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Abstract
This paper addresses the robust and minimum norm controller design for matrix second-order linear systems by means of
combined displacement and acceleration feedback. First, the necessary conditions that ensure solvability are presented. Then,
the parametric expressions of gain controller and eigenvector matrix are formulated on the basis of a set of free parameters.
The proposed solution simultaneously makes the resulting closed-loop system numerically robust and obtains gain controllers
with minimum norms. Also, the solution is general and can be applied when mass matrices are either singular or nonsingular.
This is promising for better applicability in many practical applications. Finally, two examples are provided to illustrate the
effectiveness of the proposed control strategy.

Keywords Active control · Second-order linear systems · Displacement–acceleration feedback · Robust control · Feedback
stabilization

1 Introduction

This note deals with the following class of second-order lin-
ear systems:

{
Mẍ(t) + Dẋ(t) + Kx(t) � Cu(t),
x(0) � x0, ẋ(0) � ẋ0

(1)

using the displacement–acceleration feedback controller

u(t) � −Fdx(t) − Fa ẍ(t) (2)

where M, D, K ∈ R
n×n andC ∈ R

n×r are the mass, damp-
ing, stiffness and control matrices, respectively. Here, the
vectors x(t), ẋ(t), ẍ(t) ∈ R

n and u(t) ∈ R
r are the dis-

placement, velocity, acceleration and control input vectors,
respectively. Furthermore, Fa, Fd ∈ R

r×n are, respectively,
the acceleration and displacement gain matrices.
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Applying controller (2) to system (1), we can obtain the
closed-loop dynamics as

(M + CFa)ẍ(t) + Dẋ(t) + (K + CFd)x(t) � 0. (3)

Therefore, the proposed controller (2) can modify the
mass and stiffness parameters. In order to alter the behav-
ior of the second-order system, displacement–acceleration
feedback may be utilized. Accordingly, the regularity of the
closed-loop system can be guaranteed.

Matrix second-order systems arise naturally in the study
of many types of engineering applications. Common exam-
ples are vibration control in structural dynamics, control of
mechanical multi-body systems and robotics control. The
problem of maintaining the stability of second-order sys-
tem has been an active area of research. For this model,
it is customary to use displacement–velocity feedback in
order to achieve a desired behavior, u(t) � −Fdx(t) − Fv ẋ
(t). Several parametric expressions for the feedback gains
using the eigenstructure assignment (ESA) technique have
been reported for second-order systems (Schulz and Inman
1994; Kim et al. 1999; Abdelaziz and Valasek 2005; Ouyang
et al. 2012). Furthermore, several algorithms for robust eigen-
value assignment problem have been proposed (Chan et al.
1997; Henrion et al. 2005). The sensitivity measures for the
eigenvalues of the quadratic matrix polynomial are derived
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(Nichols and Kautsky 2001). However, the velocities, espe-
cially for large flexible structures, are not as easily and
accurately obtainable as accelerations,which have been com-
monly obtained through the use of accelerometers. From
the viewpoint of measurement, accelerometer is a favor-
able sensor to measure the dynamic structural responses.
Acceleration is often easier to measure than displacement
or velocity, particularly when the structure is stiff (Preumont
2002). Consequently, the available signals for feedback are
displacement and acceleration. Using acceleration feedback
control in structural applications has been shown to be a
feasible, more accurate and successful method for reduc-
ing vibration of engineering structures. This is even more
interesting because of the frequent use of accelerometers in
practical applications.

Due to the wide use of accelerometers, many types of
accelerometers have been developed. The type is based on
the measurement technique employed within the accelerom-
eter. The types of accelerometer are piezoelectric, micro-
electromechanical system (MEMS), piezoresistive, capaci-
tive, inductive, thermal, strain gauge, and so on. Piezoelectric
accelerometers with integral electronics (IEPE) are vibration
sensors designed for measurement of dynamic vibration sig-
nals overwide frequency range typically from1Hz to 10kHz.
The IEPE accelerometers have some good properties, such
as low noise, wide dynamic range, wide frequency response,
wide temperature range, low output impedance, high sensi-
tivity and the availability of miniature design. Consequently,
the IEPE accelerometers are widely used in practice, such as
aircraft, automobiles, structure monitoring, medical devices,
seismic isolation and stabilization platforms, homeland secu-
rity, oil and mineral exploration, seismology and earthquake
measurements and exotic applications such as active isola-
tors for gravitational wave detectors (Levinzon 2015). The
measured acceleration data usually involve unexpected error
by the data record, data logger and analysis procedure on
the measured data. To cope with these errors, various signal-
processing techniques are necessary to eliminate the noise
from the data logger.

This work presents the application of displacement–ac-
celeration feedback for matrix second-order linear systems.
To the best of my knowledge, there has been little study
utilizing this feedback in the literature. The control prob-
lem by acceleration, velocity and displacement feedback for
second-order system was first considered by Rofooei and
Tadjbakhsh (1993). The displacement–acceleration feedback
control is implemented on a beam-type tuneable vibration
absorber (Alujevic et al. 2012).Moreover, the partial ESA for
undamped vibration systems that uses displacement–acceler-
ation feedback is introduced (Zhang et al. 2014). Recently, a
directmethod for updating finite elementmodelswith incom-
plete modal measured data using displacement–acceleration
feedback is developed (Yuan et al. 2016). Additionally,

the recent parametric solution for the ESA problem using
displacement–acceleration feedback for descriptor second-
order system is proposed (Abdelaziz 2016; Gu et al. 2016).
The regularization and stabilization conditions for descriptor
second-order system are derived.

Descriptor second-order systems arise naturally in
mechanical multi-body systems and a variety of other practi-
cal applications (Losse and Mehrmann 2008; Kawano et al.
2013; Abdelaziz 2014, 2015). One inherent characteristic of
descriptor systems is their impulsive response due to infinite
eigenvalues. In fact, impulses may cause degradation in per-
formance, damage components or even destroy the system.
Therefore, it is important to study the problem of elimi-
nating the impulsive behavior of a descriptor second-order
system via certain feedback controllers. The controllabil-
ity and observability conditions for descriptor second-order
systems are developed (Losse and Mehrmann 2008). A pro-
cedure for decoupling the second-order systemswith singular
mass matrices is studied (Kawano et al. 2013). Recently,
the combined velocity and acceleration feedback for matrix
second-order system has received significant attention dur-
ing the last few years, u(t) � −Fv ẋ(t)−Fa ẍ(t); see (Araújo
et al. 2016; Abdelaziz 2013, 2014, 2015). The regularization
and stabilization conditions for descriptor second-order sys-
tems with singular mass matrix are investigated. Moreover,
the first-order descriptor systems have been of great interest
in the literature because they have comprehensive practical
applications in mechanical and electrical fields (Dai 1989).

The main contribution of this research is to present a
novel procedure for robust and minimum norm controller
design for second-order system using displacement–acceler-
ation variables. First, the parametric expressions for the gain
controllers and the right eigenvector matrices are presented.
Based on the parametric expressions, the optimum solution
is obtained. The proposed solution simultaneously makes the
resulting closed-loop system numerically robust and obtains
gain controllers with minimum norms. Both the cases of sin-
gular and nonsingular mass matrices are discussed. Finally,
two examples are provided to illustrate the effectiveness of
the proposed control strategy.

2 Statement of the Problem

It is well known that the behavior of closed-loop system (3) is
governed by the eigenstructure of its associated polynomial
Pc(λ) ∈ R

n×n[λ]

Pc(λ) � λ2(M + CFa) + λD + K + CFd . (4)

The zeroes of det(Pc(λ)) are known as the character-
istic frequencies of the system which can be obtained by
solving det(Pc(λ)) � ∑2n

k�0 αkλ
k � 0, where α2n � det
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(M + CFa) andα0 � det(K + CFd). The closed-loop sys-
tem (3) possesses 2n finite eigenvalues, provided the leading
coefficient matrix (M+ CFa) is nonsingular.

Let Γ � {λi ∈ C, i � 1, 2, . . . , 2n} be a set of pre-
specified, self-conjugate eigenvalues. Further, denote the
right and left eigenvectors associatedwith λi by vi ∈ C

n, ti ∈
C
n, i � 1, 2, . . . , 2n, and then the following relations hold:

(
λ2i (M + CFa) + λi D + K + CFd

)
vi � 0,

vi �� 0, i � 1, 2, . . . , 2n, (5)

and

tHi

(
λ2i (M + CFa) + λi D + K + CFd

)
� 0,

ti �� 0, i � 1, 2, . . . , 2n. (6)

where H denotes the conjugate transpose.
Denote

V � (
v1 v2 . . . v2n

) ∈ C
n×2n,

T � (
t1 t2 . . . t2n

) ∈ C
n×2n,

Λ � diag
(
λ1 λ2 . . . λ2n

) ∈ C
2n×2n

where the columns of V and T comprise the right and left
eigenvector matrices of the quadratic polynomial Pc(λ) and
Λ is in Jordan canonical form with the eigenvalues of Pc(λ)

on the diagonal. There exist matrices V and T that satisfy

{
(M + CFa)VΛ2 + DVΛ + (K + CFd)V � 0,
Λ2TH(M + CFa) + ΛTHD + TH(K + CFd) � 0.

(7)

Thus, if the system response needs to be altered by dis-
placement–acceleration feedback, both eigenvalue assign-
ment and eigenvector assignment should be considered. Such
design problem is called the ESA.

Recall the controllability conditions for descriptor second-
order systems (Losse and Mehrmann 2008).

Lemma 1 A second-order descriptor system (1) is

(i) R2-controllable if and only if rank(
λ2M + λD + K C

) � n,∀λ ∈ C;
(ii) strongly C2-controllable if and only if rank

(
M C

) �
n. �

It is known that the closed-loop pencil Pc(λ) has 2n eigen-
values and the closed-loop system (3) is called regular if
det(Pc(λ)) is not identically zero. The polynomial matrix
Pc(λ) is said to be stable if det(Pc(λ)) has all roots in C

−.
If Pc(0) is singular, then det(Pc(0)) is zero, and Pc(λ) has

a root at the origin so that Pc(λ) is unstable. On the other
hand, if Pc(0) is nonsingular, det(Pc(0)) is nonzero so that
det(Pc(λ)) has no roots at the origin. Now, the regularization
and stabilization conditions for the closed-loop system (3)
are presented (Abdelaziz 2016).

Theorem 1 A second-order descriptor system (1) is reg-
ularizable and stabilizable via displacement–acceleration
controller (2) if the following conditions are met.

1. all eigenvalues are finite and nonzero,
2. the system is strongly C2-controllable, or rank(

M C
) � n, and

3. rank
(
K C

) � n.

Proof See Abdelaziz (2016). �

Throughout the paper, the following assumptions are
imposed on matrix second-order descriptor system (1):

Assumption 1 The desired eigenvalues are nonzero and
closed under complex conjugation.

Assumption 2 The descriptor second-order system (1) is
strongly C2-controllable, or rank

(
M C

) � n.

Assumption 3 rank
(
K C

) � n.

Assumption 4 rank(C) � r .

Remark 1 If the mass matrixM of system (1) is nonsingular,
then Assumption 2 is modified to system (1) which is R2-
controllable, rank

(
λ2M + λD + K C

) � n,∀λ ∈ C. The
other assumptions are indeed necessary to guarantee that the
closed-loop system is stable and the gain is real.

In many practical applications, system (1) is usually sub-
ject to perturbations, and therefore, the eigenvalues of a
closed-loop system vary with the system-parameter pertur-
bations. The robust pole assignment problem is finding Fd

andFa such that the eigenvalues of a closed-loop systemhave
minimal sensitivity to the variations in the closed-loop sys-
tem matrices (M + CFa), D and(K + CFd). Therefore, it is
desirable that the gains not only assign specified eigenvalues
to the closed-loop system but also that the system is robust or
insensitive to perturbations. Moreover, the minimization of
the norm of controllers Fd and Fa can be considered. Reduc-
tion of the norm of controller gains results in the average
magnitude of control input being reduced. We now formu-
late the robust and minimum norm problem for system (1) as
follows:

Given second-order system (1) and desired set Γ , com-
pute the controller matrices Fd and Fa such that the norm of
feedback gains is minimized and the closed-loop eigenvalues
λi ,∀i, are as insensitive as possible to parameter perturba-
tions in the closed-loop system matrices.
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3 Parametric Expression for the Gain
Controllers

In this section, we will present the parametric expressions
for both the gain controllers and the closed-loop eigenvector
matrices when the system under consideration is singular or
nonsingular.

First, the closed-loop system dynamics (5) can be
expressed as

(
λ2i M + λi D + K

)
vi + Cwi � 0, i � 1, 2, . . . , 2n. (8)

where

wi �
(
Fd + λ2i Fa

)
vi � (Fd Fa)

(
vi

λ2i vi

)
.

Denoting W � (
w1 w2 . . . w2n

) ∈ C
r×2n , one can

obtain that

W � (Fd Fa)

(
V

VΛ2

)
. (9)

Pre-multiplying this equation by

(
V

VΛ2

)−1

, a parametric

representation of the displacement–acceleration gain con-
troller is

(Fd Fa) � W

(
V

VΛ2

)−1

. (10)

Equation (8) can be rewritten as

(
λ2i M + λi D + K C

)( vi
wi

)
� 0, i � 1, 2, . . . , 2n. (11)

The solution to this equation should be in the null space of(
λ2i M + λi D + K C

)
. Consequently, this equation satisfies(

vi
wi

)
∈ ker

(
λ2i M + λi D + K C

)
,∀i, where ker(.) is the

null space.
In the following, wewill present the parametric ESA solu-

tion to system (1) (Abdelaziz 2016).

Theorem 2 Consider the second-order system (1) and the
prescribed, self -conjugate setΓ satisfying Assumptions 1–4.
The parametric expressions for gain are expressed by

(12)(Fd Fa)

� (
Qi2θ1 Qi2θ2 · · · Qi2θ2n

) (
Qi1θ1 Qi1θ2 · · · Qi1θ2n

λ21Qi1θ1 λ22Qi1θ2 · · · λ22nQi1θ2n

)−1

where Qi1 ∈ C
n×r and Qi2 ∈ C

r×r are obtained by

Hi
(
λ2i M + λi D + K C

)
Qi � (

Σi 0n,r
)
,

Qi �
(∗ Qi1

∗ Qi2

)
,

i � 1, 2, . . . , 2n. (13)

where Hi ∈ C
n×n, Qi ∈ C

(n+r)×(n+r), andΣi ∈ C
n×n.

Moreover, θi ∈ C
r ,∀i , are free parameter vectors satisfy-

ing the following two constraints:

Constraint 1 : θk � θ∗
i when λk � λ∗

i , i, k;

Constraint 2 : det

(
Qi1θ1 Qi1θ2 . . . Qi1θ2n

λ21Qi1θ1 λ22Qi1θ2 . . . λ22nQi1θ2n

)
�� 0.

Proof See Abdelaziz (2016). �

Remark 2 Relation (13) can be obtained using the singular
value decomposition (SVD) for

(
λ2i M + λi D + K C

)
,∀i,

where matrices Hi and Qi are orthogonal, Σi � diag(
σi1 σi2 · · · σin

)
is nonsingular, σi1 ≥ σi2 ≥ · · · ≥ σin >

0. Further, matrices Qi1 and Qi2 are obtained by

Qi1 � (
In 0n,r

)
Qi

(
0n,r

Ir

)
and Qi2 � (

0r ,n Ir
)
Qi

(
0n,r

Ir

)
.

Remark 3 Note that the parametric solution (12) includes
the design vectors θi ,∀i , which represent the degrees-of-
freedom offered by displacement–acceleration feedback.
Accordingly, the design vectors θi ,∀i, can be utilized as a
basic parameter optimization for the closed-loop system (3).

4 Robust andMinimumNorm Controller
Design

In this section, an efficient method is proposed to obtain
the robust and minimum norm controller design. In many
practical cases, there often exist parameter variations or per-
turbations in the system model. It is well known that the
presence of uncertainty in the model greatly influences the
control performance and stability of the closed-loop sys-
tem. Consequently, designing a controller that can tolerate
parameter variations or perturbations in the system model is
the current research interest. The robust and minimum norm
controller design tries to utilize the freedom over the closed-
loop eigenvectors to arrange them such that the closed-loop
system becomes insensitive to parameter variations.

4.1 Uncertain Second-Order System

For second-order system (1), the perturbations can be defined
as 	M,	D,	K ∈ R

n×n and	C ∈ R
n×r . Accord-
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ingly, the system matrices M, D, K and C can be per-
turbed to (M + 	M), (D + 	D), (K + 	K ) and (C + 	C),
respectively.Hence, the uncertain second-order linear system
associated with (1) can be written as:

(14)

⎧⎨
⎩

(M + 	M) ẍ p (t) + (D + 	D) ẋ p (t)
+ (K + 	K ) xp (t) � (C + 	C) u (t) ,

xp (0) � x0, ẋ p (0) � ẋ0

where xp(t), ẋ p(t), ẍ p(t) ∈ R
n are the perturbed displace-

ment, velocity and acceleration vectors.
Now, by applying the displacement–acceleration control

input

u(t) � −Fdxp(t) − Fa ẍ p(t),

the uncertain closed-loop system is

(15)

(M + 	M + (C + 	C) Fa) ẍ p (t)

+ (D + 	D) ẋ p (t)

+ (K + 	K + (C + 	C) Fd ) xp (t) � 0.

Therefore, the uncertain quadratic polynomial pencil can
be written as

(16)

Pcp (λ) � λ2 (M + 	M + (C + 	C) Fa)

+ λ (D + 	D) + K + 	K + (C + 	C) Fd .

The pencil Pcp(λ) ∈ R
n×n[λ] has 2n eigenvalues, and

the uncertain closed-loop system (15) is called regular if the
corresponding matrix pencil det(Pcp(λ)) is not identically
zero.

Now, the necessary conditions presented in Sect. 3 can
be further extended to cope with uncertain second-order sys-
tems. The following theorem establishes the regularization
and stabilization conditions for the uncertain closed-loop sys-
tem (15).

Theorem 3 Consider the uncertain second-order system (14)
satisfying rank(C + 	C) � r . There exist the real gain
matrices Fd and Fa such that Pcp(λ) is regular if and only
if rank

(
M + 	M C + 	C

) � n. Moreover, the uncer-
tain closed-loop system (15) is stable if and only if rank(
K + 	K C + 	C

) � n.

Proof The characteristic polynomial of uncertain closed-
loop system (15) can be expanded as

det
(
Pcp(λ)

) � a2nλ
2n + · · · + a1λ + a0 � 0 (17)

where a2n � det(M + 	M + (C + 	C)Fa) and a0 � det
(K + 	K + (C + 	C)Fd). So, the uncertain system (14)

possesses 2n finite eigenvalues provided the leading coeffi-
cient matrix (M + 	M + (C + 	C)Fa) is nonsingular. Oth-
erwise, if the term (M + 	M + (C + 	C)Fa) is singular,
then deg

(
det

(
Pcp(λ)

))
< 2n (system has infinite eigenval-

ues). The pencil Pcp(λ) has 2n eigenvalues and the uncertain
closed-loop system (15) is called regular if det

(
Pcp(λ)

)
is

not identically zero. Equation (17) can be rewritten as a finite
product as:

(18)

det
(
Pcp (λ)

) � a2n (λ − λ1) (λ − λ2) · · · (λ − λ2n)

� a2nλ
2n + · · · + a1λ + a2n

2n∏
i�1

λi

where λ1, λ2, …, λ2n are zeroes of det
(
Pcp(λ)

)
. Remark that

a0 � a2n
∏2n

i�1
λi

or

(19)

det (K + 	K + (C + 	C) Fd )

� det (M + 	M + (C + 	C) Fa)
2n∏
i�1

λi .

To guarantee that uncertain closed-loop system (14) is
regular, then

(20)

det (M + 	M + (C + 	C) Fa)

� det (K + 	K + (C + 	C) Fd )
2n∏
i�1

λ−1
i �� 0.

Finally, from Eq. (20), it can be concluded that Pcp(λ) is
regular if and only if det(K + 	K + (C + 	C)Fd) �� 0 and
λi ��0, ∀i.

If λ� 0, we can verify that

det
(
Pcp (λ � 0)

)
� lim

λ→0
det

(
λ2 (M + 	M + (C + 	C) Fa)

+ λ (D + 	D) + K

+ 	K + (C + 	C) Fd
)

� det (K + 	K + (C + 	C) Fd )

(21)

Therefore, det
(
Pcp(0)

) �� 0 if and only if the term
(K + 	K + (C + 	C)Fd) is nonsingular. Otherwise, Pcp
(0) is singular if det(K + 	K + (C + 	C)Fd) � 0; then,
the system has at least one root at the origin (unsta-
ble). This means that all the poles of uncertain system
could be shifted to arbitrary finite locations using the dis-
placement–acceleration controller with the exception when
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(K + 	K + (C + 	C)Fd) is singular. Thus, the necessary
condition for stability is det(K + 	K + (C + 	C)Fd) �� 0.

Without loss of generality, assume that the term (C + 	C)

is of the form

(C + 	C) �
(
0n−r ,r

Ir

)
. (22)

Then, the existence of acceleration controller Fa such that
det(M + 	M + (C + 	C)Fa) �� 0 implies that the first (n −
r) rows of (M + 	M) are linearly independent which in turn
implies that rank

(
M + 	M C + 	C

) � n or the uncertain
second-order system (14) is strongly C2-controllable. Sim-
ilarly, det(K + 	K + (C + 	C)Fd) �� 0 implies that rank(
K + 	K C + 	C

) � n. The proof is then completed. �
Without loss of generality, the uncertainties of uncertain

second-order system (14) are restricted as:
Constraint 3: The uncertain second-order system (14) is

strongly C2-controllable, or rank
(
M + 	M C + 	C

) � n.
Constraint 4: rank

(
K + 	K C + 	C

) � n.
Constraint 5: rank(C + 	C) � r .
Clearly, Constraints 3–5 ensured the regularization and

stabilization for the uncertain closed-loop system (15).

4.2 The Explicit Condition Number

Nichols andKautsky (2001) derived the sensitivitymeasures,
or condition numbers, for the eigenvalues of the quadratic
matrix polynomial and defined a measure of the robustness
for the corresponding system. Now, the notion of robustness
to the quadratic eigenstructure assignment problem is intro-
duced (Nichols and Kautsky 2001).

Lemma 2 Let λi be a simple eigenvalue of the closed-loop
quadratic polynomial Pc(λ) with corresponding right eigen-
vector vi and left eigenvector ti. Then, the explicit condition
number c(λi ) of the eigenvalues λi is given by

c(λi ) �
√

|λi |4 + |λi |2 + 1
∥∥t∗i (M + CFa)

∥∥
2‖vi2‖∣∣t∗i (2λi (M + CFa) + D)vi

∣∣ ,

i � 1, 2, . . . , 2n. (23)

Moreover, the condition number κ(λi ) is defined as

κ(λi ) � c(λi )

|λi | , λi �� 0, i � 1, 2, . . . , 2n. (24)

�
The condition number c(λi ) measures the sensitivity of

the eigenvalueλi to perturbations in the quadratic polynomial
pencilPc(λ) in an absolute sense. For robust solution,we seek
controller matrices Fd and Fa so that the resulting closed-
loop eigenvalues are as insensitive as possible to parameter
perturbation in the system matrices. On the other hand, the

minimization of the norm of displacement and acceleration
controllers Fd and Fa can be considered. Reduction of the
norm of controller gain matrices results in the average mag-
nitude of control input being reduced. These considerations
lead to robust and minimum norm problems.

4.3 Robust andMinimumNorm Solution

The proposed solution to the robust andminimumnormprob-
lem can be obtained by solving the constrained optimization
problem given as:

Minimize
θi ,∀i Υ �

2n∑
i�1

(
ω2
i c (λi )

2
)
+ ξ

∥∥∥∥
(

V
VΛ

)∥∥∥∥
∥∥∥∥∥
(

V
VΛ

)−1
∥∥∥∥∥

+ ψ ‖Fa‖2 + γ ‖Fd‖2
(25)

subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Fd Fa) �
(
Qi2θ1 Qi2θ2 . . . Qi2θ2n

)
⎛
⎝ Qi1θ1 Qi1θ2 . . . Qi1θ2n

λ21Qi1θ1 λ22Qi1θ2 . . . λ22nQi1θ2n

⎞
⎠

−1

;

det

⎛
⎝ Qi1θ1 Qi1θ2 . . . Qi1θ2n

λ21Qi1θ1 λ22Qi1θ2 . . . λ22nQi1θ2n

⎞
⎠ �� 0;

θk � θ∗
i when λk � λ∗

i , i, k; and
2n∑
i�1

ω2
i � 1.

where Υ is the objective function to be minimized, and
ξ, ψ and γ are positive scalars representing the weight-

ing factors on

∥∥∥∥
(

V
VΛ

)∥∥∥∥
∥∥∥∥∥
(

V
VΛ

)−1
∥∥∥∥∥, ‖Fa‖2 and ‖Fd‖2,

respectively. Moreover, the positive weights ωi ,∀i , are sat-
isfying

∑2n
i�1 ω2

i � 1 (Nichols and Kautsky 2001). Once the
optimal solution is obtained, one may compute the robust
and minimum norm controllers. Consequently, the proposed
technique simultaneously makes the resulting closed-loop
system numerically robust and obtains gain controllers with
minimum norms.

Remark 4 It should be remarked that minimizing the norms
of the displacement and acceleration gain controllers Fd and
Fa as small as possible is very important to reduce the signal
noises and energy consumption.

4.4 Numerical Algorithm

Finally, we can describe a numerical algorithm to obtain
the robust and minimum norm gain controllers for matrix
second-order systems.
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Input Given a second-order system (1) and a nonzero, self-
conjugate set Γ satisfying Assumptions 1–4

Step 1 Use the SVD to obtain the matrices Qi1 ∈
C
n×r and Qi2 ∈ C

r×r ,∀i , satisfying (13)
Step 2 Choose the initial parameter vectors θi0 ∈ C

r ,∀i ,
satisfying Constraints 1–2 and the positive weights
ωi ,∀i , satisfying ∑2n

i�1 ω2
i � 1

Step 3 Compute the optimal design parameters θi ,∀i ,
which minimize the performance index Υ

Step 4 Compute the vectors vi andwi ,∀i, and construct
the matrices V ,W andΛ

Step 5 Compute the robust and minimum norm controllers

using (Fd Fa) � W

(
V

VΛ2

)−1

Remark 5 Note that for the constrained optimization prob-
lem (25), there are more than one local minimum of the
performance index. Thus, by solving the optimization prob-
lem repeatedly with different random initial values θi0, one
is able to find the gains in the case when Υ has a very low
value. Accordingly, several initial vectors should be consid-
ered. For solution to this minimization problem, there are
many software packages which can be used. Particularly, the
optimization toolbox of MATLAB is very reliable and suit-
able for solving this problem.

5 Simulation Results

In this section, numerical simulations are conducted to illus-
trate and verify the proposed control approach.

5.1 Example 1

Consider the analysis of the oscillations of a wing in an air
stream (Henrion et al. 2005). The dynamic system equations
are given as:
⎛
⎝17.600 1.280 2.890

1.280 0.824 0.413
2.890 0.413 0.725

⎞
⎠ ẍ (t) +

⎛
⎝ 7.660 2.450 2.100
0.230 1.040 0.223
0.600 0.656 0.658

⎞
⎠ ẋ (t)

+

⎛
⎝ 121.000 18.900 15.900

0.000 2.700 0.145
11.900 3.640 15.500

⎞
⎠ x (t) �

⎛
⎝ 1 0
0 0
0 1

⎞
⎠ u (t) .

Clearly, the mass matrix M is nonsingular. The system is
unstable and its eigenvalues are located at {0.0947±2.5229i,
− 0.8848±8.4415i, − 0.9180±1.7606i}. The desired
closed-loop eigenvalues are selected as {− 1± i, − 2± i,
− 3± i}. The numerical simulations are carried out for two
solutions. In this simulation, the MATLAB function ‘svd.m’
is utilized to obtain the matrices Qi1 and Qi2,∀i , satisfying
(13).

Fig. 1 Transient response for
Example 1: a non-robust
controller; b robust and
minimum norm controller

(a) (b)
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Fig. 2 Frequency response for
Example 1

Table 1 Simulation results for Example 1

Solutions ‖V ‖ ‖Fd‖ ‖Fa‖

Non-robust solution 1.6954 82.1642 23.7825

Robust and minimum norm solution 1.1011 118.4011 12.3317

Non-robust solution:
If the design parameters θi ,∀i, are chosen as:

θ1 � θ2 �
(
3
5

)
, θ3 � θ4 �

(
1
2

)
, θ5 � θ6 �

(
1
1

)
,

then the displacement and acceleration gain controllers are
computed as

⎧⎪⎪⎨
⎪⎪⎩

Fd �
(−78.3349 − 21.6327 − 12.0036

5.3295 − 5.6283 − 13.9159

)
,

Fa �
(−22.5565 − 1.8712 − 3.3275

−6.3384 − 1.0123 − 1.1335

)
.

Robust and minimum norm solution:
From a practical point of view, robust and small gains are

favorable. Thus, the non-uniqueness of the gains is exploited
to obtain robust and minimum gain norm solution. In this
simulation, the initial parameter vectors θi0 and the positive
weights ωi ,∀i , are chosen, respectively, as:

θ10 � θ20 �
(
3
5

)
, θ30 � θ40 �

(
1
2

)
, θ50 � θ60 �

(
1
1

)
,

ω1 � 0.3162, ω2 � 0.5000, ω3 � 0.3742,

ω4 � 0.3873, ω5 � 0.4123, ω6 � 0.4359,

satisfying
∑2n

i�1 ω2
i � 1.

The MATLAB function ‘fmincon.m’ is utilized to solve
the constrained optimization problem (25). Then, the optimal
design vectors, θi , are computed as:

θ1 � θ2 �
(
13.3898
1.6876

)
, θ3 � θ4 �

(
10.5277
1.3257

)
,

θ5 � θ6 �
(−2.3031

0.7729

)
.

Thus, the robust displacement and acceleration controller
gains are computed as

⎧⎪⎪⎨
⎪⎪⎩

Fd �
(−115.8018 − 14.3854 − 14.7029

−11.6596 − 1.8331 − 14.6968

)
,

Fa �
(−12.06871.1882 − 1.2822

−1.79650.2229 − 0.3167

)
.

The results of all solutions are presented in Table 1.
The following numerical results of the norm of eigen-
vector matrix ‖V ‖ and the norm of gains Fd and

123



640 Journal of Control, Automation and Electrical Systems (2019) 30:632–644

Fig. 3 Displacement, velocity
and acceleration error
trajectories for Example 1:
a non-robust controller; b robust
and minimum norm controller

(a) (b)

Fig. 4 Mechanical system

Fa are presented. The simulation results of the closed-
loop system for both non-robust and robust solutions
are displayed in Fig. 1 using the following initial
conditions: x0 � [− 0.01,− 0.02, 0.01]Tm and ẋ0 �
[− 0.01, 0.01, 0.02]T m/s. In this figure, the displacements
x(t), velocities ẋ(t), accelerations ẍ(t) and control inputs
u(t) of the closed-loop systems are displayed. Additionally,
the frequency responses of the open-loop system, the non-
robust solution and the robust and minimum norm solution
are presented in Fig. 2. One can observe that the robust solu-
tion obtains better performance with smaller control inputs
compared with the non-robust solution.

Perturbed system

To test the robustness of solutions, suppose that the
perturbations are defined as: 	M � 0.001M, 	D �
0.001D, and	K � 0.001K , while matrix C is kept
unchanged. It is easy to check that these uncertainties sat-
isfy the regularization and stabilization (Constraints 3–5). In
this case, the displacement, velocity and acceleration error
trajectories are displayed in Fig. 3 for the non-robust and
robust solutions with the computed gain matrices. The dis-
placement, velocity and acceleration error trajectories are
denoted, respectively, by
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Table 2 Simulation results for Example 2

Solutions ‖V ‖ ‖Fd‖ ‖Fa‖

Non-robust solution 4.7102 472.1864 103.4751

Robust and minimum norm solution 5.5322 491.8597 77.5010

⎧⎨
⎩
e(t) � x(t) − xp(t),
ė(t) � ẋ(t) − ẋ p(t),
ë(t) � ẍ(t) − ẍ p(t).

One can observe that the error trajectories for the robust
andminimum norm controller are smaller compared with the
non-robust solution. Furthermore, for the non-robust solution
and robust and minimum norm solution, the norms of errors
in poles due to perturbation are computed, respectively, as
1.2865 and 0.1777. The norm of errors in poles due to per-
turbations for robust and minimum norm solution is signifi-
cantly reduced by 624.15% compared with non-robust one.

5.2 Example 2

Consider the four-degree-of-freedom mechanical system
shown in Fig. 4. The equation of motion can be written by a
descriptor second-order linear system

⎛
⎜⎜⎝
m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 0

⎞
⎟⎟⎠ẍ(t) +

⎛
⎜⎜⎝
b1 + b2 −b2 0 0
−b2 b2 + b3 −b3 0
0 −b3 b3 + b4 −b4
0 0 −b4 b4

⎞
⎟⎟⎠ẋ(t)

+

⎛
⎜⎜⎝
k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4
0 0 −k4 k4

⎞
⎟⎟⎠x(t) �

⎛
⎜⎜⎝
1 0
0 0
0 0
0 1

⎞
⎟⎟⎠u(t)

where x(t) � (
x1 x2 x3 x4

)T
and u(t) � (

u1 u2
)T
.

The system response can be measured directly using the

four accelerometers ẍ(t) � (
ẍ1 ẍ2 ẍ3 ẍ4

)T
, and the dis-

placement components can also be obtained as x(t) �

Fig. 5 Transient response for
Example 2: a non-robust
controller; b robust and
minimum norm controller

(a) (b)
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Fig. 6 Displacement, velocity
and acceleration error
trajectories for Example 2:
a non-robust controller; b robust
and minimum norm controller

(a) (b)

(
x1 x2 x3 x4

)T
. The physical system parameters are taken

as m1 � 3 kg, m2 � 2 kg, m3 � 2 kg, b1 � 10 N s/m, b2
� 15 N s/m, b3 � 20 N s/m, b4 � 40 N s/m, k1 � 5 N/m,
k2 � 10 N/m, k3 � 15 N/m and k4 � 20 N/m. The system
characteristic frequencies are {∞, − 25.1734, − 8.1208, −
0.5601±0.5461i, − 0.7701, − 0.6488, − 0.5000}. Observe
that the first eigenvalue is infinite and may generate unde-
sired dynamical performance. Accordingly, the simulation
will be undertaken for the eigenvalues λ1,2 � − 1± i, λ3,4 �
− 2± i, λ5,6 � − 3± i, and λ7,8 � − 4±4i. The numerical
simulations are carried out for two solutions.
Non-robust solution

If the design parameters θi ,∀i, are chosen as:

θ1 � θ2 �
(

1
−4

)
, θ3 � θ4 �

(
2
2

)
,

θ5 � θ6 �
(−0.5

2

)
, θ7 � θ8 �

(
0.2
1

)
,

then the gain controllers are computed as

⎧⎪⎪⎨
⎪⎪⎩

Fd �
(−99.3083279.3025 − 304.124514.4664
48.1153 − 134.8441147.6541 − 9.6541

)
,

Fa �
( −8.454639.8169 − 74.748644.2007
2.1727 − 17.570329.7346 − 17.7483

)
.

Robust and minimum norm solution
In this simulation, the initial parameter vectors θi0 and the

positive weights ωi ,∀i, are taken, respectively, as:

θ10 � θ20 �
(−1

4

)
, θ30 � θ40 �

(
2.5
2

)
,

θ50 � θ60 �
(
0.2
−2

)
, θ70 � θ80 �

(−0.3
−1.5

)
,

ω1 � 0.3464, ω2 � 0.3000, ω2 � 0.4472, ω4 � 0.3742,

ω5 � 0.3873, ω6 � 0.3317, ω7 � 0.2249, ω8 � 0.3606,

satisfying
∑2n

i�1 ω2
i � 1.
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Then, the optimal design vectors are computed using the
proposed algorithm as:

θ1 � θ2 �
(−0.3212

3.4481

)
, θ3 � θ4 �

(
4.4483
2.7344

)
,

θ5 � θ6 �
(

0.3550
−1.7137

)
, θ7 � θ8 �

(−1.5693
−2.1999

)

Consequently, the robust and minimum norm gain con-
trollers are computed as:

⎧⎪⎪⎨
⎪⎪⎩

Fd �
(−48.1435237.6409 − 353.0547127.5210
23.8031 − 111.3804162.9032 − 58.3722

)
,

Fa �
( −3.161926.9858 − 55.970436.8375

−0.2100 − 11.280120.1939 − 13.6565

)
.

The results of the two solutions are presented in Table 2.
The simulation results for both non-robust solution and
robust and minimum norm solution are displayed in Fig. 5
using x0 � [−0.01,−0.02, 0.01,−0.01]Tm and ẋ0 �
[0.01, 0.02, 0.02,−0.03]T m/s. It can be deduced that the
robust and minimum norm solution obtains better per-
formance with smaller control inputs compared with the
non-robust one.
Perturbed system

Next, a perturbation study is undertaken to show the
behavior of closed-loop system. Suppose that the per-
turbations are defined as: 	M � 0.001M, 	D �
0.001D, and	K � 0.001K , while C is kept unchanged.
Remark that these uncertainties satisfy the regularization
and stabilization (Constraints 3–5). Figure 6 illustrates the
displacement, velocity and acceleration error trajectories (e
(t), ė(t) and ë(t)) for both non-robust solution and robust and
minimum norm solution for perturbed closed-loop systems.
Observe that the error trajectories for the robust andminimum
norm controller are smaller compared with the non-robust
solution. Moreover, for the non-robust solution and robust
and minimum norm solution, the norms of errors in poles
due to perturbation are computed, respectively, as 5.9287 and
1.2263. The norm of errors in poles due to perturbations for
robust and minimum norm solution is significantly reduced
by 383.47% compared with non-robust solution.

6 Conclusions

This paper has generally formulated and proposed an inno-
vative technique for matrix second-order systems to use
direct displacement and acceleration measurements. The
availability of accelerometers makes the proposed con-
trol methodology favorable to several practical applications
where the acceleration signals are easier to obtain than the
velocity ones. Explicit necessary conditions that ensure solv-

ability are derived. The parametric expressions for the gain
controllers as well as the eigenvector matrices are presented.
Furthermore, a reliable algorithm for obtaining the robust
and minimum controller gains is proposed. The solution is
general and can be applied when the mass matrices are either
singular or nonsingular. Two illustrative examples are pre-
sented to demonstrate the applicability of proposed control
approach.
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