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Abstract
In this paper, an adaptive control strategy is presented for a three-degree-of-freedom helicopter under both structured and
unstructured uncertainties. The adaptive control scheme learns online the helicopter’s inverse model with a Lyapunov-based
adaptation law to estimate the system’s parameters. Moreover, a reference model is introduced to stabilize the helicopter at
start-up and cope with unstructured uncertainties such as external disturbance. Therefore, the controller achieves accurate
motion tracking in the presence of both structureduncertainties (parameters variation) andunstructureduncertainties (unknown
disturbance). Unlike many controllers, the proposed adaptive control scheme’s stability is guaranteed by Lyapunov direct
method. The proposed controller’s performance in coping with various uncertainties is highlighted in different operating
conditions.

Keywords Adaptive control · Helicopters · Parameter variation · Uncertainties

1 Introduction

Unmanned aerial vehicles (UAVs) have attracted the atten-
tion of the scientific community from multiple disciplines
due to their numerous applications. Their popularity has
increased worldwide, including helicopters, which is mainly
due to their ability to hover and maneuver in tight and
dangerous places (Castaneda et al. 2016; Liu et al. 2013;
Marantos et al. 2017). In these kinds of applications, a
robust controller is required to cope with various uncer-
tainties like changes in gravity, mass, inertia, and other
unpredictable factors. Similar to aircrafts, helicopter motion
also consists of controlling the pitch, roll, and yaw axis
with only two rotors. However, the unique body structure
of helicopters makes the pitch, roll, and yaw dynamics
strongly coupled (Castaneda et al. 2016). Therefore, con-
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trolling them is not trivial. Unlike conventional helicopters
that use a single main rotor, the three-degree-of-freedom
(3-DOF) helicopter uses two rotors and a suspending mass
making it more fault tolerant. However, stabilizing the 3-
DOF helicopter is not an easy task to undertake. It exhibits a
complex nonlinear and unstable open-loop dynamics. The
severe nonlinearities, coupling, varying operating condi-
tions, structured and unstructured uncertainties, and exter-
nal disturbances are among the typical challenges to be
faced.

Various control approaches have been proposed for heli-
copters (Castaneda et al. 2016; Liu et al. 2013; Li et al.
2015b; Xian et al. 2015), including classical, robust, and
adaptive control laws.Amongpopularmethods, input–output
linearization and back-stepping are used for their simplicity.
However, linearization does not guarantee the stability in all
operating conditions. Moreover, they suffer from sensitivity
to parameter variations. The presence of high, particularly
unstructured, uncertainties such as nonlinearities signifi-
cantly changes the system’s dynamics (Chaoui and Sicard
2012b). So, modeling the system’s dynamics based on pre-
sumably accurate mathematical models cannot be applied
efficiently in this case. This raises the urgency to consider
alternative approaches for the control of this type of systems
to keep up with their increasingly demanding design require-
ments. In Dube and Patel (2016), the translation dynamics

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-019-00544-0&domain=pdf
http://orcid.org/0000-0001-8728-3653


Journal of Control, Automation and Electrical Systems (2020) 31:94–107 95

of 3-DOF helicopter is discussed with the design of adaptive
control system design. The proposed control scheme is val-
idated experimentally. In Coza and Macnab (2006), a robust
adaptive fuzzy control is used for a quadrotor. A real-time
stabilization control of tri-rotor with non-cyclic propellers
is proposed in Cruz et al. (2008). In Tanaka et al. (2004), a
robust stabilization controller is designed for RC helicopters
that guarantees robust stability, good speed response, and
avoidance of actuators’ saturation. An adaptive fuzzy-based
back-stepping control is proposed for a 3-DOF helicopter
testbed with dead zone in Li et al. (2017), where fuzzy logic
is used to approximate the model uncertainty and external
disturbances.

A lot of research has been done on helicopters and UAVs
and is still ongoing. Different control strategies are used to
control helicopters. In Castaneda et al. (2016), a continuous
differentiator based on adaptive second-order sliding-mode
control is proposed for helicopter control. The proposed
scheme combines a continuous differentiator with adaptive
super twisting controllers. In Liu et al. (2013), a robust linear
quadratic regulator (LQR) is used to control the altitude of
a 3-DOF helicopter. In this approach, a feedback control is
used for linearized approximation and a robust controller is
designed to cope with uncertainties, disturbances, and other
nonlinear properties. In Boby et al. (2014), a robust adap-
tive linear quadratic regulator (LQR) controller is designed
for a 3-DOF helicopter. Results show that the integral action
can eliminate the tracking errors and that the adaptive con-
troller estimates and compensates for the uncertainty in the
system. In Veeraboina and Ordonez (2018), a comparison
of four different control scheme is carried out with input
and output feedback linearizing (IOFL)-, direct adaptive
fuzzy controller (DAC)-, linear quadratic regulator (LQR)-,
and proportional integral derivative (PID)-based LQR con-
trol design. Comparison results of all four control schemes
are provided. A nonlinear robust tracking control of a heli-
copter is proposed in Li et al. (2015b). The controller also
includes a second-order auxiliary system to generate filtered
error signals along with an estimator of uncertainties and
disturbances. In Marantos et al. (2017), a robust control
strategy is proposed to track the trajectory for small-scale
unmanned helicopters. The control scheme does not depend
on the explicit knowledge of the model’s parameters, and
each model guarantees trajectory tracking with prescribed
transient and steady-state response in the presence of exter-
nal disturbances. An adaptive output feedback control is
used for a helicopter in Kutay et al. (2005). The adaptive
control achieves adaptation to both parametric uncertainty
and unmodeled dynamics and incorporates a novel approach
that adapts to known actuator characteristics. In Fradkov
et al. (2010), an estimator and a controller are designed
for a helicopter developed at the Laboratory for Analy-
sis and Architecture of Systems (LAAS). In here, a hybrid

continuous–discrete observation procedure is proposed for
transmission of the measured data over the limited band
communication channel with adaptive tuning of the coder
range parameters. An adaptive back-stepping tracking con-
trol of a 6-DOF helicopter is proposed in Xian et al. (2015),
where the proposed controller combines the back-stepping
method with online parameters update law to achieve the
control objective. In Gao and Fang (2012), another adap-
tive integral back-stepping control strategy proposed for a
3-DOF helicopter, the controller is capable of approximat-
ing model uncertainties online and improve the robustness
of the model. Machine learning and artificial intelligence
were also used to control the helicopters. In Zou and Zheng
(2015), a robust adaptive radial basis function neural net-
work is used to control the helicopter with back-stepping as
the main control framework, which is amplified by radial
basis function neural networks (RBFNNs) to approximate
the unmodeled dynamics. An adaptive neural fault-tolerant
controller of a 3-DOF helicopter is proposed in Chen et al.
(2016) to copewith uncertainty and nonlinear actuator faults.
A neural network disturbances observer is developed based
on a radial basis function neural network, and a differ-
ent nonlinear observer is also designed for the unknown
external disturbances. A neural network tracking control
of the 3-DOF helicopter is designed in Guo et al. (2016),
with time-varying disturbances and input saturation. In Du
et al. (2014), a frequency-domain system identification of
an unmanned helicopter is designed based on an adap-
tive genetic algorithm. The model is identified based on
the inputs and outputs, and then, a control compensator is
designed based on the identified model. A decentralized
robust second-order consensus tracking control of multi-
ple 3-DOF helicopters using output feedback is done in
Li et al. (2015a). The controller can drive the system to
achieve second-order consensus tracking without measur-
ing the velocity, so that the velocity sensor can be avoided.
In Zheng and Zhong (2011), a robust attitude regulator is
designed for a 3-DOF helicopter, where a linear-invariant
robust controller is used to improve tracking performance.
The results are validated through experiments. In Kocagil
et al. (2018), a model reference adaptive control (MRAC) is
designed using state-dependent Riccati equation (SDRE) for
a 3-DOF helicopter.

Studies have shown that the design of robust controllers
for mathematically ill-defined systems that may be subjected
to structured and unstructured uncertainties is made possi-
ble with computational intelligence tools, such as artificial
neural networks and fuzzy logic systems (Efe 2011; Pedro
and Kala 2015; Khayamy et al. 2016). The approximation
capabilities have been the main driving force behind the
increasing popularity of such methods as they are theoret-
ically capable of uniformly approximating any continuous
real function to any degree of accuracy (Chaoui and Sicard
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Fig. 1 3-DOF helicopter

2012a). This has led to the recent advances in the area
of intelligent control (Chaoui and Gueaieb 2008; Chaoui
and Sicard 2012b). Satisfactory performance is achieved
with various neural network models for complex control
systems (Coza and Macnab 2006; Dierks and Jagannathan
2010).

Adaptive control offers good performance in the pres-
ence of structured (parametric) uncertainties, but it falls
short in the presence of unstructured uncertainties, such
as disturbances. Henceforth, the contribution of this paper
is to achieve motion tracking for a 3-DOF helicopter in
the presence of both structured and unstructured uncertain-
ties. The proposed control scheme combines the power of
adaptive control theory against parameters variation and a
reference model to cope with time-varying modeling and
disturbance uncertainties. As stated earlier, conventional
adaptive controllers fail to achieve robustness against both
parameter uncertainties and disturbances. Thus far, very few
nonlinear controllers have been proposed for the 3-DOF
helicopter. Unlike many controllers, the closed-loop con-
trol scheme’s stability is guaranteed by Lyapunov direct
method. Furthermore, convergence analysis is also pro-
vided. The rest of the paper is organized as follows: Sect. 2
outlines the dynamic model of the helicopter. Then, the pro-
posed adaptive control methodology is outlined in Sect. 3.
In Sect. 4, numerical results are presented and discussed.
Finally, we conclude with a few remarks and sugges-
tions.

2 SystemDescription

2.1 Dynamics

The helicopter consists of a 3-DOF rotational motion body
actuated by two propellers (Rajappa et al. 2013). The two
rotors provide upwards propulsion as well as direction con-
trol. Themodel of the system is shown inFig. 1,which depicts
the body/global coordinate systems and forces exerted on the
helicopter by the counterweight and motors. The dynamic
mathematicalmodel based onEuler–Lagrange formulation is
described by the following equations (Castaneda et al. 2016):

Jε ε̈ = G cos ε + La cos θu1 (1a)

Jψψ̈ = La cos ε sin θu1 (1b)

Jθ θ̈ = Lhu2 (1c)

with u1 = Ff + Fb, u2 = Ff − Fb , G = g(MhLa − MwLw),
where

Mh ∈ R: mass of the helicopter
Mw ∈ R: mass of the counterweight
La ∈ R: length from the rotors to the center of mass
Lw ∈ R: length from the tail to the center of mass
Lh ∈ R: length between the rotors
g ∈ R: gravitational constant
ε ∈ R: roll angle of the helicopter
ψ ∈ R: yaw angle of the helicopter
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Fig. 2 Autopilot scheme

θ ∈ R: pitch angle of the helicopter
u ∈ R

2: control input vector
Jε ∈ R: moment of inertia about roll
Jψ ∈ R: moment of inertia about yaw
Jθ ∈ R: moment of inertia about pitch
Ff : front motor force
Fb: back motor force

Before we proceed further, let us introduce the following
assumptions (Castaneda et al. 2016):

Assumption 1 The yaw and roll axes are perpendicular.

Assumption 2 All the axes intersect in the same point, which
is considered as the origin of the global coordinate frame.

Assumption 3 The helicopter frame and counterweightmass
centers are collinear with respect to the pitch axis.

Assumption 4 The Joint friction, air resistance, and centrifu-
gal forces are neglected.

Assumption 5 The thrust force is proportional to the motor
voltage, and motors/propellers dynamics are neglected.

Remark 1 It is noteworthy that this system is underactuated,
i.e., two input forces to control three states (the yaw angleψ ,
the roll angle ε, and the pitch angle θ ).

2.2 Adaptive Autopilot Control Structure

Since the 3-DOF helicopter is underactuated, the motion
along the roll and yaw axes has to be controlled simulta-
neously by one single input. The adaptive autopilot control
structure, depicted in Fig 2, considers that the control input
u1 controls both roll and yaw dynamics, while the control
input u2 controls the pitch dynamics. Thus, it is necessary
to design a control strategy to control the attitude of the sys-
tem with only two control inputs. To achieve this, the roll
and yaw trajectories are defined as a user defined input. The
pitch trajectory is affected by both yaw and roll dynamics,
and the desired trajectory for the pitch is calculated based
on an internal loop. Define the virtual inputs v1 and v2 as

Castaneda et al. (2016),

v1 = cos θu1 (2a)

v2 = cos ε sin θu1 (2b)

which makes the dynamic equations (1) as,

Jε ε̈ = G cos ε + Lav1 (3a)

Jψψ̈ = Lav2 (3b)

Jθ θ̈ = Lhu2 (3c)

Using (2), the input u1 can be written as Castaneda et al.
(2016),

u2
1 = v21 + v22

cos2 ε
(4)

The proposed autopilot is based on this fact: The decou-
pling can be carried out provided that the virtual inputs v1
and v2 given in (2) are satisfied. Then, the control u1 can be
expressed as,

u1 = S ·
√

v21 + v22

cos2 ε
(5)

where

S =
{
sgn(v1), if v1 �= 0

0, if v1 = 0

Then, a way to decouple the system consists in forcing
the angle θ , by the control input u2, to track the following
desired trajectory,

θ∗(t) = tan−1 v2

cos εv1
(6)

The control objective is to design a control law v1, v2,
and u2 to make the system’s states ε, ψ , and θ track their
respective pre-defined time-dependent reference trajectories
ε∗,ψ∗, and θ∗ under the assumption of unknown parameters.
In this paper, all parameters, Mh, Mw, La, Lw, Lh, g, Jε, Jψ ,
and Jθ are assumed to be unknown.
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3 Adaptive Control Strategy

The control approach is based on a feedforward adaptive
controller and a stabilizing feedback loop. The feedforward
is designed to learn online the helicopter’s inverse dynamics
through first-order reference models that define the desired
errors dynamics. Due to the nature and high complexity order
of the helicopter’s dynamical model, the adaptive controller
may take a relatively long time to convergewhichmay lead to
an unstable or unsatisfactory performance. Therefore, a sta-
bilizing feedback loop is designed to guarantee the system’s
stability. The feedback loop can be viewed as a proportional-
derivative compensator that stabilizes the system at start-up
while the adaptive parameters are being updated. Addition-
ally, it adds a disturbance rejection property to classical
adaptive control that is known to suffer from unstructured
uncertainties. Let eε = ε−ε∗, eψ = ψ−ψ∗, and eθ = θ−θ∗
denote the system’s tracking errors. The control objective is
to track these errors to zero. For that, let us define the fol-
lowing reference model:

sε = ėε + ηε eε = ε̇ − ε̇r (7a)

sψ = ėψ + ηψ eψ = ψ̇ − ψ̇r (7b)

sθ = ėθ + ηθ eθ = θ̇ − θ̇r (7c)

with •̇r = •̇∗ − η• e• and η• being a positive constant that
defines the desired bandwidth of the closed-loop system. The
symbol • can be ε, ψ , or θ . Formulation (3) can also be
expressed as:

v1 = 1

La
(Jε ε̈ − G cos ε) (8a)

v2 = 1

La
Jψψ̈ (8b)

u2 = 1

Lh
Jθ θ̈ (8c)

Therefore, the desired dynamics can be expressed by the
following helicopter’s inverse dynamics regression model:

1

La
(Jε ε̈r − G cos ε) = Υ T

ε Pε (9a)

1

La
Jψψ̈r = Υ T

ψ Pψ (9b)

1

Lh
Jθ θ̈r = Υ T

θ Pθ (9c)

where Υ• is a vector of known functions (regressor) and P•
is a vector of unknown parameters defined as,

Pε =
[

Jε

La

G

La

]
(10a)

Table 1 Physical parameters of the helicopter

Parameter Helicopter Unit

Mass of helicopter (Mh) 1.42 kg

Mass of counterweight (Mw) 1.87 kg

Arm length (La) 0.66 m

Arm length for counterweight (Lw) 0.66 m

Distance between propellers (Lh) 0.17 m

Gravity (g) 9.81 m s2

Inertia on roll axis (ε) 1.0348 kgm2

Inertia on pitch axis (θ) 0.0451 kgm2

Inertia on yaw axis (ψ) 1.0348 kgm2

Fig. 3 Desired trajectory for all angles

Pψ = Jψ

La
(10b)

Pθ = Jθ

Lh
(10c)

Therefore, the control law is defined as,

v1 = Υ T
ε P̂ε − Kεsε (11a)

v2 = Υ T
ψ P̂ψ − Kψ sψ (11b)

u2 = Υ T
θ P̂θ − Kθ sθ (11c)

where K• is a positive constant gain. The symbol •̂ denotes
the estimate vector.

Theorem 1 Consider a nonlinear system in the form (1) with
slowly time-varying parameters. Using the control law (11),
the closed-loop system’s stability is guaranteed with the fol-
lowing adaptation law:

˙̂Pε = −ΓεΥεsε (12a)

˙̂Pψ = −ΓψΥψ sψ (12b)

˙̂Pθ = −ΓθΥθ sθ (12c)

where Γ = [γ1, γ2, . . . , γm]T and γi is a positive constant
gain, i = 1, . . . , m.
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Fig. 4 Nominal case: a tracking errors; b yaw; c pitch; d roll; and e control signals

Proof Taking the time derivative of (7) yields,

ṡε = ε̈ − ε̈r (13a)

ṡψ = ψ̈ − ψ̈r (13b)

ṡθ = θ̈ − θ̈r (13c)

Using (3) and the regression model (9) leads to,

ṡε = v1 − Υ T
ε Pε (14a)

ṡψ = v2 − Υ T
ψ Pψ (14b)

ṡθ = u2 − Υ T
θ Pθ (14c)
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Fig. 5 Parameter estimation: a P̂ε ; b P̂θ ; and c P̂ψ

Consider a Lyapunov candidate as follows:

V = 1

2
{s2ε + s2ψ + s2θ + P̃T

ε Γ −1
ε P̃ε

+ P̃T
ψ Γ −1

ψ P̃ψ + P̃T
θ Γ −1

θ P̃θ }

Take the time derivative of V :

V̇ = ṡεsε + ṡψ sψ + ṡθ sθ

+ P̃T
ε Γ −1

ε
˙̂Pε + P̃T

ψ Γ −1
ψ

˙̂Pψ + P̃T
θ Γ −1

θ
˙̂Pθ

The variation of parameters P• is assumed to be negligible

compared to the system’s time constants, i.e., ˙̃P• = ˙̂P•. Sub-
stitute ṡε , ṡψ , and ṡθ from (14):

V̇ = {v1 − Υ T
ε Pε}sε + {v2 − Υ T

ψ Pψ }sψ + {u2 − Υ T
θ Pθ }sθ

+ P̃T
ε Γ −1

ε
˙̂Pε + P̃T

ψ Γ −1
ψ

˙̂Pψ + P̃T
θ Γ −1

θ
˙̂Pθ

Setting the control law as in (11) leads to,

V̇ = Υ T
ε P̃εsε + Υ T

ψ P̃ψ sψ + Υ T
θ P̃θ sθ

+ P̃T
ε Γ −1

ε
˙̂Pε + P̃T

ψ Γ −1
ψ

˙̂Pψ + P̃T
θ Γ −1

θ
˙̂Pθ

− Kεs2ε − Kψ s2ψ − Kθ s2θ

where P̃• = P̂• − P•. Setting the adaptation law as in (12)
implies that,

V̇ = −Kεs2ε − Kψ s2ψ − Kθ s2θ < 0 ∀K• > 0

Setting K• > 0 yields V̇ < 0, ∀ s• �= 0 so that s• =
0 is a globally asymptotically stable equilibrium point. A
positive Lyapunov function V , which is decreasing (V̇ <

0), must converge to a finite limit. Therefore, the system
is asymptotically stable in the sense of Lyapunov. Hence,
signals s•, P̃•, and P̂• are also bounded and converge to finite
values. It follows from (7) that e• and ė• are bounded, which
implies from (14) that ṡ• is also bounded. ��

For non-autonomous systems, finding a Lyapunov func-
tion V with a negative definite derivative (V̇ < 0) does not
lead to a conclusion about the asymptotic stability. Therefore,
Barbalat’s lemma is applied for the time-varying system in
hand to prove its asymptotic stability and convergence.
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Fig. 6 Disturbances added: a tracking errors; b yaw; c pitch; d roll; and e control signals

Lemma 1 (Barbalat) If the differentiable function V (t) has a
finite limit as t → ∞, and if V̇ (t) is uniformly continuous,
then V̇ (t) → 0 as t → ∞.

Taking the derivative of V̇ yields,

V̈ = −2(Kε ṡεsε + Kψ ṡψ sψ + Kθ ṡθ sθ )

Therefore, V̈ is also bounded.

From Lemma 1, V has a finite limit as t → ∞ and V̇
is uniformly continuous. Therefore, limt→∞ V̇ = 0, and
hence, limt→∞ s• = 0. Therefore, limt→∞ e• = 0 and
limt→∞ ė• = 0.
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Fig. 7 Tracking errors under parameters change: a doubled mass; b half mass; c control signals for doubled mass; and d control signals for half
mass

4 Results and Discussion

4.1 Setup

Different tests are performed to show the effectiveness of the
proposed scheme. Table 1 summarizes the physical parame-
ters of the helicopter along with their respective values. The
control coefficients are set to ηε = 40, ηψ = 12, ηθ = 16,
Kε = 25, Kψ = 2.5, Kθ = 3, Γε = [4.5 × 10−2, 0.3]T,
Γψ = 8 × 10−3, Γθ = 5 × 10−2, and the gravitational
constant is set to g = 9.8 m/s2. The controller is set to
operate at a sampling frequency of 100Hz. The desired posi-
tion reference trajectory is considered as a sequence of step
responses of a critically damped second-order system with a
natural frequency wn = 2 rad/s, as illustrated in Fig. 3. The
system’s response is studied taking into account the heli-
copter’s angles. To better show the convergence properties
of the adaptive controller, all adaptive parameters P̂• are ini-
tially set to zero. It is important to note that the desired values
of P̂• are calculated using (10) and the physical parameters
of the helicopter in Table 1.

4.2 Results

4.2.1 Nominal Case

The system’s response is studied taking into account the heli-
copter’s tracking errors e• and the adaptive parameters P̂•,
and the control signals v1, v2, and u2. First, the proposed
adaptive control scheme is tested on the helicopter in the
nominal case. Results are shown in Fig. 4. As it is shown, the
motion tracking errors converge gradually to zero after each
reference trajectory change. On the other hand, parameter
estimation performance is depicted in Fig. 5. The adaptive
parameters show good convergence to their nominal values.
The ability of the proposed controller in dealing with para-
metric uncertainties is clearly demonstrated.

4.2.2 Effect of Disturbances

To show the robustness of the controller against unstructured
uncertainties, unexpected sudden step disturbances are intro-
duced to the system. For that, a step disturbance of 1 rad is
added to the yaw, pitch, and roll axes at time 4s, 9 s, and 14s,
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Fig. 8 Nonzero initial conditions: a tracking errors; b yaw; c pitch; and d roll; e control signals

respectively. Results reported in Fig. 6 show that even under
the disturbances the controller is efficient in decaying the
errors to approximately zero without significant overshoot
or oscillations. It is noteworthy the saturation of control sig-
nals at ± 20 as shown in Fig. 6e. The advantage behind the
use of such controller is revealed by this test.

4.2.3 Effect of Parameter Variations

To further show the effectiveness of the controller under the
parametric uncertainties, the mass of the system is changed
by a factor of two and in another case by half. Similar to
the nominal case, the tracking errors depicted in Fig. 7 show
that controller is able to get the tracking errors to converge to
zero even in the presence of parametric uncertainties. This is
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Fig. 9 Comparison: a adaptive SMC; b PID control; and c adaptive control

Table 2 Performance comparison

Proposed method PID control Adaptive SMC

σe 0.05 0.40 0.76

σc 1.4 × 104 1.4 × 104 2.3 × 104

expected since no a priori parameters knowledge is required
by the controller even in the nominal case. Thus, the proposed
controller is instrumental in achieving the needed robustness
against parametric uncertainties.

4.2.4 Effect of Nonzero Initial Conditions

To study the effect of initial conditions on the proposed con-
troller, an initial condition of (ε = ψ = θ = 0.25) rad
is introduced. Results, depicted in Fig. 8, are shown for 3s
to better show the convergence properties of the system.
The controller provides a satisfactory transient response. All
angles converge quickly to their desired trajectories. Fig-
ure 8e shows control signals raising saturation and decreasing
gradually as the initial tracking errors are minimized.

4.2.5 Comparison Against Other Control Methods

The proposed adaptive control scheme is compared against
a conventional PID controller and the adaptive sliding-mode
controller (SMC) presented in Li et al. (2015b). The track-
ing errors are shown in Fig. 9. It is clearly shown that
unlike sliding-mode control, the proposed adaptive controller
is able to bring the tracking errors to zero over time. In
principle, sliding mode is achieved by discontinuous con-
trol and switching at infinite frequency. However, switching
frequency is limited in real-life applications and results in
discretization chattering problem as it is illustrated in Fig. 9.
To overcome this problem, the boundary solution can be used
to replace the discontinuous control by a saturation function
that approximates the sign function in a boundary layer of
sliding-mode manifold. This solution preserves partially the
invariance property of sliding mode where states are con-
fined to a small vicinity of the manifold, and convergence
to zero cannot be guaranteed because robustness to param-
eter variations and uncertain disturbances is obtained only
when slidingmode truly occurs. Similarly, the PID controller
is able to decay the tracking errors to a magnitude within
the range obtained by the adaptive SMC. It is important to
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Fig. 10 Sine-wave trajectory: a tracking errors; b yaw; c pitch; d roll; and e control signals

note that tracking errors under PID control and the proposed
control scheme have a similar initial magnitude; but, only
the adaptive controller is able to decrease the magnitude of
these errors further as parameters converge to their desired
values.

To quantitatively adjudge the trajectory tracking perfor-
mance, two performance metrics are introduced. First, the
integral of the tracking error σe is calculated over a single

run. The second performance index σc consists of the inte-
gral of the control signals. These metrics are calculated as
follows:

σe =
∫ t f

t0
(e2ε + e2ψ + e2θ ) dt (15a)

σc =
∫ t f

t0
(v21 + v22 + u2

2) dt (15b)
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where t0 and tf are initial and final time instants, respectively.
The obtained numerical values for both performance met-
rics are displayed in Table 2. The proposed adaptive control
method yields the lowest tracking performance index with a
control effort equal to that of the PID controller. The adaptive
SMC achieves the highest tracking performance index and
control effort.

4.2.6 Effect of Other Reference Trajectories

Finally, the proposed adaptive controller is validated using
different reference trajectories. For that, a 0.33 rad/s and
0.5 rad/s sine-wave trajectories are, respectively, set to the
yaw and roll. Results are depicted in Fig. 10. Regardless of
the trajectory, the proposed controller tracks all trajectories
with high precision.

5 Conclusion

In this paper, a Lyapunov-based adaptive controller is
proposed for high-performance control of a 3-DOF heli-
copter. The controller learns over time the system’s inverse
model while also coping with unstructured uncertainties.
As such, the control scheme achieves asymptotic conver-
gence and tracking by a Lyapunov-based adaptation law
in the presence of both structured and unstructured uncer-
tainties. Unlike other controllers, no a priori parameters
knowledge is required and the system’s closed-loop stability
is guaranteed by Lyapunov direct method. The controller is
tested under different conditions to evaluate its robustness
properties in the presence of various uncertainties. Results
show that the helicopter’s motion can be tracked with high
accuracy. Henceforth, the adaptive control approach can be
extended to improve static and dynamic performance of
high-performance motion systems. As a future work, a com-
parative study against various advanced control schemes can
be envisioned along with physical implementation.
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