. Furthermore,
the p value for the proposedmethodwas the largest among all
techniques studied, indicating its greatest robustness regard-
ing initial solution conditions.

In addition, the authors make available the codes to evalu-
ate all tested benchmark functions through the tested versions

of theGWOvia the following link: https://github.com/ufcod/
pgwocodes.git.

4 Real problem: Wind Farm Layout
Optimization

4.1 Problem Data

The development of renewable energy sources increases year
after year worldwide. In this context, the use of wind energy
has gained a lot of importance in the past decade. According
to the last report produced by the GlobalWind Energy Coun-
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cil (GWEC) (2018), in 2018 51.3GW of power was added,
totaling an installed capacity of 591GW worldwide.

One of the factors thatmost affects the energy extraction of
a wind farm is the turbines layout (Elkinton et al. 2005). The
layout optimization of wind farms is normally given through
the division of the terrain in cells, where each cell repre-
sents a possible position to allocate a wind turbine. Given
the combinatorial nature of determining the optimal location
of the wind turbines, the WFLO problem has been resolved
through the application of computational intelligence tech-
niques, able to solve large-sized combinatorial optimization
problems in a reasonable computational time (Le and Vo
2017; Wu et al. 2020; Yang et al. 2019; Park et al. 2019;
Pillai et al. 2018; Wilson et al. 2018; Feng and Shen 2015).

In this work, the authors implemented the 4 GWO ver-
sions explained in Sect. 2, as well as the GA, BA and PSO
methods to determine the optimal layout of a wind farm of
500MWof installed capacity. Thewind farm under study has
its area represented by a (10× 10) matrix, at which each cell
has dimensions of 900m×900m, equivalent to 5 times the
rotor diameter. This problem modeling is of binary nature,
at which the total number of possible combinations is of
2100, since each one of the 100 cells in the matrix can con-
tain (‘1’) or not (‘0’) a wind turbine (Sittichoke et al. 2013).
This huge number of combinations possibility demonstrates
this problem complexity, justifying the use of computational
intelligence techniques to solve it.

The wind turbine model used in this work is based on
the DTU 10MW (Bak et al. 2013), of 10-MW rated power.
Since this work will optimize a wind farm of 500MW of
installed capacity, 50 units of the DTU10MW turbine will
be considered in this study. Equation (4) describes the power
curve, i.e., the electrical power extracted by this turbine in
function of the speed of incident wind (u).

PkW(u) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if u < 4

7.0564u3, if 4 ≤ u < 11.4

10,000, if 11.4 ≤ u < 25

0, if u ≥ 25

(4)

Regarding wind speed and direction, the authors consider
a mean speed of 11.23m/s, which corresponds to the rated
wind speed of the DTU10MW turbine, and an incidence
direction from north to south. Additional data necessary to
model the problem, such as the rotor diameter, height of the
hub, impulse coefficient (CT ) and roughness of the ground,
are depicted in Table 3.

4.2 Wake effect

The conversion of the kinetic energy from the winds into
electrical energy through the wind turbine is not ideal, i.e.,

Table 3 Additional data Parameter Value

Rotor diameter (m) 180

Rated power (MW) 10

CT 0.88

Hub height (z) (m) 120

Soil roughness (z0) 0.0002

there is a reduction of the wind’s speedwhen passing through
the turbine. In a wind farm, composed of many turbines,
the ones located upstream reduce the wind velocity that will
reach downstream turbines. This phenomenon is known as
wake effect. According to Barthelmie and Jensen (2010),
in offshore wind farms this effect can reduce the energetic
potential of the venture between 10 and 15%.

Given this context, Jensen (1983) presented a simplified
model of the wake effect, modeling the wind behavior after
interacting with a wind turbine. According to Jensen, the
interaction between wind and turbine is based upon the prin-
ciple of movement conservation, as depicted in Eq. (5), and
it creates a conical region that has the same radius of the
turbine and linearly expands with distance.

πr2turbu + π(r2est − r2turb)u0 = πr2estu j (5)

where rturb depicts the turbine radius and rest the radius at a
distance x from the wind turbine. The mean wind speed at
the region is represented by u0, while the wind speed right
after interacting with a turbine is represented by u. The wind
speed at a distance x from the wind turbine is represented by
the variable u j .

Figure 5 depicts the wake effect and its impact at the wind
speed after interacting with the wind turbine i. The wind,
with initial speed u0, has its velocity reduced at the moment
of energy extraction, being the wind velocity that reaches a
downstream turbine j given by Eq. (6).

u j = u0

⎡
⎢⎣1 −

⎛
⎜⎝ 2a

1 + α
(
xi j
ri

)2

⎞
⎟⎠

⎤
⎥⎦ , (6)

where xi j is the position of the wind turbine, and ri is the
effective radius of the upstream rotor that is related to the
downstream rotor radius r j according to (7). Besides that, a
is related to the impulse coefficient CT , as shown in (8) and
α is a drag constant obtained from (9), where z is the hub
height and z0 depicts the soil rugosity. This work considers
z0 = 0.0002, corresponding to an offshore region.

ri = r j

√
1 − a

1 − 2a
(7)

CT = 4a(1 − a) (8)
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Fig. 5 Wake effect

α = 0, 5

ln

(
z

z0

) . (9)

In case there is more than one turbine impacting the wind
velocity, the energy decrease at each upstream turbine must
be taken into account, as shown in (10).

ui = u0

⎡
⎣1 −

√√√√ N∑
i=1

(
1 − ui j

u0

)2
⎤
⎦ . (10)

4.3 Objective function

At the present work, the goal is to optimize the location of 50
DTU10MWwind turbines in order tomaximize the extracted
power of the wind farm, considering the wake effect previ-
ously explained. Thus, the OBF adopted is shown in Eq. (11),
where PkW represents the turbine extracted power and unT
depicts the wind velocity that reaches the turbine nT (m/s)
considering the wake effect.

Max

⎛
⎝

50∑
nT =1

PkW(unT )

⎞
⎠ . (11)

4.4 Simulation results

To obtain the statistical results presented in this work, 50
simulations of each technique were performed. In order to
perform an unbiased comparison, all methodologies started
the iterative process from the same initial solutions. In this
study, the algorithm’s stopping criteria adopted were the
number of iterations, set to 300, for a population of 1000
individuals.

W
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/s

)
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Fig. 6 Optimal layout obtained by the PGWO method

The optimal layout obtained for this study case was
obtained by the PGWO method and is depicted in Fig. 6,
where the wind turbines are represented by the red lines.
In this graph it can also be observed the impacts in the
wind velocity caused by the wake effect. For this layout,
the extracted power is of 246.953864MW, corresponding to
a capacity factor of 49.39%.

Analyzing Table 4, it can be seen that the author’s pro-
posed grey wolf optimizer was the only method that reached
the best OBF for this study (246.953864MW). The CGWO1
method reached the best STD value. All GWO-based meth-
ods reached the same median value of 246.658266MW. By
comparing the PGWOandGWOmethods, it can be observed
that the OBF value of the simulations was also higher for the
proposedmethodology,with a differenceof 1.72% in termsof
STD. The PGWOoverreaches the traditional GWO in almost
every parameter analyzed, fact explained by the greater
dynamics introduced by the nonlinear behavior in the explo-
ration coefficient’s −→a t update, improving the algorithm’s
transition between local and global searching. Another fac-
tor to be highlighted is the fact that the only methodology
that was able to obtain the optimal OBF for this real problem
was the novel version proposed by the authors.

Given the high complexity of this problem, mainly due
to its extremely high number of possible combinations, the
assertiveness obtained by the PGWOwas of 4%. By compar-
ing the results obtained by the proposedmethodology and the
well-known GA, BA and PSO algorithms, it can be seen that
the PGWO produces better results in all aspects analyzed,
such as OBF, median and STD. From the results, however,
it can be seen that the BA produced good results, obtaining
the third best OBF value in this study.

5 Conclusion

At this work, the authors presented a novel way of updat-
ing the exploration coefficient of the GWO meta-heuristic.
The proposed methodology was tested and validated at sev-
eral benchmark functions and was compared to the chaotic
and traditional versions of the GWO, as well as well-known
methodologies such as the GA, BA and PSO. In general,
for all 10 benchmark functions, the PGWO version obtained
better results than all other techniques tested in this work,
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Table 4 Statistical results Method OBF (MW) Median (MW) STD (MW) Assertiveness (%)

GWO 246.879965 246.658266 0.113202 0

CGWO1 246.879965 246.658266 0.112149 0

CGWO2 246.879965 246.658266 0.114251 0

PGWO 246.953864 246.658266 0.115189 4

GA 241.448307 235.134939 3.116312 0

BA 246.572281 245.863347 0.324331 0

PSO 232.526499 227.746058 1.223905 0

Best results highlighted

with higher assertiveness rates and less dispersed results.
This improvement highlights the importance of determining
an well-adjusted exploration coefficient update to perform a
more efficient global and local searching procedure over the
course of iterations.

Given the high assertiveness and efficiency of the pro-
posed methodology, the novel exploration coefficient was
applied to solve a realistic engineering problem, consisting
at determining the optimal layout of the wind turbines of
an offshore wind farm, which is a highly complex multi-
modal optimization problem, of combinatorial nature and
nonconvex solution region. The best result obtained in this
paper for the WFLO problem was reached by the PGWO
methodology. The PGWO overreached all other methodolo-
gies investigated (GWO, CGWO1, CGWO2, GA, BA and
PSO) in most aspects analyzed (OBF, median and mean val-
ues).

For theWFLO problem, each OBF evaluation takes about
0.02 s. Therefore, it is important to highlight the impossibility
of using exhaustive search mechanisms to obtain the global
optimal value for this problem, since its immense number
of possible combinations (2100) would require a computa-
tional time of approximately 2.5×1028 days to be completed,
reinforcing the benefits of using computational intelligence
algorithms such as the proposed grey wolf optimizer to solve
problems of such magnitude in an acceptable computational
time.
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