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Abstract
The issues regarding generation uncertainties associatedwithwind energy and solar photovoltaic (PV) systems alongwith load
demand uncertainties are considered in this paper to evaluate the maximum penetration of renewable energy resources. The
nodes which are less voltage stable are considered as the most suitable locations for distributed generations (DGs) placement.
For identification of these critical nodes, a voltage stability index (VSI) has been utilized. To analyze the voltage profile, power
losses and system voltage stability with large penetration of the wind energy and solar PV into the distribution networks,
a probabilistic-based approach has been adopted. The penetration limit depends upon the type of DG that is connected to
the distribution network. Usually, the integration of DGs reduces the power losses in the network, however as penetration
level increases, the power losses begins to increase. The detailed mathematical models of wind and solar PV-based renewable
resources are used. The Hong’s 2m + 1 point estimation method combined with Cornish–Fisher expansion is adopted in
this paper to conduct the probabilistic studies. The effectiveness of the method is validated through IEEE 33-node radial
distribution test network for four different scenarios. The results obtained have been verified and compared with Monte Carlo
simulation technique.

Keywords Point estimation method · Probabilistic load flow ·Cornish–Fisher expansion ·Voltage stability index ·Distributed
generation · Monte Carlo simulation
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CDF Cumulative distribution function
CPF Continuous power flow
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EDF Empirical distribution function
MCS Monte Carlo simulation
OLTC On-load tap changer
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PEM Point estimation method
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PLF Probabilistic load flow
PV Photovoltaic
SRSM Stochastic response surface method
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1 Introduction

Due to advancement in the renewable-based generation tech-
nologies, a rapid development for integration of these energy
resources into the existing power networks has been wit-
nessed in recent years. The energy outputs from renewable
energy resources, i.e., wind and solar PV are random and
stochastic in nature and depends upon weather conditions.
Owing to the large penetration level (PL) of renewable-based
DGs into the distribution network, the uncertainties associ-
ated with generation and loads have significantly influenced
the system voltage stability (Wang et al. 2016). For study-
ing the uncertainties associated with the power system, the
probabilistic load flow (PLF) method is one of the best-
known tools. Probabilistic load flow methods are broadly
categorized as Monte Carlo simulation (MCS) and analyt-
ical methods. MCS is a traditional method which provides
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more accurate results as compared to other analytical meth-
ods.However, thousands of iterations are required to simulate
that are extremely time consuming and are unsuitable for
real time applications (Rubinstein 1991). To reduce the sim-
ulation time analytical methods such as point estimation
method (PEM) (Su 2005; Morales and Perez-Ruiz 2007),
cumulants method (Schellenberg et al. 2005), cumulants and
Gram–Charlier expansion (Zhang and Lee 2004), cumulants
and Cornish–Fisher expansion (Usaola 2009) are used for
PLF studies. The DGs integration in the distribution network
have several benefits such as reduction in system power loss,
reduced emission, increase of system reliability, improved
power quality and deferral of transmission upgrades. Due to
the small capacity of DGs in comparison with central power
plant, their impacts are minor if the penetration level (1–5%)
is low. However, if the penetration level increases to the level
of 30–40%, the impact of DGs will be significant (Atwa and
El-Saadany 2010). In the literature, maximum penetration
level of DGs in the distribution networks had been inves-
tigated by various researchers taking into account different
factors at a given point of time.

One of the major factors which limit the penetration level
of DGs in the distribution network is over voltages. For deter-
mining the maximum active power injected by DGs into the
distribution network without violating voltage constraints,
a sensitivity-based method was investigated by Ayres et al.
(2010). The time-varying voltage-dependent load models
were analyzed byHung et al. (2014) in order to determine the
maximumpenetration level of solar PV units in the radial dis-
tribution network. The authors of Hoke et al. (2013) address
the maximum PV penetration level by considering the steady
state voltage limit at nodes not to be violated. Total 336 cases
were simulated with various locations of PV clusters along
the feeder, and it was found that in 86% cases, the max-
imum penetration level was at 30% of system peak load.
The deterministic load flow is usually employed to assess
the maximum penetration level of DGs. Howsoever, owing
to uncertainty associated with the power output of DGs and
system load demands, for accurate estimation of maximum
penetration level in distribution network, the probabilistic-
based approaches are required.

In Kolenc et al. (2015) and Zio et al. (2015), the Monte
Carlo simulation (MCS)-based probabilistic approach is
dealt for estimating the maximum penetration level of DGs
in the low voltage (LV) distribution network. To counteract
the voltage rise problem caused by the high penetration of the
residential PV system, a rule-based OLTC filled transformer
is used for the real UK residential LV network (Procopiou
and Ochoa 2017). Lamberti et al. (2015) had applied the
energy storage system (ESS) with PV systems to balance the
mismatch between the generation and demand at the LV dis-
tribution network. Gaunt et al. (2017) analyzed the voltage
violations in the low voltage feeder for large penetration of

PV-basedDGs. Liew and Strbac (2002) investigated themax-
imum penetration level of the wind-based DGs on the rural
distribution networks. The voltage stability considerations
with large penetration of DGs into the distribution network
are less evaluated. In Almeida et al. (2013), the voltage col-
lapse using P–V and Q–V curve methods into distribution
networks with intermittent generation was analyzed using
MCS and empirical distribution function (EDF).

Xiuhong et al. (2002) uses the probabilistic continuous
power flow (CPF) with load variation for probabilistic volt-
age stability analysis. In Haesen et al. (2009), the stochastic
response surface method (SRSM) is explored for accessing
the probabilistic load margin into the power system. In Liu
et al. (2015), the authors investigated the static voltage stabil-
ity in distribution network using two point estimationmethod
(2PEM) and CPF. To evaluate the probability density func-
tion (PDF) of the critical voltage stability Cornish–Fisher
series is used. In Kataoka (2003), the load variation of the
system was taken as hypercone. The intersection point of
the transfer limit surface and the loading hypercone makes
use of for detecting worst-case loading. In Hatziargyriou and
Karakatsanis (1998), the assessment of voltage stability is
investigated using probabilistic load flow considering ran-
dom variation of loads, generation unit unavailabilities and
topological variations. InZhang et al. (2010), for determining
the probabilistic voltage stability margin, maximum entropy
method is adopted. Probabilistic load flow for the unbalanced
distribution network has been proposed in Ran and Miao
(2015) considering the uncertainties of load and wind power
generation.

For investigating themaximumpenetration level ofDGs in
the distribution network, researchers have taken either wind
energy or PV-based DGs but the hybrid combination of these
renewable DGs have not been applied in research work as
per authors’ knowledge. The deterministic load flow is usu-
ally employed to assess the maximum penetration of DGs.
Due to uncertainty associated with power output of DGs and
system load, for accurate estimation of maximum penetra-
tion level, probabilistic approaches are required. Although
some probabilistic studies have been investigated with MCS
for determining maximum DGs penetration, but no stud-
ies have been investigated with analytical methods such as
point estimation method. In probabilistic load flowwith non-
Gaussian input random variables, Cornish–Fisher expansion
had found better performance than theGram–Charlier expan-
sion for obtaining PDF and CDF of output variables (Ruiz
Rodriguez et al. 2012). In this paper, Hong’s 2m + 1 point
estimationmethod is applied for probabilistic load flow study
(Delgado and Dominguez Navarro 2014), whereas Cornish–
Fisher expansion is incorporated to obtain the PDF and CDF
of the output variables. The voltage stability index (VSI) has
been utilized to obtain the suitable locations of DGs from
voltage stability viewpoint. Moreover, to analyze the effect
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of large penetration of renewable DGs, four different scenar-
ios have been investigated.

The rest of the paper is organized as follows: Sect. 2 elabo-
rates modeling of renewable energy sources and system load.
Section 3 explains theHong’s 2m+1point estimationmethod
coordinated with Cornish–Fisher expansion, MCS method
and utilized VSI. Section 4 describes the proposed algorithm
for investigation of probabilistic voltage stability for differ-
ent load levels. In Sect. 5, case study is performed on 33-node
radial distribution test network. Finally, Sect. 6 concludes the
research work.

2 Modeling of Renewable Energy Sources
and Load

2.1 Photovoltaic Modeling

Solar irradiance has a high degree of uncertainty and can be
modeled as Beta PDF (Mistry and Roy 2014).

fb(s)=

⎧
⎪⎨

⎪⎩

Γ (α+β)
Γ (α)Γ (β)

× sα−1 × (1 − s)β−1 : 0 ≤ s ≤ 1,

α ≥ 0, β ≥ 0

0 : otherwise

(1)

where s is solar irradiance in kW/m2; fb(s) is a Beta distribu-
tion function of s;α, β are parameters of the Beta distribution
function. The parameters of the Beta PDF depend uponmean
(μ) and standard deviation (σ ) of the random variables are
calculated as following:

β = (1 − μ) ×
(

μ(1 − μ)

σ 2 − 1

)

α = μ × β

1 − μ

(2)

Using the generated solar irradiance data from Beta PDF, the
output power fromPVmodule canbe calculated as following:

Tc = TA + sa

(
NOT − 20

0.8

)

(3)

I = sa [Isc + Ci (Tc − 25)] (4)

V = Voc − Cv ∗ Tc (5)

Ps (s) = N ∗ FF ∗ Voc ∗ Isc (6)

FF = Vmpp ∗ Impp

Voc ∗ Isc
, (7)

where sa is the average solar irradiance; Cv and Ci are volt-
age temperature coefficient in V/◦C and current temperature
coefficient inA/◦C, respectively; NOT, Tc and TA are nominal
operating temperature of cell, cell temperature, and ambient

temperature in ◦C. ISC and Voc are short circuit current and
open circuit voltage respectively; FF represents fill factor;
Impp and Vmpp are current and voltage at maximum power
point; Ps is the total output power from the PV array.

2.2 Wind Energy Generator Modeling

Wind speed is unpredictable and varies with time and geo-
graphical location. A Weibull probabilistic density function
is used to model wind speed behavior.

fw(v) = a

b

(vw

b

)a−1
exp

[
−

(vw

b

)a]
(8)

where νw is wind speed; a and b are shape and scale index
respectively. For modeling wind turbine generator’s output
power, first the wind speed samples are generated through
Weibull PDF and then transformed into power output using
the following mathematical model.

PWT =

⎧
⎪⎪⎨

⎪⎪⎩

0 for νw ≤ Vi or νw ≥ V0

Pr
(

νw−Vi
Vr−Vi

)
for Vi < νw < Vr

Pr for Vr ≤ νw < V0

(9)

where Vi , Vr, and Vo are cut-in speed, rated speed, and cut-
off speed of wind turbine, respectively. PWT represents the
output power of a wind turbine. The power output from wind
farm can be considered as negative load in the corresponding
bus.

2.3 Probabilistic LoadModeling

Active and reactive power load are described by a normal
distribution with the corresponding probability distribution
function given by Eqs. (10) and (11), respectively.

f (PLi ) = 1
√
2πσPLi

2
exp

(

−
(
PLi − μPLi

)2

2σ 2
PLi

)

(10)

f (QLi ) = 1
√
2πσQLi

2
exp

(

−
(
QLi − μQLi

)2

2σ 2
QLi

)

(11)

where f (PLi ) and f (QLi ) are the normally distributed active
and reactive power at each node. In Eqs. (10) and (11), μPLi
and μQLi

represents the mean values, which are base active
and reactive power demands at any node i , respectively. The
standard deviation of active (σPLi

) and reactive (σQLi
) power

load varies between 5 and 10% of base load at any node i . In
this work, standard deviation is considered 5% of base load
demand.
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3 Probabilistic Power Flow and Voltage
Stability Index

3.1 Hong’s 2m+ 1 Point EstimationMethod

In Hong’s 2m + 1 point estimation method, the fitness func-
tion which is a deterministic load flow in this particular case
has to be calculated k times for each input random variables.
For m input random variable, fitness function should be cal-
culated m × k times. The input vector in each evaluation
process is determined as following:

(
μp1, μp2, . . . , Pl,k, . . . , μpm

)
(12)

where Pl,k assigned to input random variable Pl , while the
remaining m − 1 input random variables are fixed to their
corresponding mean (μpi ). The Pl,k is calculated using Eq.
(13).

Pl,k = μpl + ξl,kσpl (13)

whereμpl represents mean value and σpl represents the stan-
dard deviation of input randomvariable Pl . ξl,k is the standard
locationwhich depends upon the number of estimated points.
The standard locations can be calculated as follows.

ξl,k = λl,3

2
+ (−1)3−k

√

λl,4 − 3

4
λ2l,3 k = 1, 2 (14)

ξl,3 = 0 (15)

where λl,3 and λl,4 are the skewness and kurtosis of input
random variable Pl . After estimating the sample points, the
fitness function is to be evaluated for all estimated points.
The expected values of outputs are determined by Eq. (16).

E(Z j ) =
m∑

l=1

3∑

k=1

wl,k Z
j
l,k (16)

where Z and E(Z) are output vector and expected value of
output random variable, respectively. The weighting coeffi-
cients wl,k are calculated as following:

wl,k = (−1)3−k

ξl,k
(
ξl,1 − ξl,2

) k = 1, 2 (17)

wl,3 = 1

m
− 1

λl,4 − λ2l,3
(18)

Approximatemean andmoments are calculated as following:

k1 = E(Z)

k2 = E(Z2) − E(Z)2

k3 = E(Z3) − 3E(Z2)E(Z) + 2E(Z)3

k4 = E(Z4) − 4E(Z3)E(Z) + 6E(Z2)E(Z)2 − 3E(Z)4

(19)

3.1.1 Cornish–Fisher Expansion Series

The statistical moments obtained from PEM can be used
with some expansion series to obtain the PDF and CDF of
the output random variable. Cornish–Fisher, Edgeworth, and
Gram–Charlier expansion series are used in the literature. In
this paper, Cornish–Fisher expansion is used to compute the
PDF and CDF of the output random variables. It is used to
obtain the quantile α of the probability distribution F(x).
Here ξ(α) = Φ−1(α) andΦ is the PDF of a standard normal
distribution N (0, 1).

X (α) ≈ ξ (α) + ξ2 (α) − 1

6
k3 + ξ3 (α) − 3ξ (α)

24
k4

− 2ξ3 (α) − 5ξ (α)

36
k23 (20)

M ≈ μ + σ ∗ X (21)

where μ and σ are mean and standard deviation of output
random variable.

3.2 Monte Carlo SimulationMethod

MonteCarlo simulationmethod (MCS) is an iterativemethod
which utilizes PDF of input random variable to obtain the
final results. To keep higher accuracy 20,000 samples are
considered in the present study. Stopping criteria is based on
number of samples or iterations or coefficient of variation
tolerances. MCS method requires high computation efforts.

3.3 Voltage Stability Index (VSI)

With the development of economy and a sharp increase in
load demand, the voltage stability has been considered as
an important issue in the distribution network. The loading
margin of the system is calculated from voltage instability
techniques such as P–V /Q–V curve method, bifurcation
analysis,modal analysis and voltage stability indices.Among
various available methods, voltage stability index (VSI) has
emerged as very fast and effective tool for offline voltage
stability assessment. In this work, VSI proposed by Chakra-
vorty and Das (2000) is utilized for finding weak buses in the
network from voltage stability point of view.
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Fig. 1 Equivalent circuit of radial distribution network

From the equivalent circuit (Fig. 1) of radial distribution
network, the following expressions can be deduced.

Ii j = Vi − Vj

ri j + j xi j
(22)

Pj + j Q j = Vj I
∗
i j (23)

where i, j are sending and receiving nodes respectively; Ii j is
branch current;Vi ,Vj are voltage at node i and j respectively;
Pj , Q j are total real and reactive load power fed from node
j . From Eqs. (22) and (23), the following expression can be
written.

|Vj |4 −
(
|Vi |2 − 2Pjri j − 2Q j xi j

)
|Vj |2

+
(
P2
j + Q2

j

) (
r2i j + x2i j

)
(24)

Let,

b = |Vi |2 − 2Pjri j − 2Q j xi j (25)

c =
(
P2
j + Q2

j

) (
r2i j + x2i j

)
(26)

|Vj |4 − b|Vj |2 + c = 0 (27)

The feasible solutionofEq. (27) is unique andcanbeobtained
as follows:

|Vj | = 0.707

√

b +
√
b2 − 4c (28)

b2 − 4c ≥ 0 (29)

From Eqs. (25), (26) and (29),

(
|Vi |2 − 2Pjri j − 2Q j xi j

)2−4
(
P2
j + Q2

j

) (
r2i j + x2i j

)
≥0

(30)

Rearranging Eq. (30),

|Vi |4 − 4
(
Pj xi j − Q jri j

)2 − 4
(
Pjri j + Q j xi j

) |Vi |2 ≥ 0

(31)

Voltage stability index (VSI) of node j can be expressed as
following:

V SI = |Vi |4−4
(
Pj xi j − Q jri j

)2−4
(
Pjri j + Q j xi j

) |Vi |2
(32)

The minimum value of the stability index at any node repre-
sents that the node is more sensitive to voltage collapse. For
the stable operation of distribution network VSI value must
be ≥ 0.

4 Proposed Algorithm

This section caters to the formulation of proposed probabilis-
tic method for the static voltage stability analysis in the radial
distribution network.

Step 1 In a typical distribution network, the load demand
is represented as the variation of load with respect to
time. The load growth in distribution network is a nat-
ural phenomena. With the increase in load demand, the
system power losses and voltage drop increases. To ana-
lyze the uncertainty associated with load demands, the
normally distributed PDF is utilized in this study. The
load demand at each node has been taken as mean value
with 5 % standard deviation. To access the performance
of the distribution network, three load levels: 0.5 (light),
1.0 (nominal), 1.5 (heavy) are considered.
Step 2 In order to incorporate the uncertainty associ-
ated with generation, the Beta and Weibull PDF have
been utilized to represent solar irradiance andwind speed
respectively.
Step 3 To determine the voltage stability of considered
distribution network, the load connected at each node is
increased in steps until VSI at any node falls to nearly
zero value. The node with the lowest value of VSI is con-
sidered as the weakest node from stability viewpoint and
hence, selected as the optimal location forDGplacement.
Step 4 It is assumed that the DG units are operating at
unity power factor.Only one type ofDGcan be connected
to a particular node. To study the impact of renewable-
based DGs penetration into the distribution network, the
following scenarios are proposed.

Scenario-I No DG units are integrated into the dis-
tribution network and considered as the reference
scenario.
Scenario-IIOnly solar PV-based DGs are connected
to distribution network.
Scenario-IIIOnly wind-based DGs are connected to
distribution network.
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Scenario-IV Both wind and solar PV-based DGs
(Hybrid) are connected to distribution network.

Step 5 Using Hong’s 2m + 1 point estimation method,
the expected values of output random variables are
found. Also, the means and moments (k1, k2, k3, k4) are
obtained. For deterministic load flow of the distribution
network, the method proposed by Das et al. (1995) is
taken into account.
Step 6 The PDF and CDF of output random variable are
determined using Cornish–Fisher expansion series.
Step 7 The issue associated with the performance of the
distribution network due to renewable-based DGs pen-
etration such as voltage stability, network power loss
reduction are analyzed for proposed scenarios and are
compared with MCS method.

The flowcharts to study the impact of the hybridDGs penetra-
tion on the radial distribution network at various load levels
using 3PEM are shown in Fig. 2.

5 Results and Discussion

The proposed algorithm has been demonstrated and exam-
ined on 12.66 kV, 33-node radial distribution test system. The
line and load data of the test system are taken fromBaran and
Wu (1989). The total real and reactive power load demands
of the test system are 3.72 MW and 2.3 MVAr, respectively.
For the test system, the substation voltage is considered as 1
pu. The selected DGs locations are limited to three, since if
the selected DGs locations are more than three, the improve-
ment in the percentage loss reduction decreases (Mistry and
Roy 2014). In order to observe the impact of number of
DGs locations on network power losses, a deterministic study
has been performed on 33-node radial distribution network
(Fig. 3). It is observed that the minimum power loss (kW)
has been achieved in the distribution network with three DGs
only. Moreover, further reduction in percentage power loss
is insignificant with larger penetration level of DGs.

The voltage stability index (VSI) has been evaluated for
each node by increasing the load demands in steps. The VSI
values evaluated for the nominal and critical load demands
are shown in Table 1. By observing Table 1, it is concluded
that node nos. 18, 17, 16 and 33 are the critical nodes from
voltage stability viewpoint. The critical nodes are referred
to those nodes, which are more prone to voltage collapse.
Hence, node nos. 16, 18, and 33 are selected as the opti-
mal locations to place DGs from voltage stability viewpoint
(Fig. 4). The uncertainties associated with wind speed and
solar irradiance aremodeled asWeibull andBeta PDF respec-
tively.

Start

Set parameters
Nvar: Number of variables

Load level- Light (0.5), Nominal (1.0), Heavy (1.5)
Wind energy, Solar PV power output, Active  and 
reactive load demands (Mean, Standard deviation,

Skewness, Kurtosis)

Initialize counter
l=0, k=0

Calculate standard central 
moments (λl,3 and λl,4) and

Standard locations (ξl,1, ξl,2 and
ξl,3)

k = k+1

Evaluate
Pl,k=μp,l+ξl,kσp,l

(μp,1, μp,2,….Pp,l,…..μp,Nvar)

Execute deterministic load flow 
and obtain voltage profile and 

power losses

Evaluate voltage stability index 
(VSI) from node 2 to maximum 

number of nodes

K <= 3

l <= Nvar

l = l+1

Store the results

Compute CDF and PDF of VSI, voltage 
magnitude using Cornish-Fisher expansion 

series

End

Fig. 2 Flowchart of hybridDGs integration at different load levels using
3PEM
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Table 1 Critical nodes of IEEE 33-bus distribution network

Nominal load Critical load

Node Voltage (pu) VSI Node Voltage (pu) VSI

18 0.9131 0.6969 18 0.4667 0.0492

17 0.9137 0.7030 17 0.4710 0.0553

16 0.9157 0.7072 16 0.4667 0.0598

33 0.9166 0.7067 33 0.4931 0.0600

1

2 3 5 76 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

2423 25

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17

b22 b26 b27 b28 b29 b30 b31 b32

b18

b19 b20 b21

b23 b24

b25

4

Fig. 4 IEEE 33-node distribution network with hybrid distributed gen-
eration

In this study, the shape and scale index forWeibull PDFare
taken as 6 m/s and 1.4, respectively, and parameters selected
for Beta PDF are α = 2.57, β = 1.6. The normal PDF is
applied to demonstrate the uncertainties associated with load
demands. In normal PDF, the load demand at selected node
is considered as the mean value (μ) with standard deviation
(γ ) of 5%. To access the performance of the test network, the
three load levels: 0.5 (light), 1.0 (nominal), and 1.5 (heavy)
are considered in each scenario. For analyzing the effect of
DGs on voltage stability and power losses of the network, the
various DGs penetration levels up to 40% have been taken
into consideration. The selected solar PV modules and wind
turbines are shown in Tables 2 and 3 respectively.

The capacity factor for the DG unit can be defined as
the ratio of the average output power from DG unit and the
rated power output of the DG unit (Atwa et al. 2010). The
solar PV module B has highest capacity factor (0.4264), and
therefore, themodule typeB is selected for the study (Fig. 5a).
Similarly, the wind turbine C has the highest capacity factor

Table 2 Characteristics of the PV modules

Module characteristics Module type

A B C D

Peak power (W) 145 180 230 245

Voc 37 44.2 37.1 37.2

Isc 5.21 5.36 8.18 8.62

Vmpp 29.8 36.2 29.9 30.2

Impp 4.87 4.97 7.65 8.1

Cv (%/◦C) 0.366 0.386 0.361 0.369

NOT 48.6 45.8 47.4 49.9

Table 3 Characteristics of considered wind turbines

Features WT-A WT-B WT-C WT-D

Rated power (kW) 1500 850 600 1000

Cut-in speed (m/s) 3.5 4 3 3.5

Rated speed (m/s) 14 16 13.5 15.5

Cutout speed (m/s) 25 25 20 25

1 2 3 4
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(a)Solar photovoltaic modules
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Fig. 5 Capacity factor for wind turbines and solar PV modules

(0.2340), therefore selected for the study (Fig. 5b). It was
observed from Table 4, at scenario-I, that the power losses
at light, nominal and heavy load demand conditions are 47
kW, 202.77 kW and 496.61 kW respectively. In scenario-
II, the solar PV units are placed at node 16, 18, and 33,
respectively.The equal penetration level ofDGs is considered
at the selected locations. The percentage active power loss
(APL) reduction at 10%PVpenetration for light, nominal and
heavy loads is 20.40, 21.57, and 22.51, respectively. Also,
the minimum system voltage and VSI got improved. It is
observed from Table 4 that, at 10–20% penetration level of
solar PVDGs, the%APL reduction is higher compared to the
high penetration level of 30–40%.The higher reduction in the
power losses have been also observed up to 30% penetration
level with solar PV DGs at light, nominal, and heavy load
conditions. The power loss reduction at 40%penetration level
is very low for nominal and heavy load demands compared
to 30% penetration level. Therefore, 30% penetration should
be considered as a penetration limit for solar PV type DGs.

In scenario-III, the wind energy-based DGs are placed at
selected locations, and it was observed that only 10% pen-
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Table 4 Results analysis of test network for scenarios I, II, and III using 2m + 1 point estimation method

Case study Penetration level (DG) (%) Items Load levels

Light load Nominal load Heavy load

Without DGs (Scenario-I) – Power loss (kW) 47.0 202.77 496.61

Size of DG ( kW) – – –

Minimum voltage (pu) 0.9583 0.9131 0.8634

Minimum VSI (pu) 0.8442 0.6969 0.5582

% APL reduction – – –

Solar photovoltaic-based DGs (Scenario-II) 10 Power loss (kW) 37.41 159.03 384.81

Size of DG ( kW) 188.35 377.69 557.73

Minimum voltage (pu) 0.9645 0.9266 0.8853

Minimum VSI (pu) 0.8655 0.7372 0.6144

% APL reduction 20.40 21.57 22.51

20 Power loss (kW) 31.29 132.28 316.37

Size of DG ( kW) 375.42 747.48 1117.9

Minimum voltage (pu) 0.9689 0.9357 0.9001

Minimum VSI (pu) 0.8812 0.7667 0.6568

% APL reduction 33.43 34.76 36.29

30 Power loss (kW) 28.44 119.57 283.94

Size of DG ( kW) 558.58 1115.7 1672

Minimum voltage (pu) 0.9730 0.9444 0.9137

Minimum VSI (pu) 0.8965 0.7959 0.6979

% APL reduction 39.49 41.03 42.82

40 Power loss (kW) 28.71 119.16 281.01

Size of DG ( kW) 745.62 1485.9 2229

Minimum voltage (pu) 0.9771 0.9527 0.9265

Minimum VSI (pu) 0.9118 0.8243 0.7381

% APL reduction 38.91 41.23 43.41

Wind energy-based DGs (Scenario-III) 10 Power loss (kW) 41.72 178.43 433.82

Size of DG ( kW) 188.36 377.81 557.27

Minimum voltage (pu) 0.9644 0.9261 0.8840

Minimum VSI (pu) 0.8654 0.7368 0.6134

% APL reduction 11.23 12.0 12.64

20 Power loss (kW) 47.25 195.4 466.67

Size of DG ( kW) 375.84 747.38 1118.2

Minimum voltage (pu) 0.9685 0.9340 0.8961

Minimum VSI (pu) 0.8809 0.7654 0.6540

% APL reduction −0.5319 3.63 6.02

30 Power loss (kW) 60.47 242.92 563.15

Size of DG ( kW) 558.86 1116.8 1671.4

Minimum voltage (pu) 0.9722 0.9412 0.9064

Minimum VSI (pu) 0.8958 0.7933 0.6925

% APL reduction −28.65 −19.80 −13.39

40 Power loss (kW) 80.36 314.98 702.54

Size of DG ( kW) 744.84 1486 2229.2

Minimum voltage (pu) 0.9758 0.9477 0.9157

Minimum VSI (pu) 0.9104 0.8197 0.7287

% APL reduction −70.97 −55.33 −41.46
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64 etration is possible for test system with wind energy-based

DGs. The penetration level more than 10% had a negative
effect on system active power losses. It was also observed
that the power losses are higher with wind energy-based DGs
compared to solar PV DGs for same penetration levels in the
test network. One of the reasons for this is owing to the solar
PV panels being smaller in power capacity (few watt) com-
pared to wind energy-based DGs (several kW to few MW).
However, the power generated from solar PV modules are
more consistent with each sample of random input (solar
irradiance) compared to wind energy which generates the
electrical power only when the wind speed is between cut-in
and cutout wind speed. In scenario-IV, the maximum pen-
etration study is performed with the hybrid (solar PV and
wind energy) DGs in the test network. Throughout the year,
the wind speed and solar irradiance are weakly anticorrelated
(−0.4 ≤ ρ ≤ −0.2) (Bett and Thornton 2016). In order to
determine themaximumpenetration levelwith hybrid renew-
able DGs, the electrical power output is taken approximately
70% from wind generators and 30% from solar PV-based
DGs. The three locations (nodes 17, 18, and 33) are identi-
fied for the placements of hybrid DGs. Based on identified
locations, the three case studies were further investigated. In
case-I, the wind energy-based DGs are placed at node 17 and
18, whereas solar PV-based DG is placed at node 33. In case-
II, the wind energy-based DGs are placed at node 17 and 33,
whereas solar PV-based DG is placed at node 18. In case-III,
the wind energy-based DGs are placed at node 18 and 33,
whereas solar PV DG is placed at node 17. The results anal-
ysis for the test network with hybrid DGs have presented in
Table 5. It is observed from Table 5, the penetration level of
renewable-basedDGs increases up to 20%when hybrid com-
binations of renewable DGs are used. It is noted that when
only wind energy-based DGs are integrated into the test net-
work, only 10% penetration level was achieved, whereas the
small amount of solar PV integration has boosted the penetra-
tion level to 20%. Also, for case-II, the active power losses at
various load levels are less compared to case-I and II. Hence,
it can be concluded that when solar DG is placed at a most
critical node (node 18) of the network, much improvement
in power loss reduction is obtained.

Usually, the integration of DGs reduces the power losses
in the network; however, it is observed that as the penetration
level of DGs increases, the power losses begin to increase. A
similar observationwere found byOgunjuyigbe et al. (2016).
Finally the results obtained from the 2m+1 point estimation
method are compared with the MCS method in Table 6. The
comparisons of the voltage profile for various scenarios of
the test system at different load levels, i.e., light, nominal
and heavy are shown in Figs. 6, 7, and 8, respectively. Sim-
ilarly, comparison of active power losses for various types
of DGs penetration at different load levels, i.e., light, nomi-
nal, and heavy are shown in Figs. 9, 10, and 11, respectively.
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Fig. 6 Voltage profile of nodes in test network under nominal load
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Fig. 7 Voltage profile of nodes in test network under light load
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Fig. 8 Voltage profile of nodes in test network under heavy load

The simulation has been performed on MATLAB software
in Intel i7 processor 2.4 GHz, 8GBRAMcomputer. The sim-
ulation time for 2m + 1 point estimation method is 0.9083
s for scenario-I at nominal load whereas MCS method takes
90.528 s.

6 Conclusions

In this paper, the static voltage stability index (VSI) is used
to identify the optimal locations of DGs in the radial distri-
bution network. The various penetration levels (10–40%) of
renewable-based DGs in the radial distribution networks and
their effects on power losses, voltage profiles and voltage sta-
bility have been studied through the probabilistic approach.
The 33-node radial distribution test network has been utilized
for the validation of the proposed approach. Owing to the
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Fig. 9 Active power loss of test network with different types of DG’s
penetration level under nominal load
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Fig. 10 Active power loss of test network with different types of DG’s
penetration level under heavy load
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Fig. 11 Active power loss of test network with different types of DG’s
penetration level under light load

uncertainty associated with the solar irradiance, wind speed
and load demands, a probabilistic-based load flow method is
performed in this research paper. The Hong’s 2m + 1 point
estimation method (PEM) is applied and compared with the
benchmarkMCSmethod. To obtain the PDF andCDF of out-
put random variables, the Cornish–Fisher expansion series is
incorporated with PEM method. From the result analysis, it
is observed that the maximum penetration level of DGs in
the test network in light of voltage stability is determined by
three key factors, i.e., type of DGs, the location of DGs and
load level of the network. When only solar-based DGs are
integrated into the test network, the maximum penetration
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level of 30% is achieved, whereas only 10% is attained with
wind energy-based DGs.

Hence, the authors have tried to exploit those geograph-
ical locations where wind energy is abundant but also the
solar irradiance has enough exposure. At such places instead
of only going with wind-based PV a hybrid combination of
wind and solar PV will increase the penetration level. More-
over, such locations can easily be found on wide coastal line
of tropical country like India. In this paper, a hybrid combina-
tion of the power output from wind energy (70%) and solar
PV (30%) is analyzed in order to enhance the penetration
level of renewable-based DGs up to 20%.

The paper also highlights to adopt the probabilistic
approaches over deterministic ones as former incorporates
the uncertainties associated with renewable energy sources.
The proposed approach based on PEMhas an edge over other
methods available in the literature as it requires very less
iterations and hence computational time too reduces which
facilitates the power engineers working on online applica-
tions in the radial distribution network. For the first time,
based upon point estimation method, the power losses and
voltage stability studies are conducted for hybrid-based DGs
in the radial distribution network.
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