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Abstract
This paper presents a stochastic model for the normalized smoothed variation rate individual-activation-factor proportionate
normalized least-mean-square (NSVR–IAF–PNLMS) algorithm. Specifically, taking into account correlated Gaussian input
data, model expressions are derived for predicting the mean weight vector, gain distribution matrix, NSVR metric, learning
curve, weight-error correlation matrix, and steady-state excess mean-square error. Such expressions are obtained by consid-
ering the time-varying characteristics of the gain distribution matrix. Simulation results are shown confirming the accuracy
of the proposed model for different operating conditions.

Keywords Adaptive filtering · Proportionate normalized least-mean-square algorithm · Stochastic model

1 Introduction

Although the least-mean-square (LMS) and the normalized
LMS (NLMS) algorithms have been commonly used inmany
real-world applications (Sayed 2009; Farhang-Boroujeny
2013; Haykin 2014), these algorithms exhibit slow conver-
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gence and poor tracking capability when the plant impulse
response is sparse (as compared with other algorithms
designed to exploit the sparse nature of the plant) (Martin
et al. 2002; Paleologu et al. 2010; Wagner and Doroslovački
2013). For instance,Duttweiler (2000) introduced the propor-
tionate NLMS (PNLMS) algorithm, in which each adaptive
coefficient is updated proportionally to itsmagnitude in order
to improve the algorithm convergence speed. Nevertheless,
it has been observed that the PNLMS algorithm exhibits
slow convergence for plantswith low andmedium sparseness
(Benesty and Gay 2002), and improved convergence charac-
teristics are not preserved over the whole adaptation process
(Deng and Doroslovački 2006). So, to overcome the afore-
mentioned problems, several PNLMS-type algorithms have
been discussed in the open literature, such as the improved
PNLMS (IPNLMS) (Benesty and Gay 2002), the μ-law
PNLMS (MPNLMS) (Deng and Doroslovački 2006), the
sparseness-controlled PNLMS (SC-PNLMS) (Loganathan
et al. 2008), and the individual-activation-factor PNLMS
(IAF–PNLMS) (de Souza et al. 2010a).

In particular, the IAF–PNLMS algorithm (de Souza et al.
2010a) presents faster convergence in comparison with other
algorithms from the literature for plants with high sparse-
ness. Such an improvement in the convergence speed is
due to the use of proportional gain for both active and
inactive adaptive coefficients. However, given that gains
assigned to active coefficients are maintained high even
after achieving the vicinity of their optimal values, inactive
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coefficients receive very small gain during the whole adapta-
tion process. As a consequence, the fast initial convergence
is significantly compromised after the convergence of the
active coefficients (de Souza et al. 2012). So, since assign-
ing larger gains to coefficients that reached the vicinity of
their optimal values have almost no effect on the conver-
gence of the adaptive filter, Perez et al. (2017) have devised
the normalized smoothed variation rate IAF–PNLMS
(NSVR–IAF–PNLMS) algorithm. In this algorithm, gain
allocated to coefficients that have achieved the vicinity of
their optimal values is transferred to other coefficients that
have not yet converged, thus enhancing the algorithm con-
vergence and reducing the steady-state misalignment.

A convenient way to provide a theoretical basis for the
study of a given adaptive algorithm is through its stochastic
model. In the stochastic modeling of adaptive algorithms,
the aim is to derive expressions describing (with certain
accuracy) the algorithm behavior under different operating
conditions (Duttweiler 2000; Rupp 1993; Doroslovački and
Deng 2006; Wagner and Doroslovački 2008a, b; Loganathan
et al. 2010; de Souza et al. 2010b; Kuhn et al. 2014a; Haddad
and Petraglia 2014). So, from the model expressions, cause-
and-effect relationships between algorithm parameters and
performance metrics can be established, resulting in use-
ful design guidelines (Abadi and Husøy 2009; Kuhn et al.
2014b; Kuhn et al. 2015; Matsuo and Seara 2016). More-
over, model expressions can help in identifying anomalous
and/or undesired behavior, allowing to modify the algo-
rithm to circumvent such an issue (Kolodziej et al. 2009).
In this context, focusing on the stochastic modeling of the
NSVR–IAF–PNLMS algorithm, the present research work
has the following goals:

(i) To obtain a stochastic model for predicting the algo-
rithm behavior considering correlated Gaussian input
data and time-varying characteristics of the gain distri-
bution matrix;

(ii) To provide model expressions describing the mean
weight vector, gain distribution matrix, NSVR metric,
learning curve, and weight-error correlation matrix;

(iii) To derive model expressions characterizing the excess
mean-square error (EMSE) in steady state and misad-
justment; and

(iv) To assess the accuracy of the model for different oper-
ating conditions.

Note that the proposed stochastic model presented here
extends the results given in Perez et al. (2017).

This paper is organized as follows. Section 2 describes
briefly the system identification setup considered and revis-
its the NSVR–IAF–PNLMS algorithm. In Sect. 3, based
on some assumptions and approximations, the proposed
stochastic model is derived and discussed. Section 4 presents
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Fig. 1 Block diagram of a typical system identification setup

simulation results, aiming to assess the accuracy of the pro-
posed model under different operating scenarios. Finally,
Sect. 5 presents concluding remarks.

Throughout this paper, the mathematical notation adopted
follows the standard practice of using lower-case boldface
letters for vectors, upper-case boldface letters for matrices,
and both italic Roman and Greek letters for scalar quantities.
In addition, superscript T stands for the transpose, diag(· )
denotes the diagonal operator, and E(·) characterizes the
expected value.

2 Problem Statement

In this section, a brief description of the environment con-
sidered in the development of the proposed model is firstly
presented. Next, the general expressions describing the
NSVR–IAF–PNLMS algorithm are introduced.

2.1 System Identification Setup

In a system identification setup (as depicted in Fig. 1), the
adaptive filter is used to produce an estimate of an unknown
system (plant) impulse response (Sayed 2009; Farhang-
Boroujeny 2013; Haykin 2014). In this kind of setup, both
the plant (system to be identified) wo and the adaptive filter
w(k) are driven by the same input signal x(k). In turn, the
plant output signal is corrupted by an additive measurement
noise v(k), which results in the desired signal d(k). Thereby,
the error signal can be expressed as

e(k) � d(k) − wT(k) x(k)

� [wo − w(k)]T x(k) + v(k) (1)

where w(k) � [w1(k) w2(k) · · · wN (k)]T characterizes the
adaptive coefficient vector, wo is the plant coefficient vector,
and x(k) � [x(k) x(k − 1) · · · x(k − N + 1)]T denotes the
input vector with the N most recent input samples. Note that
the order of the adaptive filter and the plant is assumed the
same for the sake of simplicity.

2.2 Revisiting the NSVR–IAF–PNLMS Algorithm

For PNLMS-type algorithms, the coefficient update rule is
expressed as (Duttweiler 2000; Benesty and Gay 2002)
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w(k + 1) � w(k) +
β G(k) x(k) e(k)

xT(k)G(k) x(k) + ξ
(2)

where β denotes the step-size control parameter, ξ > 0 is a
regularization parameter that prevents division by zero, while

G(k) � diag[g1(k) g2(k) · · · gN (k)] (3)

represents a diagonal gain distribution matrix. Note that the
individual gain governing the step-size adjustment of the ith
adaptive filter coefficient is obtained as

gi (k) � γi (k)
N∑

j�1
γ j (k)

, i � 1, 2, 3, . . . (4)

with γi (k) characterizing a proportionality function, which
is defined in different ways depending on the particulars of
the algorithm considered (e.g., see Duttweiler 2000; Benesty
and Gay 2002; Deng and Doroslovački 2006; Loganathan
et al. 2008; de Souza et al. 2010a).

For the NSVR–IAF–PNLMS algorithm, the proportional-
ity function associated with the ith adaptive filter coefficient
is given by (Perez et al. 2017)

γi (k) �
⎧
⎨

⎩

1

N
, Vi (k) ≤ ε

λi (k), otherwise
(5)

where ε is a convergence threshold parameter,

Vi (k) �
⎧
⎨

⎩

|Qi (k) − Pi (k)|
min[Qi (k), Pi (k)] + ζ

, k � m�, m � 1, 2, 3, . . .

Vi (k − 1), otherwise
(6)

with ζ > 0 denoting a regularization parameter,

Qi (k) �
(�−2)/2∑

j�0

|wi (k − j)| (7)

and

Pi (k) �
�−1∑

j��/2

|wi (k − j)| (8)

in which � defines the number of samples of wi (k) consid-
ered to assess the individual-coefficient convergence, while

λi (k) � max[ fi (k), |wi (k)|] (9)

and

fi (k) �
⎧
⎨

⎩

1

2
|wi (k)|+1

2
λi (k − 1), k � mN , m � 1, 2, 3, . . .

fi (k − 1), otherwise

(10)

arise from the IAF–PNLMS algorithm given in de Souza
et al. (2010a).

Notice that (6) characterizes the NSVR metric of the ith
adaptive coefficient, which is used to capture the individual-
coefficient convergence behavior during the adaptation pro-
cess [see (7) and (8)]. In turn, ε represents the percentage
value of coefficient magnitude variation for which one
assumes that the coefficient has reached the vicinity of its
optimal value [see (5)]. Then, the value chosen for ε must
ensure that gain assigned to adaptive coefficients that have
reached the vicinity of their optimal values is transferred to
other coefficients that have not yet converged, thus improv-
ing the algorithm convergence. Therefore, the choice of �

and ε affects the change of the gain distribution policy and,
hence, the algorithm performance [typical values for � and
ε are discussed in Perez et al. (2017)].

3 Proposed Stochastic Model

To derive the stochastic model of the NSVR–IAF–PNLMS
algorithm [given by (1)–(10)], the following simplifying
assumptions and approximations are stated:

(A1) The input signal x(k) is obtained from a zero-mean
correlated Gaussian process with variance σ 2

x and
autocorrelation matrix R � E[x(k)xT(k)] (Sayed
2009; Farhang-Boroujeny 2013; Haykin 2014).

(A2) Regularization parameters 0 < ξ � 1 and 0 < ζ � 1
are neglected during the model development for the
sake of simplicity (Kuhn et al. 2014c).

(A3) The measurement noise v(k) is obtained from a zero-
mean independent and identically distributed (i.i.d.)
Gaussian process with variance σ 2

v , which is uncor-
related with any other signal (Sayed 2009; Farhang-
Boroujeny 2013; Haykin 2014).

(A4) For slow adaptation (small step size), the adap-
tive weight vector w(k) and the input vector x(k)
are assumed statistically independent (Sayed 2009;
Farhang-Boroujeny 2013; Haykin 2014).

(A5) Due to the piecewise-constant nature of the gain dis-
tribution matrix [see (3)–(10)], variables G(k), w(k),
and x(k) are assumed uncorrelated (de Souza et al.
2010b; Kuhn et al. 2014a).
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Note that these assumptions and approximations have been
commonly used in the stochastic modeling of adaptive
algorithms and are required to make the development math-
ematically tractable.

3.1 MeanWeight Vector

To derive an expression that describes the mean weight vec-
tor of the algorithm, let us substitute (1) into (2) and take
the expected value of both sides of the resulting expression,
which yields

E[w(k + 1)] � E[w(k)] + βE

[
G(k)x(k)xT(k)

xT(k)G(k)x(k) + ξ

]

wo

− βE

[
G(k)x(k)xT(k)w(k)

xT(k)G(k)x(k) + ξ

]

+ βE

[
G(k)x(k)v(k)

xT(k)G(k)x(k) + ξ

]

. (11)

Then, taking into account Assumptions (A2)–(A5), (11) can
be simplified to

E[w(k + 1)] ∼� [I − βR1(k)]E[w(k)] + βR1(k)wo (12)

where I denotes the identity matrix and

R1(k) ∼� E

[
Ḡ(k)x(k)xT(k)

xT(k)Ḡ(k)x(k)

]

(13)

in which Ḡ(k) characterizes the mean gain distribution
matrix. Therefore, using the solution presented in Kuhn et al.
(2014a) for computing R1(k) [see Assumption (A1)], the
behavior of the mean weight vector can be predicted through
(12) if the mean gain distribution matrix is known.

3.2 Mean Gain Distribution Matrix

An expression that describes the mean gain distribution
matrix can be obtained by taking the expected value of both
sides of (3)–(10) and assuming that E[|wi (k)|] ∼� |E[wi (k)]|
(Kuhn et al. 2014a). Thereby,

Ḡ(k) � diag[ḡ1(k) ḡ2(k) · · · ḡN (k)] (14)

in which

ḡi (k) ∼� E[γi (k)]
N∑

j�1
E[γ j (k)]

(15)

with

E[γi (k)] ∼�

⎧
⎪⎨

⎪⎩

1

N
, E[Vi (k)] ≤ ε

E[λi (k)], otherwise
(16)

where

E[λi (k)] ∼� max{E[ fi (k)], |E[wi (k)]|} (17)

and

E[ fi (k)]

∼�

⎧
⎪⎨

⎪⎩

1

2
|E[wi (k)]|+1

2
E[λi (k − 1)], k � mN , m � 1, 2, 3, . . .

E[ fi (k − 1)], otherwise.

(18)

So, considering (12), the evolution of the mean gain distri-
bution matrix can be predicted through (14)–(18) if the mean
behavior of the NSVR metric is known.

3.3 Mean Behavior of the NSVRMetric

Aiming to determine an expression that describes the evolu-
tion of the NSVR metric Vi (k) for active coefficients, let us
start by taking the expected value of both sides of (6) along
with Assumption (A2), i.e.,

E[Vi (k)]

∼�

⎧
⎪⎨

⎪⎩

E

[ |Qi (k) − Pi (k)|
min[Qi (k), Pi (k)]

]

, k � m�, m � 1, 2, . . .

E[Vi (k − 1)], otherwise.

(19)

Next, considering that the numerator varies slowly with
respect to the denominator in such a way that the averaging
principle (AP) (Samson and Reddy 1983) can be invoked,
one gets

E

[ |Qi (k) − Pi (k)|
min[Qi (k), Pi (k)]

]
∼� E[|Qi (k) − Pi (k)|]

E{min[Qi (k), Pi (k)]} . (20)

Also, assuming that coefficients hold the same algebraic sign
during the whole adaptation process, (20) becomes

E

[ |Qi (k) − Pi (k)|
min[Qi (k), Pi (k)]

]
∼� |E[Qi (k)] − E[Pi (k)]|

min{E[Qi (k)], E[Pi (k)]} . (21)

Finally, substituting (21) into (19), the mean behavior of the
NSVR for the ith (active) adaptive coefficient can be approx-
imated to
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E[Vi (k)]

∼�
⎧
⎨

⎩

|E[Qi (k)] − E[Pi (k)]|
min{E[Qi (k)], E[Pi (k)]} , k � m�, m � 1, 2, 3, . . .

E[Vi (k − 1)], otherwise
(22)

with

E[Qi (k)] ∼�
(�−2)/2∑

j�0

|E[wi (k − j)]| (23)

and

E[Pi (k)] ∼�
�−1∑

j��/2

|E[wi (k − j)]| (24)

obtained by taking the expected value of both sides of (7) and
(8), respectively. Thereby, using (12), the mean behavior of
the NSVR metric can be predicted from (22) to (24).

3.4 Learning Curve

An expression that describes the algorithm learning curve
[mean-square error (MSE)] can be derived by rewriting (1)
in terms of the weight-error vector

z(k) � w(k) − wo (25)

as

e(k) � −zT(k) x(k) + v(k) (26)

determining e2(k), taking the expected value of both sides of
the resulting expression, and considering Assumptions (A3)
and (A4) (Sayed 2009; Farhang-Boroujeny 2013; Haykin
2014). Thus,

J (k) � E[e2(k)]

� Jmin + Jex(k) (27)

where

Jmin � σ 2
v (28)

denotes the minimum MSE, while

Jex(k) � tr[RK(k)] (29)

characterizes the excess MSE (EMSE). Note in (29) that the
weight-error correlation matrix is defined as

K(k) � E[z(k)zT(k)]. (30)

Therefore, the learning curve (MSE) can be predicted
through (27)–(29) if the weight-error correlation matrix is
known.

3.5 Weight-Error CorrelationMatrix

Since the expression that describes the behavior of the algo-
rithm learning curve requires knowledge of the weight-error
covariance matrix, a recursive expression characterizing the
evolution of K(k) is derived now. To this end, using (2) and
(26), the weight update equation is first rewritten in terms of
the weight-error vector z(k) [defined in (25)] as

z(k + 1) �

z(k) − β
G(k)x(k)xT(k)z(k)
xT(k)G(k)x(k) + ξ

+ β
G(k)x(k)v(k)

xT(k)G(k)x(k) + ξ
. (31)

Then, determining z(k+1)zT(k+1), taking the expected value
of both sides of the resulting expression, and considering
(30), one obtains

K(k + 1)

� K(k) − βE

[
z(k)zT(k)x(k)xT(k)G(k)

xT(k)G(k)x(k) + ξ

]

− βE

[
G(k)x(k)xT(k)z(k)zT(k)

xT(k)G(k)x(k) + ξ

]

− β2E

{
v(k)G(k)x(k)zT(k)x(k)xT(k)G(k)

[xT(k)G(k)x(k) + ξ ]2

}

+ β2E

[
v(k)G(k)x(k)zT(k)
xT(k)G(k)x(k) + ξ

]

− β2E

{
v(k)G(k)x(k)xT(k)z(k)xT(k)G(k)

[xT(k)G(k)x(k) + ξ ]2

}

+ β2E

{
v2(k)G(k)x(k)xT(k)G(k)

[xT(k)G(k)x(k) + ξ ]2

}

+ β2E

{
G(k)x(k)xT(k)z(k)zT(k)x(k)xT(k)G(k)

[xT(k)G(k)x(k) + ξ ]2

}

+ β2E

[
v(k)z(k)xT(k)G(k)

xT(k)G(k)x(k) + ξ

]

. (32)

Finally, due to the statistical characteristics of the measure-
ment noise [see Assumption (A3)], all terms involving v(k)
in (32) are equal to zero, except that with v2(k).Additionally,
using Assumptions (A2)–(A5), (32) reduces to

K(k + 1) ∼� K(k) − βK(k)RT
1 (k) − βR1(k)K(k)

+ β2 JminR2(k) + β2R3(k) (33)
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with

R2(k) ∼� E

[
Ḡ(k)x(k)xT(k)Ḡ(k)

[xT(k)Ḡ(k)x(k)]2

]

(34)

and

R3(k) ∼� E

[
Ḡ(k)x(k)xT(k)K(k)x(k)xT(k)Ḡ(k)

[xT(k)Ḡ(k)x(k)]2

]

. (35)

So, using the solutions presented in Kuhn et al. (2014a)
for computing R1(k), R2(k), and R3(k) [see Assumption
(A1)], alongwith (14)–(24), the evolution of theweight-error
correlation matrix can now be predicted through (33); con-
sequently, the algorithm learning curve can also be predicted
from (27).

3.6 Steady-State Analysis

Based on energy-conservation arguments (Sayed 2009), an
expression characterizing the steady-state EMSE Jex(∞) can
be derived by rewriting (2) in terms of theweight-error vector
z(k) [defined in (25)], which results in

z(k + 1) � z(k) + β
G(k)x(k)e(k)

xT(k)G(k)x(k) + ξ
. (36)

Then, calculating zT(k + 1)G−1(k)z(k + 1) from (36), i.e.,

zT(k + 1)G−1(k)z(k + 1) � zT(k)G−1(k)z(k)

+ 2β
zT(k)x(k)e(k)

xT(k)G(k)x(k) + ξ
+ β2 xT(k)G(k)x(k)e2(k)

[xT(k)G(k)x(k) + ξ ]2
(37)

taking the expected value of both sides, letting k → ∞,

assuming convergence, considering (26), as well as Assump-
tions (A2) and (A3), the following variance relation is
obtained:

2 lim
k→∞ E

{
[zT(k)x(k)]2

xT(k)G(k)x(k)

}

� β lim
k→∞ E

[
e2(k)

xT(k)G(k)x(k)

]

.

(38)

Now, recalling the definition of the EMSE [given in (29)],
taking into account Assumptions (A4) and (A5), as well as
assuming that M is large in such a way that the AP (Samson
and Reddy 1983) can be used, the left-hand side term of (38)
is approximated by

lim
k→∞ E

{
[zT(k)x(k)]2

xT(k)G(k)x(k)

}
∼� Jex(∞)

tr[RḠ(∞)]
(39)

with

Ḡ(∞) � lim
k→∞ E[G(k)] (40)

denoting the mean gain distribution matrix in steady state.
Similarly, using (26), (28), (29), and (40), along with
Assumptions (A3)–(A5), the right-hand side term of (38)
is simplified to

lim
k→∞ E

[
e2(k)

xT(k)G(k)x(k)

]
∼� Jex(∞)

tr[RḠ(∞)]
+ JminE1(∞)

(41)

where

E1(∞) � E

[
1

xT(k)Ḡ(∞)x(k)

]

. (42)

So, substituting (39) and (41) into (38), and solving the result-
ing expression for Jex(∞), the steady-stateEMSE is obtained
according to

Jex(∞) ∼� β

(2 − β)
Jmin tr[RḠ(∞)] E1(∞). (43)

Finally, to determine the steady-state behavior of themean
gain distribution matrix Ḡ(∞) [required in (42) and (43)], let
k → ∞ of both sides of (15) in such a way that

ḡi (∞) ∼� E[γi (∞)]
N∑

j�1
E[γ j (∞)]

(44)

with

E[γi (∞)] � lim
k→∞ E[γi (k)]. (45)

Note from (45) that knowledge of the mean value of the
proportionality function in steady state is required. Then,
recalling from (22) to (24) that

lim
k→∞ E[Vi (k)] → 0 (46)

since the adaptive coefficients do not change significantly as
the algorithm tends to the steady state, it can be verified [from
(16)] that

lim
k→∞ E[γi (k)] → 1

N
. (47)

Consequently, the mean gain distribution matrix in steady
state reduces to

Ḡ(∞) ∼� 1

N
I. (48)

Therefore, using the solution presented in Kuhn et al.
(2014b) for computing E1(∞) [see Assumption (A1)], along
with the expression characterizing the mean gain distribution
matrix in steady state Ḡ(∞) [given by (48)], the steady-state
EMSE can be predicted through (43); likewise, the misad-
justment can be straightforwardly determined.
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Fig. 2 Example 1: Algorithm behavior obtained by MC simulations
(gray-ragged lines) and through the proposed model (dark-solid lines)
considering χ � 71.71 (left) and χ � 338.23 (right). a, b Mean weight

behavior of four adaptive coefficients. c, d Evolution of the NSVRmet-
ric associated with coefficient w7(k). e, f Learning curve

4 Simulation Results

To verify the accuracy of the proposed model, three exam-
ples are presented considering distinct operating scenar-
ios in a system identification setup. In these examples,
the results obtained from Monte Carlo (MC) simulations
(average of 200 independent runs) are compared with
those predicted through the proposed stochastic model.
The zero-mean and unit variance Gaussian input signal
x(k) [see Assumption (A1)] is obtained from (Haykin
2014)

x(k) � −a1x(k − 1) − a2x(k − 2) + η(k) (49)

where a1 and a2 denote the AR(2) coefficients, and η(k) is a
white Gaussian noise with variance

σ 2
η �

(
1 − a2
1 + a2

)

[(1 + a2)
2 − a21]. (50)

The signal-to-noise ratio (SNR) is defined here as

SNR � 10 log10

(
σ 2
x

σ 2
v

)

. (51)

Two plants wo
A and wo

B (with N � 128 weights) obtained
from echo-path models for testing of speech echo cancellers
defined in the (ITU-TRecommendation G.168 2009,Models
1 and 4) are used. (Note that wo

A has been formed by zero
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Fig. 4 Example 3: Steady-state EMSE obtained by MC simulations (gray-cross marker) and through the proposed model (dark-solid lines). a Plant
wo
A [S(wo

A) � 0.78]. b Plant wo
B [S(wo

B) � 0.42]

padding the echo-path model.) Sparseness degrees (Hoyer
2004) of such plants are S(wo

A) � 0.78 and S(wo
B) � 0.42,

respectively. Unless otherwise stated, parameter values of the
algorithm are β � 0.01, ξ � 10−6, fi (0) � λi (0) � 10−4,

� � N , ε � 10−2, and ζ � 10−4, while w(0) � 0 and
Vi (0) � 0. Still, to ensure the stability in the computation of
R1(k), R2(k), R3(k), and E1(∞), the threshold value used
for discarding less significant eigenvalues is 5×10−4 (Kuhn
et al. 2014a).

4.1 Example 1

Here, the accuracy of the model expressions characterizing
the mean weight vector (12), NSVR metric (22), and the
algorithm learning curve (27) is assessed for different input
data correlation levels. To this end, we consider plant wo

A
[S(wo

A) � 0.78] and 30 dB SNR. The eigenvalue spread
values1 of the input autocorrelation matrix are χ � 71.71
[obtained from (49) for a1 � −0.75 and a2 � 0.68] and χ �

1 Since the eigenvalue spread is defined as a ratio between themaximum
and minimum eigenvalues of the input data autocorrelation matrix, the
larger the eigenvalue spread, the higher the correlation level of the input
data (Haykin 2014).

338.23 [obtained from (49) by changing a2 to 0.85]. Figure 2
shows the results obtained by MC simulations and predicted
through the proposed model. Specifically, Fig. 2a, b depicts
the mean behavior of four adaptive weights (for the sake of
clarity). Figure 2c, d illustrates the evolution of the NSVR
metric for one active coefficient. Figure 2e, f presents the
algorithm learning curve (MSE). Notice from these figures
that the proposed model satisfactorily predicts the algorithm
behavior for both transient and steady-state phases, irrespec-
tive of the input data correlation level considered. This result
also confirms the accuracy of the methodology used for com-
puting the normalized autocorrelation-like matrices R1(k),
R2(k), and R3(k).

4.2 Example 2

This example verifies the accuracyof the proposedmodel (via
learning curve) for plants with different sparseness degrees
and two distinct SNR values. For this operating scenario,
plants wo

A [S(wo
A) � 0.78] and wo

B [S(wo
B) � 0.42] are used,

considering 20 and 30 dB SNR. The input signal is obtained
from (49) with a1 � −0.75 and a2 � 0.75, which yields an
eigenvalue spread of χ � 120.25 for the input autocorrela-
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tionmatrix. Figure 3 depicts the results obtained throughMC
simulations and frommodel predictions. Specifically, Fig. 3a
shows the results obtained for plant wo

A [S(wo
A) � 0.78],

while Fig. 3b for plant wo
B [S(wo

B) � 0.42]. From these fig-
ures, very good match between MC simulations and model
predictions can also be verified for both transient and steady-
state phases, irrespective of the plant sparseness degrees and
SNR values considered.

4.3 Example 3

In this last example, considering plants with different sparse-
ness degrees and awide range of SNR values, the accuracy of
the model expressions characterizing the steady-state EMSE
(43) is assessed for step-size values ranging from0.01 to 1.96.
To this end, we consider plants wo

A [S(wo
A) � 0.78] and wo

B
[S(wo

B) � 0.42], as well as four different SNR values (i.e.,
10, 20, 30, and 40 dB SNR). The remaining parameter val-
ues are the same as in Example 2. [Note also that the last 100
EMSE values in steady state have been averaged to provide a
better visualization of the experimental results obtained from
MC simulations (Sayed 2009, pp. 250).] Figure 4 shows the
steady-state EMSEcurves obtained byMCsimulations along
with those predicted from the model expressions. Specifi-
cally, Fig. 4a illustrates the results obtained for plant wo

A
[S(wo

A) � 0.78],while Fig. 4b for plant wo
B [S(wo

B) � 0.42].
Observe from such figures that the proposed model predicts
very well the steady-state algorithm behavior for a wide
range of step-size values, irrespective of the plant sparseness
degrees and SNR values considered.

5 Concluding Remarks

In this paper, considering correlated Gaussian input data, a
stochastic model was obtained for the NSVR–IAF–PNLMS
algorithm. Specifically, we derived expressions describing
the mean weight vector, gain distribution matrix, NSVR
metric, learning curve, weight-error correlation matrix, and
steady-state EMSE. To this end, a reduced number of
assumptions were used, leading to expressions that predict
satisfactorily both the algorithm transient and steady-state
phases. Simulation results confirmed the accuracy of the
model for different operating conditions, i.e., covering differ-
ent plants, SNR and step-size values, and several eigenvalue
spreads. Note that the methodology discussed here can be
extended to other PNLMS-type algorithms from the litera-
ture.
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