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Abstract
The paper presents a model for demand response of residential consumers including several alternatives for load shifting and
for reduction in the electricity bill. The consumer behavior is based on time-of-use tariffs and modeled considering three goals
for the end-user: (1) to reduce the electricity bill; (2) to maintain the monthly consumption; and (3) to respond to price signals
without load shifting. Using real data from an electrical distribution utility operating in the south of Brazil, we present a
practical application that demonstrates the main features and advantages of the proposed model in comparison with available
models.
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1 Introduction

Although the cost to supply electricity can be extremely
variable, in power systems which have undergone a restruc-
turing process, utilities purchase energy at variable prices in
the wholesale market and sell it at a fixed price to retail-
ers (Gutiérrez-Alcaraz et al. 2016). However, fixed prices
can cause disparities between real costs and the profit gen-
erated by flat tariffs; in addition, some typical effects are no
longer dealt with in a proper way, such as the concentration
of consumption during peak hours, unrealistic prices, and
inefficient use of energy resources (Haider et al. 2016).

In a worldwide context, 28% of the global electricity
consumption is related to the residential sector; thus, any
reduction in the peak demand of this sector can improve
the system performance, helping to make it more prof-
itable and more efficient (McKenna and Keane 2016). Since
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the consumption modification could be encouraged with
the introduction of new tariffs, demand response programs
(DRPs) are designed to motivate end-users to change their
habits by responding to price signals (Kirschen et al. 2000).
Energy management, such as price-based energy manage-
ment schemes or incentive-based approaches, is considered
the first option when making decisions on energy policies,
due to its benefits from both economic and environmental
viewpoints (Rahmani-Andebili and Shen 2017). In fact, the
first and most natural step to achieve the goals of peak shav-
ing and load shifting is to motivate consumers to change
their habits. Thus, the major challenge of DRPs is to balance
opposing objectives of consumers and utilities. On the one
hand, end-users seek to minimize the amount paid for energy
and at the same time to maximize or keep their level of com-
fort; in opposition, utilities aim to minimize the cost of the
supplied energy.

From a practical perspective, the quantification of the
results achieved through DRPs is as important as the imple-
mentation of this kind of program. Given that consumers
may differ widely in their individual consumption habits, the
effect of a given consumer on the system is difficult to assess,
since the number of variables involved is large, and the way
they relate is very intricate and nonlinear. However, when
a large number of consumers are considered, the statistical
approach through well-known concepts, such as diversity,
allows utilities to assess the effects of DRPs through rela-
tively simple models (Moghaddam et al. 2011).
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In the present article, the main subject is the assessment
of end-user sensitivity to price variation, defined as price
elasticity of demand. Although part of the residential con-
sumers may voluntarily opt to variable tariffs, enabling them
to reduce the monthly electricity bill, another part of the con-
sumersmay not change their consumption habits. Yet another
part of the consumers will modify their load pattern only
when a minimum reduction target is established to reduce
themonthly electricity bill. Therefore, instead of considering
price elasticities as an input parameter of theDRPmodel, this
paper proposes a mathematical model to obtain the elastic-
ities which allow quantifying different consumer behaviors,
based on weighted load shifting and including reduction tar-
gets.

In the next subsection, an overview of relatedworks is pre-
sented in order to highlight the differences and similarities
between the proposed method and similar published meth-
ods.

1.1 RelatedWorks

Several different methods have been proposed in recent years
aiming to evaluate the impacts of DRPs. The majority of
these methods explore demand modeling techniques using
price elasticity of demand, which is considered a key factor
in the design of DRPs (Asadinejad et al. 2016), as elasticity
quantifies to what extent consumers can and in fact respond
to price variations (Lima et al. 2017). The price elasticity and
the level of customer participation in DRPs are two critical
factors with heavy impact on DR effectiveness (Hajibandeh
et al. 2019). If the electricity price varies during different time
periods (valley, off-peak, and peak periods), the consumer
behavior in terms of demand versus sensitivity can be charac-
terized as (Rahmani-Andebili 2016a): (1) one part of demand
of the end-user has single period sensitivity, since it cannot
be transferred to other periods, based on electricity prices
available in other periods, and it is called self-elasticity; (2)
another part of demand of the end-user has multi-period
sensitivity, since it can be transferred from one period to
other periods, based on variable tariffs, and it is called cross-
elasticity.

In Kirschen et al. (2000), a matrix approach of self
and cross-elasticities has been proposed, allowing to eval-
uate different types of price-based DRPs and customer
reactions. However, the authors did not clearly show how
they determined the elasticities. In contrast, the determina-
tion of elasticities has been the subject of several related
works (Rahmani-Andebili and Shen 2017; Hajibandeh et al.
2019; Venkatesan et al. 2012; Aalami et al. 2015; Rahmani-
Andebili 2016a, 2013).

The determination of self-elasticities using linear mod-
els has been proposed by Moghaddam et al. (2011) in order
to express the demand response to a three-part time-of-use

(ToU) tariff. Further, price-controlled energy management
of end-users has been proposed by Rahmani-Andebili and
Shen (2017), considering different mathematical behavioral
models, in order to optimize the unit commitment and gen-
eration scheduling. Basically, elasticities have decreased or
increased to encourage load shifting so as to improve the
load factor and thus reduce the overall cost of the generation.
However, Rahmani-Andebili and Shen (2017) have adopted
elasticities from Kirschen et al. (2000) with some modifi-
cation; unfortunately, no further detail was provided on the
elasticities calculation.

Asadinejad et al. (2016) have proposed clustering of con-
sumer behavior based on the response of households to
incentive-based DRPs; price elasticities of each cluster were
also presented and discussed. The effect of Tariff Flags on
the Brazilian power system was investigated by Lima et al.
(2017). Due to the lack of specific available data in the litera-
ture, the authors devised an interesting way to determine the
price elasticity from historical data of tariffs and residential
consumption. However, since the flag mechanism actually
represents amonthly adjustment of flat tariffs, aiming tomin-
imize eventual differences between costs and revenues of the
utilities, a single elasticity value was used.

The impacts of a comprehensive set of DR programs
applied to wind power integrationwere analyzed byHajiban-
deh et al. (2019). Their proposed model represents the
optimal amount of demand for customers who participated in
DRprograms that consider given electricity tariffs, incentive,
and penalty. However, the price elasticities of demand were
considered as an input parameter; in addition, the authors
did not attempt to determine accurate values for elasticities
in their study.

Venkatesan et al. (2012) have investigated the validity
of assumptions about the consumer rationality to develop
demand price elasticity matrices. Even though it was allowed
to model different behaviors, a major drawback was that they
disregarded the weekly availability for allocating the shifted
demand.

Nonlinear models have been investigated by Aalami et al.
(2015) and compared with a previously developed linear
model, concluding that both models perform almost equally
well for small elasticity values as well as for small price
changes. Conversely, other authors suggest that costumers
react differently and in a nonlinear way to similar types of
DRPs; nonlinear models, including social welfare, have been
also extensively investigated (Rahmani-Andebili 2016a, b).
Further, it has been demonstrated that assuming linear and
exponential behavioral models, the improvement in the load
factor and the amount of energy saved are similar, with and
without implementation of DRPs; moreover, these two types
of behaviors result in more saved energy compared with
power and logarithmic models.
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Finally, a method has been proposed by Salehpour and
Tafreshi (2019) to analyze the demand response considering
system uncertainties, such as the amount of energy negoti-
ated in energy markets, storage capacity, and reliability. The
authors presented a detailed procedure to obtain the elastic-
ity matrix when considering uncertainties. The coefficients
of the elasticity matrix are estimated using data analysis con-
cerning historical load and price; these coefficients are thus
indicated by lower and upper bounds. However, the matrices
proposed to describe the load shifting, occurring during the
hours of a given day, disregarded the weekly availability to
allocate the shifted loads.

1.2 Main Contributions

Although residential demand response models have already
investigated, to our knowledge, no previous work proposed
a mathematical model to determine the cross-elasticities
based on weighted load shifting, including reduction tar-
get. Moreover, the major part of published papers uses the
price elasticities taken fromKirschen et al. (2000) as an input
parameter, with no details about the modifications adopted.

In the context thus far described, this paper contributes to
existing studies in the following aspects:

– we introduce a new formulation for cross-elasticities
coefficients, based on weighted load shifting approach,
including lossless cases of demand response;

– we present a demand price elasticity matrix, consider-
ing the weekly availability for reallocating loads between
business days and weekends;

– we define guidelines for demand response design consid-
ering different consumer clusters and reduced targets of
electricity bill;

– we evaluate the proposed approach with a case study
based on data of a real distribution system, and the results
are discussed considering consumer and utility gains.

It should be stressed that the major advantage of the
method we propose is the systematic way elasticities can be
calculated so that the user sensitivity to price variations can
be estimated more confidently. To our knowledge, a similar
approach has not been attempted up to date.

2 Modeling Demand Response Programs

DRPs are among themost effective ways to promote changes
in energy consumption behavior. In practice, tomotivate end-
users to voluntarily take part in DRPs and therefore change
their consumption habits, utilities have to devise strategies
to give end-users some advantages, such as lower tariffs
and uninterruptible load contracts (Kirschen et al. 2000).

The actions typically expected from end-users include: (1)
changes in the hours of the day inwhich they consume energy
and (2) reduction in their demand. Further, the actions can
also include the replacement of old devices by new, more
efficient devices.

The literature often classifies DRPs into two types:
incentive-based and price-based type. The first DRP type
is frequently promoted by utilities, load-serving entities,
or regional grid operators, motivated either by grid relia-
bility problems or by high electricity prices. This type of
program normally offers end-users some financial compen-
sation, when they agree to reduce their demand, and includes
voluntary andmandatory actions (Rahmani-Andebili 2016a).
On the other hand, the price-basedDRP is voluntary andgives
end-users time-varying energy rates that reflect the electricity
cost during different time periods. In the present paper, price-
based DRPs are modeled for typical households, considering
the possibility of load shifting. The following subsections
shortly describe the main concepts related to ToU tariff, elas-
ticity, clustering, and consumer behavior, which are essential
to better understand the remaining of the paper.

2.1 Time-of-Use Tariff

Usually, households pay a fixed price for the electricity
($/kWh), which does not reflect the change in electricity cost
over time. When consumers adhere to a price-based DRP,
they can choose a tariff with hourly differentiation and thus
reduce the total amount paid for electricity by consuming
during most favorable hours of the day. Since customers can
be strongly influenced by price policies, this paper focuses
on the impact of ToU tariffs by defining two or more daily
periods in which the energy price is directly related to the
system load, which means that peak loads are translated into
a high price and conversely (Moghaddam et al. 2011).

Furthermore, the energy price may also change along the
days of the week or the months of the year. Several reasons
can justify the adoption of ToU tariffs, especially the fact
that consumers paying flat prices could feel insecure about
the volatility of real-time pricing. As a consequence, they
may hesitate to adhere to DRPs requiring them to follow the
energy price and then adjust their consumption to low-price
periods. Nevertheless, the relative simplicity of ToU tariffs
makes its acceptance by residential consumers easier.

2.2 Intensity of End-User Demand Response

According to Kirschen et al. (2000), the response of cus-
tomers to changes in the electricity price depends largely on
the time period considered. This time-dependent response
can be quantified and characterized by the concept of elas-
ticity. Accordingly, when a consumer decides to change his
demand at a given time instant as a result of a price change
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concerning the same instant, the change in the demand is
described by the self-elasticity. In contrast, when a consumer
can change his demand based on prices available for differ-
ent hours of the day and/or days of the week, the demand
change is described by the cross-elasticity, since the deci-
sion is influenced by tariffs valid for multiple periods.

2.2.1 Demand Price Elasticity Matrix (DPEM)

The end-user sensitivity to price variation can be represented
by an elasticity matrix (Kirschen et al. 2000), in which each
column represents the load changes throughout the day, cor-
responding to changes in price at the time instant given
by column numbers (Venkatesan et al. 2012). Hence, for
a pricing system with n tariff periods, the DPEM is given
by (Kirschen et al. 2000):

E =

⎡
⎢⎢⎢⎣

ε1,1 ε1,2 · · · ε1,n
ε2,1 ε2,2 · · · ε2,n
...

...
. . .

...

εn,1 εn,2 · · · εn,n

⎤
⎥⎥⎥⎦ , (1)

where the diagonal elements represent self-elasticities while
off-diagonal elements represent cross-elasticities. In matrix
form, the total demand variation, �D, is obtained by multi-
plying elasticities and prices, as given below (Kirschen et al.
2000):

�D = E �P. (2)

The vector �D has dimension n × 1 and its elements are
�di = di − d0i , where d

0
i is the demand for the time period

i (peak period, intermediary period, or off-peak period), and
where di is the corresponding demand after the end-user has
subscribed to the ToU tariff. The price variation �P in (2) is
an n × 1 vector whose elements are �pi = pi − p0, where
pi is the ToU tariff for the time period i , and p0 is the flat
tariff.

An important feature of DPEM is the ability to mathemat-
ically represent the behavior of different types of consumers
eligible to join a DRP. The consumer behavior can be classi-
fied into two basic types (Venkatesan et al. 2012):

– long-range consumers, who can shift their consumption
over a wide period of time. In this case, most or all of the
cross-elasticities are nonzero;

– short-range consumers, who are only concerned with the
price during a relatively short time; consequently, the
DPEM contains only diagonal elements, with all cross-
elasticities being null.

A pure long-range or short-range behavior cannot be
assigned to the majority of typical consumers; thus, they

actually have to be modeled as having a mixed behavior,
since it is not always possible to transfer all of their demand
to periods with lower prices. In addition, although DPEM
can successfully be used to model the consumer behavior,
the construction of this kind of matrix poses some practi-
cal difficulties. Therefore, the model we propose includes a
procedure to obtain the elements of the DPEM in such a way
that they accurately represent the behavior expected from the
consumer (see Sect. 3).

2.2.2 Self-Elasticity Elements

These elements are considered a measure of the load curtail-
ment undertaken by the consumer (Venkatesan et al. 2012) to
those loads that cannot be moved from one period to another
but only turned on/off, as the case of lighting loads (Moghad-
dam et al. 2011). The self-elasticity is calculated for the
electricity price pi and the demand di at the time instant
i as follows (Schweppe 1988):

εi,i = ∂di
∂ pi

, (3)

where εi,i ≤ 0. The term pi corresponds to the ToU tar-
iff, whereas the term di is replaced by the following affine
relation:

di = ai pi + bi , (4)

assuming a linear relationship between demand and price,
where the coefficient bi is the intercept and ai the line slope
at the time i (Moghaddam et al. 2011). The diagonal ele-
ments of (1) can now be obtained by inserting (4) into (3) and
performing the indicated differentiation, from which results
εi,i = ai .

2.2.3 Cross-Elasticity Elements

Cross-elasticity elements express load shifting or changes in
demand at a given time (Venkatesan et al. 2012), concerning
consumption that could be transferred from a peak period to
off-peak or valley periods (Moghaddam et al. 2011); mathe-
matically, they are given by:

εi, j = ∂di
∂ pj

, (5)

where i �= j and εi, j ≥ 0. The cross-elasticity εi, j indicates
the relative change in demand for the i th hour resulting from
a change in the electricity price at the j th hour. Unlike the
self-elasticity, the demand of the i th hour decreases when the
price of j th hour decreases (Aalami et al. 2015). Hence, a
column j of DPEM indicates how a change in price during
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Fig. 1 Typical load profiles during a a business day and b a Saturday

a single period j affects other periods (Moghaddam et al.
2011).

2.3 Clustering of Consumer Behavior

Historical data of electricity consumption contain signifi-
cant information which can help utilities to define strategies
for demand response programs. Further, the DRP imple-
mentation typically requires rules to classify the consumers;
these rules can be defined both using clustering methods and
considering similarities assessed through load profile anal-
ysis (Viegas et al. 2016). On the other hand, the number
of clusters can be defined using several criteria, includ-
ing requirements of regulatory agencies. For instance, the
Brazilian Electricity Regulatory Agency (ANEEL 2016)
establishes five households clusters, which are based on
the annual average consumption, as follows: Cluster 1 (0 to
80 kWh), Cluster 2 (81 to 160 kWh), Cluster 3 (161 to 500
kWh), Cluster 4 (501 to 1000 kWh), and Cluster 5 (above
1001 kWh).

The data required by the clustering process are in general
obtained throughmeasurement campaigns promoted by utili-
ties. Based on measured data, similar consumer behavior can
then be grouped into clusters; further, load profiles can help
understand how electricity is used over a particular period of
time, as depicted in Fig. 1.

Given that the measured data are inevitably corrupted by
some sort of invalid information (bad data), which can affect
the final results, the clustering process is performed in several
steps involving aspects such as checking of data consistency
and the identification of outliers, to avoid any distortion in
the average consumption (Salgado et al. 2016). Outliers may
be loosely defined as points that are too far from the expected
value calculated from the available data (Pearson 2002); thus,
an effective detection of outliers becomes an important step.
One of the best approaches to detect outliers is the well-
known 3δ−edit rule, which uses the standard deviation (δ)
as a reference value. However, this rule proved ineffective in
the presence of multiple outliers due to the masking effect of
the outliers on δ and on the mean value. Therefore, a more

robust reference value is the sample median, as used by the
Hampel Filter (Hampel 1985), in which the median absolute
deviation (MAD) replaces the standard deviation; MAD is
denoted by S and calculated as follows (Salgado et al. 2016):

S = medianz∈Z
(∣∣xz − x†

∣∣)

0.6745
, (6)

where Z represents all data in the sequence, xz is the value
of the record number z, and x† is the median value for all
records in Z (Pearson 2002). Thus, the outlier detection is
based on the Hampel Test, which identifies an outlier when∣∣xk − x†

∣∣ is greater than the threshold, defined as 3S (Laouafi
2017).

3 Proposed Approach

The approach we propose aims at encouraging households
to modify their consumption patterns using price signals
through a price-based DRP. Toward this end, it is essential to
be able to model and quantify the consumer response to ToU
tariffs. Even though individual response to electricity prices
is highly nonlinear, when a large number of consumers is
considered, those with similar load profile can effectively
be clustered and modeled more easily through the aggregate
response.

Most of the consumers are in fact interested in the ser-
viceswhich electricity can provide, so they primarily agree to
ToU tariffs to reduce the electricity bill; however, some con-
sumers, even agreeing to ToU tariffs, are reluctant to change
consumption habits. To analyze the impact of different con-
sumer objectives when adhering to price-based DRPs, we
propose a novel mathematical model of DPEM. Firstly, the
elasticitymatrixE is replaced in (2) by a sumof twomatrices:

E = Es + f Ec, (7)

where Es is a diagonal matrix composed only of self-
elasticity elements, which are obtained from real data, and
where Ec is a matrix containing only cross-elasticity ele-
ments. Secondly, the off-diagonal elements are calculated
considering the availability of the consumer to load shifting.
Thirdly, to handle different consumer objectives, DPEM is
multiplied by a factor f .

In the following subsection, the calculation of the cross-
elasticities is detailed, including the proposed formulation of
weighted load shifting. Next, different consumer responses
are modeled using the multiplying factor f , with the reduc-
tion target being defined.
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3.1 Weighted Load Shifting

The problem of load shifting has been already addressed in
several papers under some simplifying assumptions regard-
ing how the matrix DPEM is defined. Since the weighted
load shifting is modeled by cross-elasticities, Kirschen et al.
(2000), for example, assumed that the sum of all cross-
elasticities of a column j equals the self-elasticity on the
same column, yet with opposite sign (which ensures a loss-
less situation, since all consumption will be reallocated), as
given by:

∑n

i=1,i �= j
εi, j = −ε j, j . (8)

In a more realistic situation, however, not all consumption
can be transferred to alternative periods. To overcome this
problem, we propose a weighting factor wi, j , which takes
into account the capacity of load transfer between different
tariff periods k, as follows:

wi, j = wi∑n
k=1,k �= jwk

. (9)

Hence, cross-elasticities are calculated as:

εi, j = −ε j, jwi, j , ∀i �= j . (10)

The proposed weighted factor was designed in such a way
that it can handle the transfer of consumption from a given
tariff period to another, for example, from a peak period to an
off-peak period. Thus, when the cross-elasticities are multi-
plied by the weighting factor, it is possible to avoid infeasible
solutions, since, occasionally, there is not enough time to use
all the energy shifted from one period to another. This proce-
dure can be exemplified taking into account a typical month
with 20 business days and 5 weekends. When a household
adheres to a ToU tariff, during business days, the off-peak
period is composed of 19 h, the intermediary period of 2 h,
and the peak period of the remaining 3 h. Besides, Satur-
days and Sundays are assumed with 24 off-peak hours. In
this example, 19 h/day multiplied by 20 days/month results
in 380 h/month for wi=1, the weight for off-peak hours of
business days. The weights of intermediary and peak hours
for business days are calculated by multiplying 2 h/day and
3 h/day by 20 days/month, resulting in wi=2 = 40 h/month
and wi=3 = 60 h/month, respectively. Finally, 24 h per day
multiplied by 10 days permonth (5 Saturdays and 5 Sundays)
results in 240 h/month forwi=4, theweight for off-peak hours
of weekends. Therefore, the vector of weights assumes the
form:

Wi = [w1 w2 w3 w4] = [380 40 60 240]
h

month
, (11)

where the weights w1, w2, and w3 apply to off-peak, inter-
mediary, and peak periods of business days, respectively,
whereas w4 applies to the off-peak period of weekends.

3.2 Reduction Target

Another important aspect of the proposed model is the pos-
sibility to evaluate different consumer behaviors, based on
their objective when opting to ToU tariffs. For those con-
sumers seeking to reduce their electricity bill, we propose to
model their demand response as:

∑n

i=1
pidi = (1 − r) p0

∑n

i=1
d0i , (12)

where the reduction target r is given in per unit (pu) and
limited to 0 ≤ r ≤ rmax and the upper limit rmax depends on
the consumer cluster and tariff. The new value of monthly
electricity bill is obtained from:

∑n

i=1
pi di=

∑n

i=1
pi d

0
i +

∑n

i=1
pi εi,i�pi +

n∑
i=1

n∑
j=1, j �=i

pi f εi, j�p j .

(13)

To ensure a reduction in the electricity bill, the cross-
elasticities of the matrix Ec, appearing in (7), are multiplied
by the factor f , obtained from (12) and (13):

f = (1 − r) p0
∑n

i=1d
0
i − ∑n

i=1 pi
(
d0i + εi,i�pi

)
∑n

i=1
∑n

j=1, j �=i piεi, j�p j
. (14)

Moreover, to ensure that cross-elasticities are always positive
(as defined in Sect. 2.2.3), the numerator of (14)must yields a
positive value, i.e., (1 − r) p0

∑n
i=1d

0
i must exceed the value

of
∑n

i=1 pi
(
d0i + εi,i�pi

)
, leading to f ≥ 0.

3.3 DPEMModeling

To demonstrate the flexibility of proposed DPEM, we intro-
duce three hypothetical types of behavior concerning a
residential response to ToU tariffs:

– Behavior type A: typical of long-range consumers who
aim to reduce the monthly electricity bill and are ready
to change their monthly consumption;

– Behavior type B: common to long-range consumers who
seek to reduce the monthly electricity bill while keeping
theirmonthly consumption, thus characterizing a lossless
situation;

– Behavior type C: expected from short-range consumers
who aim to reduce the electricity bill and who at the same
time are not ready to shift their electricity consumption
over a wide period of time.
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Now based on the types of behavior so far defined, the
DPEM can be given in the form below for consumers with
behavior type A:

EA =

⎡
⎢⎢⎢⎣

ε1,1 f ε1,2 · · · f ε1,n
f ε2,1 ε2,2 · · · f ε2,n

...
...

. . .
...

f εn,1 f εn,2 · · · εn,n

⎤
⎥⎥⎥⎦ , (15)

where f is given by (14).
For consumers with behavior type B, f = 1 can be

assumed, as the monthly electricity consumption does not
change, i.e.,

∑n
i=1 di is equal to

∑n
i=1 d

o
i , even if the con-

sumer adheres to ToU tariffs. As a result, the DPEM takes
the form below:

EB =

⎡
⎢⎢⎢⎣

ε1,1 ε1,2 · · · ε1,n
ε2,1 ε2,2 · · · ε2,n
...

...
. . .

...

εn,1 εn,2 · · · εn,n

⎤
⎥⎥⎥⎦ . (16)

Further, for the behavior type B, we assume a lossless
situation, where the monthly consumption is constant and
therefore

∑n
i=1εi, j = 0, ∀ j = 1, 2, · · · , n.

Finally, for consumers having behavior type C, f = 0
can be assumed with all cross-elasticities becoming then
zero (Venkatesan et al. 2012). As a result, the DPEM has
only diagonal elements, as given below:

EC =

⎡
⎢⎢⎢⎣

ε1,1 0 · · · 0
0 ε2,2 · · · 0
...

...
. . .

...

0 0 · · · εn,n

⎤
⎥⎥⎥⎦ . (17)

4 Case Study

To evaluate the method we proposed thus far, it was imple-
mented in MATLAB� and subsequently applied to a case
study based on data of a real distribution system. The algo-
rithm we designed is depicted in Fig. 2 and detailed in what
follows.

4.1 Input Data

Given the seasonality of the electricity consumption, histor-
ical data must include records over a period of one year. As
no specific data for Brazilian low-voltage consumers were
available, to model their demand response, we adapted data
from the year 2015; this year can be considered representative
as the price of electric energy for households increased sig-
nificantly along 2015. The database we used was provided

Fig. 2 Overview of the proposed algorithm

by a Brazilian electricity utility and contains the monthly
consumption of 46,423 consumers (from which 43,300 are
households) connected to a 13.8 kV distribution system with
1,796 transformers and 8 feeders.

The ToU tariff chosen (white tariff) was available to low-
voltage Brazilian consumers in 2015 (ANEEL 2016b), with a
constant price during a tariff cycle (1 year) and 3 daily peri-
ods for pricing purposes: peak, intermediary, and off-peak
period. Given that each distribution utility serves a different
geographical area and that consumers have different con-
sumption habits, the utility can freely change these 3 periods
according to its own needs. Figure 3 illustrates the energy
prices without taxes for flat and ToU tariffs used in our study,
which were converted fromBrazilian Real (BRL) to USDol-
lar (1 US$ = 3.15 BRL).
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Fig. 3 Flat and white (ToU) tariffs available for the case study

(a) (b)

Fig. 4 Percentage share of: a consumers per cluster; b electricity con-
sumption per cluster

4.2 Pre-filtering of Consumer Data

To avoid errors in the approximation of aggregate demand
response,we selected only those householdswhichused elec-
tricity throughout all 12 months of 2015. As a result, the
pre-filtering process eliminated about 15% of the consumer
records.

4.3 Consumer Clustering

Clustering can help simplify the mathematical formulation
by representing different consumers with typical load pro-
files. We classified each consumer by the mean electricity
consumption taken from the last 12 records (ANEEL 2016).
Figure 4 illustrates selected data in terms of percentage share
of consumers per cluster and electricity consumption per
cluster.

4.4 Outliers Detection and Data Cleaning Filter

We detected the outliers by using the Hampel filter as
described here. Firstly, the median of the data sequence is
obtained by rank-ordering the data from the smallest to the
largest; then it is taken either the middle value, if the num-
ber of data points is odd, or the average of the two values in
the middle, if the number of data points is even, as detailed
in Pearson (2002). Next, all records of each cluster xz are
compared to itsmedianvalue x† and the difference is stored in
a residual vector. Finally, the data cleaning process excludes

Fig. 5 Details of DPEM adopted for the case study

those customers withmonthly residual exceeding three times
the MAD (3S). In this case study, 20.42% of the customers
were eliminated through the pre-filtering process, since at
least 12 valid records of monthly consumption are necessary
for each consumer (see algorithm in Fig. 2).

4.5 Demand Response Modeling

To the approach we propose here, it is important to pre-
dict the preference of consumers along with their response
to price changes. Therefore, we propose a model to predict
the demand response under all possible scenarios which is
based on the habits of each typical consumer belonging to
each cluster, as exemplified in Fig. 1. The first step is to
define the DPEM dimension according to the type of tariff: a
three-part ToU Tariff typically implies 3×3 matrices. Given
that we also include the possibility of end-users shifting part
of the electricity consumption to weekends, a larger DPEM
is required. Therefore, we introduce a DPEM matrix with
dimension 4 × 4, as detailed in Fig. 5, where ε1,1, ε2,2, and
ε3,3 are the self-elasticities of off-peak, intermediary, and
peak periods on business days, and ε4,4 is the self-elasticity
regarding off-peak periods during weekends. The elements
along the diagonal of DPEM come from linear regressions
calculated for each cluster; the off-diagonal elements depend
on the expected behavior of consumers. In addition, the off-
diagonal elements of each DPEM column are proportional
to self-elasticity on the same column.

A commonly used mathematical means to represent
a decreasing price versus demand is the linear function
(Moghaddam et al. 2011). However, when the elasticities
and price ratios are low, different approximation functions
can produce similar results (Aalami et al. 2015). In our case
study, we used typical load profiles to estimate the consump-
tion of each cluster over the time. Since the self-elasticities
are equal to the linear coefficients ai , we performed linear
regressions using the least squares method for each cluster
and each ToU period (off-peak, intermediary, and peak), thus
resulting in the values shown inTable 1,where itwas assumed
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Table 1 Self-elasticities of consumers

Cluster ToU period

Off-peak Peak Intermediary Weekend

1 −0.4734 −0.0789 −0.1085 −0.3255

2 −0.3773 −0.0849 −0.1981 −0.2830

3 −0.5315 −0.0924 −0.2196 −0.3236

4 −0.6458 −0.0942 −0.1884 −0.4171

5 −0.5466 −0.0643 −0.1393 −0.3215

Table 2 Weighting factors

Day Period Weighting factor wi, j

Business Off-peak w2,1 0.1176

w3,1 0.1765

w4,1 0.7059

Intermediary w1,2 0.5589

w3,2 0.0882

w4,2 0.3529

Peak w1,3 0.5758

w2,3 0.0606

w4,3 0.3636

Weekend Off-peak w1,4 0.7917

w2,4 0.0833

w3,4 0.1250

that all prices and quantities have been normalized (Kirschen
et al. 2000).

Regarding the weighted load shifting, the weights were
calculated by (9) considering the values previously expressed
by (11). Table 2 shows the values obtained for each wi, j .
Note that the biggest weighting factors are related to off-
peak periods ( j = 1 or j = 4), which can be explained by
the fact that these periods are longer when compared to the
peak and intermediary periods.

The determination of DPEM for each type of consumer
behavior is described in what follows and numerically exem-
plified for five clusters.

4.5.1 DPEM for Behavior Type A

To reduce the electricity bill, as stated by (12), the cross-
elasticities are multiplied by the factor f . For each cluster
we assumed the maximum integer reduction for r . In this
case, for Cluster 1, assuming r = 3% results in f = 0.6723
and the matrix EA

1 becomes:

EA
1 =

⎡
⎢⎢⎣

−0.4734 0.0296 0.0420 0.1732
0.0374 −0.0789 0.0044 0.0182
0.0562 0.0047 −0.1085 0.0273
0.2247 0.0187 0.0265 −0.3255

⎤
⎥⎥⎦ pu. (18)

For clusters 2, 3, 4, and 5 we assumed r equal to 5%,
3%, 7% and 9%, respectively, thus resulting in f = 0.1492,
f = 0.2276, f = 0.7178, and f = 0.7981. In this case, the
matrices EA

2 , E
A
3 , E

A
4 , and EA

5 become:

EA
2 =

⎡
⎢⎢⎣

−0.3773 0.0071 0.0170 0.0334
0.0066 −0.0849 0.0018 0.0035
0.0099 0.0011 −0.1981 0.0053
0.0397 0.0045 0.0107 −0.2830

⎤
⎥⎥⎦ pu,

(19)

EA
3 =

⎡
⎢⎢⎣

−0.5315 0.0118 0.0288 0.0583
0.0142 −0.0924 0.0030 0.0061
0.0214 0.0019 −0.2196 0.0092
0.0854 0.0074 0.0182 −0.3236

⎤
⎥⎥⎦ pu,

(20)

EA
4 =

⎡
⎢⎢⎣

−0.6458 0.0378 0.0779 0.2370
0.0545 −0.0942 0.0082 0.0250
0.0818 0.0060 −0.1884 0.0374
0.3272 0.0239 0.0492 −0.4171

⎤
⎥⎥⎦ pu,

(21)

EA
5 =

⎡
⎢⎢⎣

−0.5466 0.0287 0.0640 0.2032
0.0513 −0.0643 0.0067 0.0214
0.0770 0.0045 −0.1393 0.0321
0.3080 0.0181 0.0404 −0.3215

⎤
⎥⎥⎦ pu.

(22)

Since elasticity is a normalized measure of the intensity
of the consumers response to tariff variations, we assumed as
base values: 0.2215 US$/kWh for the electricity price; 49.95
kWh, 159.10 kWh, 499.05 kWh, 1000.20 kWh, and 1500.00
kWh for the monthly consumption of Clusters 1, 2, 3, 4, and
5, respectively.

4.5.2 DPEM for Behavior Type B

This case expresses the load shifting behavior of those con-
sumers willing to maintain the monthly electricity consump-
tion, before and after they adhere to a DRP. As previously
described in Sect. 3, considering f = 1, the matrices EB

1 ,
EB
2 , E

B
3 , E

B
4 , and EB

5 become:

EB
1 =

⎡
⎢⎢⎣

−0.4734 0.0441 0.0625 0.2577
0.0557 −0.0789 0.0066 0.0271
0.0835 0.0070 −0.1085 0.0407
0.3342 0.0278 0.0394 −0.3255

⎤
⎥⎥⎦ pu,

(23)

EB
2 =

⎡
⎢⎢⎣

−0.3773 0.0474 0.1141 0.2240
0.0444 −0.0849 0.0120 0.0236
0.0666 0.0075 −0.1981 0.0354
0.2663 0.0300 0.0720 −0.2830

⎤
⎥⎥⎦ pu,

(24)

EB
3 =

⎡
⎢⎢⎣

−0.5315 0.0517 0.1264 0.2562
0.0625 −0.0924 0.0133 0.0270
0.0938 0.0081 −0.2196 0.0404
0.3752 0.0326 0.0799 −0.3236

⎤
⎥⎥⎦ pu,

(25)
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EB
4 =

⎡
⎢⎢⎣

−0.6458 0.0526 0.1085 0.3302
0.0760 −0.0942 0.0114 0.0348
0.1140 0.0083 −0.1884 0.0521
0.4558 0.0333 0.0685 −0.4171

⎤
⎥⎥⎦ pu,

(26)

EB
5 =

⎡
⎢⎢⎣

−0.5466 0.0359 0.0802 0.2545
0.0643 −0.0643 0.0084 0.0268
0.0965 0.0057 −0.1393 0.0402
0.3858 0.0227 0.0507 −0.3215

⎤
⎥⎥⎦ pu.

(27)

In this case, the sumof the elements in each column is zero,
corresponding to the behavior of maintaining the monthly
electricity consumption before and after joining a DRP.

4.5.3 DPEM for Behavior Type C

This case describes the behavior of short-range consumers,
who aim to reduce the electricity bill without shifting the
peak consumption for periods of lower tariff. Since f = 0,
all cross-elasticities in DPEM are zero and the matrices EC

1 ,
EC
2 , E

C
3 , E

C
4 , and E

C
5 have only elements along the diagonal.

For example, the matrix EC
1 becomes:

EC
1 =

⎡
⎢⎢⎣

−0.4734 0 0 0
0 −0.0789 0 0
0 0 −0.1085 0
0 0 0 −0.3255

⎤
⎥⎥⎦ pu. (28)

4.6 Results of the Demand Response

Table 3 presents the results of the case study, including the
situations in which the consumer adheres to the flat tariff,
and to the ToU tariff. The demand response of each behavior
type is indicated separately, by the consumer side and by the
utility side. The next section is dedicated to the analysis and
discussion of the results obtained through the application of
the method we propose.

5 Results and Discussion

This section presents a discussion of the impacts produced by
the demand response on households that adhere to a ToU tar-
iff; the discussion also includes the impacts to the utility.
Regarding the consumer gains, we analyzed the electric-
ity consumption and monthly bill for a single end-user of
each cluster. Concerning utility gains, since the exact num-
ber of consumers which effectively adhere to ToU tariffs is
uncertain, we adopted 50% of implementation potential for
DRPs (Rahmani-Andebili 2013). In this case, the load fac-
tor, electricity revenue, and demand variation were obtained
for the Brazilian distribution system previously described in

Sect. 4.1. Table 3 presents the results when residential con-
sumers opt for a flat tariff (behavior type base).

With regard to the results considering that the consumers
have subscribed to a ToU tariff, we assumed three hypo-
thetical types described earlier (types A, B, and C) and
compared them with two models described in the works
reviewed in Sect. 1.1 (types I and II). Behavior type I was
based onKirschen et al. (2000) and results in the sameDPEM
for all clusters, which can be expressed by:

EI =

⎡
⎢⎢⎣

−0.200 0.008 0.006 0
0.010 −0.200 0.008 0
0.012 0.016 −0.200 0
0 0 0 −0.200

⎤
⎥⎥⎦ pu. (29)

Similarly, behavior type II was based on Rahmani-Andebili
(2013) and also gives the same DPEM for all clusters, as
follows:

EII =

⎡
⎢⎢⎣

−0.230 0.016 0.049 0
0.040 −0.020 0.010 0
0.033 0.010 −0.160 0
0 0 0 −0.230

⎤
⎥⎥⎦ pu. (30)

SinceKirschen et al. (2000) andRahmani-Andebili (2013)
did not consider the weekly availability for reallocating load
between business days andweekends, wemodified both orig-
inal models, including the fourth row and the fourth column
of the DPEM given by (29) and (30). In addition, the self-
elasticities ε1,1 and ε3,3 of Behavior II corresponds to the
maximum value indicated in Rahmani-Andebili (2013).

5.1 Analysis of the Model for Demand Response

Before analyzing consumption and bill variations, it is impor-
tant to discuss the price elasticity models and their influence
on demand response. As described in Sect. 4, we have
obtained the self-elasticities by performing linear regressions
for each cluster. The diagonal coefficients of each cluster
DPEM are equal for behavior types A, B, and C. On the
other hand, the off-diagonal coefficients vary according to
consumer expectations and habits.

In relation to behaviors A, B, and C, the self-elasticities
vary from −0.0643 to −0.6458, and the cross-elasticities
vary from zero to 0.4558, based on off-diagonal elements
of (18)–(28). Concerning the behaviors I and II, the self-
elasticities vary from −0.020 to −0.230, and the cross-
elasticities vary from zero to 0.049, although (Kirschen
et al. 2000; Rahmani-Andebili 2013) do not distinguish the
demand response inside each cluster, the same DPEM being
adopted for all residential consumers. Additionally, in the
technical literature, self-elasticities of households vary from
−0.146 (Lima et al. 2017) to−0.4 (Aalami et al. 2015), while
cross-elasticities from 0.001667 (McKenna andKeane 2016)
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to 0.1675 (Ton et al. 2013). Moreover, no detail was found
about the determination of elasticities in the published works
so far reviewed.

Empirical studies suggest that demand elasticities for
electricity are in general low (Lijesen 2007), even though
low price elasticities are essentially the result of insuffi-
cient incentives and the inability of consumers to manage
their demand in the context of the present electricity market.
Moreover, most authors provide little or even no information
about the data used to obtain the elasticities, making a more
thorough comparison between results very difficult. Besides,
elasticities reflect the difference between distinct consumer
clusters, which highlights the importance of grouping the
consumers according to the similarities of the load profiles,
a procedure generally not followed.

5.2 Consumer Side Results

One of the important advantages of the proposed approach
is that it can be applied in practice to reduce the monthly
electricity bill, which is the highest priority for most con-
sumers since they are mainly interested in minimizing the
amount paid for energy (Haider et al. 2016). Based on behav-
ior types A, B, and C, the end-users of Cluster 1 presented
a rather modest demand response to the ToU tariff; due to
their low monthly consumption, only a reduction no larger
than 3.80% can be achieved. By contrast, end-users of Clus-
ter 5 are encouraged to adhere to the ToU tariff, as their
higher consumption allows a reduction target of up to 9.35%,
which can be achieved with small changes in the consump-
tion habits. In addition, based on the variation of electricity
consumption presented in Table 3, end-users of Cluster 2,
consuming between 81 and 160 kWh monthly, achieved the
greatest reduction (−4.70%). For behavior type I, all clus-
ters presented a significant reduction in the electricity bill
(up to 18%) when compared to other types of behavior; how-
ever, achieving the reductions indicated requires significant
changes in consumption habits.

Our study reveals that households consuming
80 kWh/month respond less to price variations than those
consuming 1000 kWh/month. This fact also highlights the
importance of the clustering process applied to classify cos-
tumer; it also stress the need for usingmore realistic scenarios
when assessing demand response. Additionally, according
to our study, any saving depends on the prevailing ToU
rates. For example, for the Brazilian ToU tariff, the rela-
tionship between the prices for peak and off-peak periods is
close to 2, which severely limits the value of the maximum
reduction target (rmax) to less than 10% for all consumer
clusters. On the other hand, when the relationship between
the price for peak and off-peak periods is close to 5, as
occurs with the tariffs in the UK (Energy 2017), for instance,
it is possible to increase the maximum reduction target to

123



434 Journal of Control, Automation and Electrical Systems (2020) 31:422–435

up to 25%. The lower tariff in the period from 11 pm to
6 pm contributes to the reduction of the electricity bill,
since the off-peak period corresponds to 86% of the time,
with a consumption of about 70% of the monthly electric-
ity. Consequently, all clusters reduce the amount spent on
electricity for all types of consumer behavior, as detailed in
Table 3.

5.3 Utility Side Results

In general, utilities decide on investments taking into account
not only technical and economic criteria but also all possi-
ble reactions from their consumers. Therefore, it becomes
essential to evaluate the impact of customers participation
in DRPs from the point of view of the utility. Concern-
ing our case study, we present the utility side results in
terms of load factor, electricity revenue, and demand vari-
ation. Since price-based energy management schemes are
designed to encourage end-users to change their habits,
it was found that if 50% of consumers of the real dis-
tribution system we considered here adhere to the white
tariff, for behavior types A, B, and C, the load factor
doubles. Additionally, the improvement on system perfor-
mance would allow the utility to postpone investments, a
revenue reduction of around 2% being then feasible. Fur-
ther, the lowest reduction was obtained for behavior type
B, which represents a lossless situation (customers keep
their monthly consumption unchanged). On the other hand,
Behavior II presented the lowest revenue reduction, yet
with a smaller variation in the load factor, because the
DPEM of behavior types I and II is equal for all clus-
ters.

Since distribution systems are designed to supply the
peak demand of consumption occurring only for a few
hours a day, it is important to evaluate the demand vari-
ation of each ToU period, especially during peak periods.
Our study demonstrates a high potential for load shifting,
around 20% of peak shaving, the double of peak shift-
ing achieved in previous studies with ToU tariffs (Yan
et al. 2018). Considering the possibility of reallocating loads
between business days and weekends, we obtained 4% of
valley filling. Regarding the intermediary and peak peri-
ods, according to column twelve and thirteen of Table 3,
customers reduced the electricity use independent of the
behavior type, since the differences between ToU and Flat
tariffs are 0.0204 and 0.1074 US$/kWh, respectively, thus
discouraging the use of electricity between 6 and 11 pm.
Concerning the off-peak consumption, the results show a
more favorable situation for consumers; in this case, a
ToU tariff of 0.1253 US$/kWh and a flat tariff of 0.1450
US$/kWh (see Fig. 3) stimulated the use of electricity dur-
ing this period. As a result, the demand increased during

off-peak periods on business days and also on week-
ends.

6 Conclusions

The potential of demand response programs is related to the
extent consumers modify their habits based on price vari-
ation. We proposed here a model based on demand price
elasticity matrix which allows assessing the load manage-
ment capability of consumers clusters. Since end-users with
similar load profile can be clustered, each group respond dif-
ferently to time-varying price. The behavior sensitivity was
measured by an elasticity matrix, enabling to formulate con-
ditions which reflect the intent of consumers. Different from
traditional methods, a weighted load shifting approach was
presented, in order to represent those consumers who intend
either maintain their electricity consumption or reduce their
monthly bill.We also included in our analysis customers only
concerned with the current price, e.g., with no intention to
shift their loads.

The proposed method was evaluated using data of a real
distribution system and the results led to the following con-
clusions:

– regarding consumer savings: without a significant differ-
ence between peak and off-peak prices, time-based tariffs
are not attractive. Table 3 demonstrates that this is true
independent of the cluster and the behavior type con-
sidered, including those behaviors taken from previous
works (types I and II);

– to accurately represent the behavior of consumers, it is
essential to take into account their consumption habits,
which are different for each cluster;

– the method we propose allowed us to determine DPEMs
for each cluster considering three types of practical
behaviors (consumer objectives);

– the improvement in the load factor and the reduction in
the Joule losses can outweigh the consequent reduction
of revenue, which is, in any case, estimated as a small
reduction;

– although the case study exemplified an application with
a ToU tariff, the proposed approach can be applied to any
pricing schemes as well.

Finally, as future work, we suggest to model the demand
price elasticities under high-level uncertainties of active dis-
tribution systems.
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