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Abstract
In this paper, an autonomous three-dimensional Helmholtz-type oscillator is designed based on conversion of an autonomous
Helmholtz two-dimensional oscillator to a jerk oscillator. For a suitable choice of the parameters, the proposed autonomous
Helmholtz jerk oscillator can generate Hopf bifurcation, bistable period-2 limit cycles, two types of one-scroll chaotic
attractors and coexistence between period-3 limit cycle and one-scroll chaotic attractors. Using a weak modulation of a
parameter of the proposed Helmholtz jerk oscillator, it is possible to destroy the coexisting attractors found and transform the
proposed Helmholtz jerk oscillator to period-3 oscillations. Moreover using experiments and OrCAD-PSpice software, circuit
implementation of the proposed autonomous Helmholtz jerk oscillator is realized in order to check the one-scroll chaotic
attractors and the coexisting attractors found during the numerical simulations. Numerical and experimental/OrCAD-PSpice
results have a good qualitative agreement. Finally, by adding two new parameters in the proposed autonomous Helmholtz
jerk oscillator, it is possible to control the amplitude of the attractor and the largest Lyapunov exponent.

Keywords Helmholtz jerk oscillator · Hopf bifurcation · Chaos · Coexistence of attractors and its control · Electronic circuit
realization · Amplitude and Lyapunov exponent control

1 Introduction

Chaotic behavior in nonlinear oscillators has been investi-
gated in the past four decades, but the systems considered
lead to difficult electronic implementations. Since 2000, the
development of new autonomous chaotic oscillators with
easy electronic implementation has been of interest, as it
can be seen in Sprott papers (Sprott 2000a, b). These cir-
cuits are described by simple three-dimensional equations,
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which can be easily scaled to different frequencies, and
have simple electronic elements such as diodes, operational
amplifiers and resistors. The class of such oscillators given
by d3x

/
dt3 � j

(
x, dx

/
dt, d2x

/
dt2

)
was called by Got-

tlieb jerk oscillators (Gottlieb 1996; Malasoma 2000; Sprott
1997a, b; 2011). Practically, jerk oscillators may be used for
the modeling of some real phenomena such as a special case
of the Nosé–Hoover thermostated dynamic system which
exhibits time-reversibleHamiltonian chaos (Sprott 1997a, b).
Following these ideas, development of new jerk oscillators
with easy electronic implementation and the chaotification
of non-chaotic oscillators, the authors of Ref. Benitez et al.
(2006) introduced, theoretically studied and experimented an
autonomous chaotic oscillator using the Van der Pol dynam-
ics immersed into a jerk oscillator. In Refs. Louodop et al.
(2014) and Kengne et al. (2016), the authors proposed, stud-
ied theoretically and experimented an autonomous chaotic
Duffing oscillator based on a jerk architecture. Recently
Tamba et al. have proposed a chaotic Van der Pol–Duff-
ing jerk oscillator based on jerk architecture and studied the
dynamical behaviors, chaos control and synchronization in
its integer and fractional-order form (Tamba et al. 2018a).
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Motivated by the studies reported in Refs. Benitez et al.
(2006), Louodop et al. (2014), Kengne et al. (2016) and
Tamba et al. (2018a, b), in this paper we consider an
autonomous jerk oscillator which is obtained by convert-
ing the second-order Helmholtz oscillator into a three-
dimensional oscillator using the jerk model. Helmholtz
oscillator is a two-dimensional oscillator with a quadratic
nonlinearity. The Helmholtz oscillator known to naval archi-
tects as the Helmholtz–Thompson equation gives the pos-
sibility to investigate the escape phenomenon. Thompson’s
paper (Thompson 1989) presented a detailed dynamical
analysis of the system which has been investigated experi-
mentally by Gottwald et al. (1995). The equation finds direct
application in the investigation of the bubble dynamics (Kang
and Leal 1990) and is much discussed in the naval architec-
ture literature, see Ref. Thompson (1997). These concepts
continue to find fruitful applications in quantification of cap-
size resistance, see Spyrou et al. (2002).

This paper is structured as follows: Sect. 2 is devoted to the
analytical and numerical analysis of proposed autonomous
Helmholtz jerk oscillator. In Sect. 3, an electronic circuit
realization is suggested for the investigation of the dynam-
ical behavior of the proposed autonomous Helmholtz jerk
oscillator. Amplitude and largest Lyapunov exponent (LLE)
controls of the proposed autonomous Helmholtz jerk oscilla-
tor are presented in Sect. 4. The conclusion is given in Sect. 5.

2 Analysis of the Proposed Autonomous
Helmholtz Jerk Oscillator

The Helmholtz oscillator described by a second-order dif-
ferential equation with an external periodic drive term
(Helmholtz 1954; Thompson 1989; del Río et al. 1992;
Gottwald et al. 1995) is given by:

d2x

dt2
+ δ

dx

dt
+ x − x2 � f0 sin(ωt), (1)

where δ is a dimensionless damping coefficient (δ > 0),
f0 , ω is the amplitude and the pulsation of the periodic sig-
nal. The general form of the φ3 potential associated with
Eq. (1) is defined by V (x) � a1x2

/
2 + bx3

/
3 where a1

and b are real parameters. The potential V (x) can have four
different forms depending on the sign of the parameters a1
and b. Indeed, if the parameters a1 and b are positive, the
potential V (x) has a single well at x � 0 and a single hump
at x < 0. If the parameters a1 and b are negative, the poten-
tial V (x) has a single well at x < 0 and a single hump at
x � 0. If the parameter a is negative and the parameter b
is positive, the potential V (x) has a single well at x > 0
and a single hump at x � 0. If the situation is reversed, the
potential V (x) has a single well at x � 0 and a single hump

at x > 0. Each configuration corresponds to a physical situ-
ation of the Helmholtz oscillator. Very recently, Tamba et al.
(2018b) proposed and investigated the dynamics and syn-
chronization of aHelmholtz oscillatorwith a potential having
a single well at x � 0 and a single hump at x < 0. The
model exhibited some interesting behaviors including Hopf
bifurcation, period-doubling and reversals period-doubling
bifurcations and coexisting attractors. In the present work,
in order to check the effects of the form of the potential on
the dynamics of the Helmholtz oscillator, we introduce an
autonomous Helmholtz jerk oscillator with a potential hav-
ing a single well at x � 0 and a single hump at x > 0.

For f0 � 0, Eq. (1) has two equilibrium points(
x∗, y∗ � dx∗/dt

) � (0, 0) and (1, 0) . The stability of the
equilibrium points is determined by the damping coefficient
δ. When δ > 0, the fixed point (0, 0) is stable while the
equilibrium point (1, 0) is unstable. For f0 � 0 and any
value of parameter δ , the trajectories of Eq. (1) converge to
one or the other equilibrium point (0, 0) either to the equi-
librium point (1, 0).While for f0 �� 0 and ω �� 0, Eq. (1)
can exhibit complex behavior such as chaos.

Inspired by the works reported in Benitez et al. (2006),
Louodop et al. (2014), Kengne et al. (2016), Tamba
et al. (2018a) and in order to convert the second-order
non-autonomous Helmholtz oscillator [see Eq. (1)] to an
autonomous form which can display interesting and com-
plex features, the following model is introduced

d3x

dt3
� −

(
d2x

dt2
+ δ

dx

dt
+ x − x2

)
, (2)

where δ is a dimensionless damping coefficient (δ > 0).
The state space representation of Eq. (2) yields:

dx

dt
� y, (3a)

dy

dt
� z, (3b)

dz

dt
� −z − δy − x + x2, (3c)

where dx(t)
/
dt � y(t) and d2x(t)

/
dt2 � z(t). By varying

the parameter δ, system (3) exhibits period-1 oscillations
and period-2 oscillations. A positive constant parameter a
is added in Eq. (3b) to find chaos in system (3). System (3)
can be rewritten as:

dx

dt
� y, (4a)

dy

dt
� az, (4b)

dz

dt
� −z − δy − x + x2. (4c)
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System (4) is dissipative because∇V � ∂ ẋ
∂x + ∂ ẏ

∂y + ∂ ż
∂z �

−1. System (4) has two equilibrium points E1 � (0, 0, 0)
and E2 � (1, 0, 0). The characteristic equation associated to
E∗(x∗, y∗, z∗) is:

λ3 + λ2 + aδλ − (
2x∗ − 1

)
a � 0. (5)

For the equilibrium E1 � (0, 0, 0), the characteristic
equation is λ3 + λ2+ aδλ +a � 0. According toRouth–Hur-
witz criteria, this characteristic equation has all roots with
negative real parts if and only if A > 0, C > 0, AB−C > 0
where A � 1, B � aδ and C � a, namely:

a > 0, (6a)

a(δ − 1) > 0. (6b)

Since a > 0 and δ > 0, the equilibrium point E1 �
(0, 0, 0) of system (4) is stable if δ > 1 and unstable for
δ < 1.

Theorem If a > 0, system (4) has a Hopf bifurcation at
equilibrium point E1 � (0, 0, 0) when δ passes through
the critical value δH � 1.

Proof By replacing λ � iω (ω > 0) into the characteristic
Eq. (5) associated to E1 � (0, 0, 0) and separating real and
imaginary parts, we obtain

ω � ω0 � √
a, (7a)

δH � 1. (7b)

Differentiating both sides of the characteristic Eq. (5) asso-
ciated to E1 � (0, 0, 0) with respect to δH , we can obtain

3λ2
dλ

dδ
+ 2λ

dλ

dδ
+ aδ

dλ

dδ
+ aλ � 0, (8a)

and

dλ

Eδ
� −aλ

3λ2 + 2λ + aδ
, (8b)

then

Re

(
dλ

dδ

∣
∣∣∣
δ�δH ,λ�iω0

)

� − 1

2(a + 1)
�� 0. (9)

Since the characteristic Eq. (5) associated to E1 �
(0, 0, 0) has two purely imaginary eigenvalues and the real

parts of eigenvalues satisfy Re
(

dλ
dδ

∣∣
δ�δH ,λ�iω0

)
�� 0, all the

Fig. 1 Regions of dynamical behaviors in the parameters space δ and
a. Periodic oscillations are in cyan regions and chaotic behaviors are
in red regions. The values of parameters chosen in gray regions lead to
unbounded orbits (Color figure online)

conditions for Hopf bifurcation to occur are met. Conse-
quently, system (4) has a Hopf bifurcation at E1 � (0, 0, 0)
when δ � δH � 1. Next, substituting the equilibrium E2 in
the characteristic Eq. (5) yields the following characteristic
equation: λ3 + λ2 + aδλ − a � 0. Using Routh–Hurwitz
conditions, this equation has all roots with negative real parts
if and only if: a < 0 and a(δ + 1) > 0. Since a > 0 and
δ > 0, the equilibrium point E2 of system (4) is always
unstable.

2.1 Dynamical Analysis of Proposed Autonomous
Helmholtz Jerk Oscillator

System (4) has two parameters a and δ, we construct the two
parameters (δ, a) bifurcation diagram by examining the Lya-
punov exponents and time series for each cell as illustrated
in Fig. 1.

From Fig. 1, we can see that system (4) can display not
only periodic and chaotic behaviors but it can also lead to
unbounded orbits. In order to know the route to chaos exhib-
ited by system (4), we plot the bifurcation diagrams showing
the local extrema of state variable x(t) when one of the
parameters δ or a is fixed and the other one is varied. We
fix a � 5 and present the bifurcation diagram and the LLE
versus the parameter δ as shown in Fig. 2.

When the parameter δ varies from 0.52 to 1.1, the bifur-
cation diagram of the output x(t) in Fig. 2a displays chaos
interspersed with periodic windows followed by a reverse
period-doubling bifurcation to period-1 oscillations. The
period-1 oscillations is observed up to δ ≈ 1, where a Hopf
bifurcation occurs followed by converging of the trajecto-
ries of system (4) to the equilibrium point E1 � (0, 0, 0).
The bifurcation diagram in Fig. 2a is confirmed by the LLE
shown in Fig. 2b.
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Fig. 2 Bifurcation diagram depicting the local maxima (black dots) and
localminima (graydots) of x(t) (a) and theLLE (b) versus the parameter
δ for a � 5

Fig. 3 (Color online) Bifurcation diagram depicting the maxima of x(t)
(a) and the LLE (b) versus the parameter a for δ � 0.55. Bifurcation
diagrams are obtained by scanning the parameter a upwards (black)
and downwards (red)

For δ � 0.55, bifurcation diagram of x(t) and the LLE
versus the parameter a is plotted in Fig. 3.

When the parameter a varies from 2.6 to 13 (see black
dot in Fig. 3a), the bifurcation diagram of the output x
(t) exhibits a period-2 oscillations followed by a period-
doubling bifurcation to chaos interspersed with periodic
windows for 2.6 < a < 4.27. Then a period-3 oscillations
window is observed for 4.27 ≤ a < 5.44.By further increas-
ing the parameter a, the system (4) undergoes a reverse
period-doubling bifurcation and a period-1 oscillations is
observed for a > 12.26. By ramping the parameter a (see
red dot in Fig. 3a), the output x(t) displays the same dynam-
ical behaviors as in Fig. 3a (see black dot) in the ranges
2.6 ≤ a ≤ 5.075 and 5.44 ≤ a ≤ 13. While in the range

5.075 < a < 5.44, the output x(t) exhibits chaotic behav-
ior. By comparing the two sets of data [for increasing (black)
and decreasing (red)] used to plot Fig. 3a, one can notice
that system (4) displays coexistence of period-3 oscillations
and chaotic behavior in the range 5.075 < a < 5.44. It
is important to note that in the range 2.635 < a < 2.745
the output x(t) displays the same dynamical behaviors as in
Fig. 3a (see black dot), but the amplitudes of the output x
(t) are not the same. Therefore, one can notice that system
(4) shows bistability. The bifurcation diagram in Fig. 3a is
confirmed by the LLE shown in Fig. 3b. The phase portraits
of chaotic oscillations found in Figs. 2a and 3a are plotted in
Fig. 4 for specific values of δ and a.

From Fig. 4, we observe that system (4) exhibits two types
of one-scroll chaotic attractor. The trajectories of one-scroll
chaotic attractor shown in Fig. 4a are constituted of large
spikes with randomly distributed amplitudes. The trajecto-
ries of one-scroll chaotic attractor depicted in Fig. 4b are
constituted of large spikes with randomly distributed ampli-
tudes, alternatively followed by irregular burst of smaller
amplitudes.

The coexisting and bistability phenomena found in Fig. 3a
are further detailed in Fig. 5 which depicts the phase portrait
of the resulting attractors of system (4) in plane (x, y) and
time series of the output x(t) for specific value of parameter
a and initial conditions.

In Fig. 5a, the output x(t) displays period-2 oscil-
lations for the initial conditions (x(0), y(0), z(0)) �
(0.1, 0.1, 0.1) while in Fig. 5b for the initial condi-
tions (x(0), y(0), z(0)) � (0.6, 0.6, 0.0), the output x(t)
exhibits also period-2 oscillations but with higher amplitude
than in Fig. 5a. At a � 5.08, , the output x(t) displays
period-3 oscillations and chaotic attractor for two special ini-
tial conditions as shown in Fig. 5b1 and b2, respectively. The
coexistence of attractors is shown in Fig. 6 which presents
the basin of attraction of system (4) in the plane z � 0 for
a � 5.08 and δ � 0.55.

From Fig. 6, it can be observed that system (4) can exhibit
either unbounded solutions or chaotic or periodic attractor
depending on the initial conditions.

2.2 Control of Coexisting Attractors

Multistability is a wonderful phenomenon found in immense
majority of areas of science (e.g., physics, chemistry, biology,
economy) and in nature (Pisarchik and Feudel 2014). This
complex and striking behavior can introduce additional ran-
domness in dynamical systems and therefore can be exploited
for a few applications such as image processing and ran-
dom bits generation (Mortu et al. 2007). However, in the
most dynamical systems, this phenomenon can create incon-
veniences which reduce the performances of such systems.
For instance, if a system is designed to remain at a certain
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Fig. 4 Phase portrait of system
(4) in planes (x, y), (y, z) and
(x, z) for specific values of δ

and a: δ � 0.56, a � 5 and
δ � 0.55, a � 3.2 with the
initial conditions
(x(0), y(0), z(0)) �
(0.1, 0.1, 0.1)

Fig. 5 Bistable and coexisting
attractors for specific value of
parameter a and the initial
conditions: (a1) a � 2.7 and
(x(0), y(0), z(0)) �
(0.1, 0.1, 0.1), (a2) a � 2.7
and (x(0), y(0), z(0)) �
(0.6, 0.6, 0.0) and (b1)
a � 5.08 and
(x(0), y(0), z(0)) �
(0.0, 0.1, 0.0), (b2) a � 5.08
and (x(0), y(0), z(0)) �
(0.6, 0.6, 0.0). The remaining
parameter is δ � 0.55

dynamical equilibrium (i.e., with a predictable behavior), a
small perturbation-induced jump to a coexisting states may
change the performance and spoil the reproducibility and
hence reliability (Goswami and Pisarchik 2008). The mul-
tistability can also create the well-known green problem in
a laser system with intracavity second harmonic generation
(Baer 1986). Many other examples explaining the inconve-
niences ofmultistability in dynamical systems are reported in

Pisarchik and Feudel (2014). These examples illustrate suffi-
ciently the necessity to control this phenomenon in nonlinear
dynamical systems. Different methods have been currently
used to control multistability including stochastic control,
combined control, feedback control and non-feedback con-
trol (Pisarchik and Feudel 2014). The lattermethod is applied
in the present work to control multistability since it is simple
and requires no feedback loop or a permanent tracking of the
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Fig. 6 (Color online) Cross section of the basin of attraction of system
(4) in the xy-plane at z� 0 for a � 5.08 and δ � 0.55. The values of the
initial conditions selected in gray regions lead to unbounded solutions.
While the red and cyan regions correspond, respectively, to chaotic and
periodic behaviors

phase-space trajectory compared to feedback ones. A slow
harmonic modulation is applied to the parameter a of system
(4) as

a � a0 + ac sin(2π fct) (10)

where a0 is the initial value of the parameter in the uncon-
trolled system, ac and fc are, respectively, the amplitude
and frequency of the control modulation. We assume that
this additional modulation is slow (ac 	 a0) and weak
( fc 	 f0 � √

a0
/
2π ). To illustrate the destruction of the

coexisting attractors in system (4), we compute the bifurca-
tion diagram depicting the local maxima of variable x versus
control amplitude parameter ac for δ � 0.55, a0 � 5.08,
fc � 0.05 as shown in Fig. 7.
FromFig. 7,we can obviously find that system (4) displays

multistability at the beginning, next converts to period-3
oscillations when the control amplitude parameter ac is
increased and decreased. These results confirm that a weak
harmonic modulation converts system (4) from multistable
attractors to monostable one. Moreover, the effects of the
control of multistability in system (4) are more illustrated by
plotting the cross section of the basin of attraction as shown
in Fig. 8 for z(0), δ � 0.55, a0 � 5.08, fc � 0.05 and
ac � 0.05.

Form Fig. 8, it can be seen that system (4) is actually
monostable. The chaotic behavior previously represented by
red regions in Fig. 6 (uncontrolled system) was converted to
period-3 oscillations because of a slow harmonic modulation
to parameter a.

Compared to other jerk systems based on Van der Pol,
Duffing, Van der Pol–Duffing oscillators (Benitez et al.

Fig. 7 (Color online) Bifurcation diagram depicting the local maxima
x with respect to the control amplitude parameter ac for δ � 0.55,
a0 � 5.08, fc � 0.05. The upward and downward bifurcations are
indicated, respectively, by red and blue color branches

Fig. 8 (Color online) Cross section of the basin of attraction of system
(4) in the x − y plane z(0), δ � 0.55, a0 � 5.08, fc � 0.05 and ac �
0.05. The unbounded solutions and period-3 oscillations are marked
with gray and cyan, respectively

2006; Louodop et al. 2014; Kengne et al. 2016; Tamba
et al. 2018a) investigated in the literature, the proposed
autonomous Helmholtz jerk system (4) has a relatively sim-
ple mathematic description and can be easily implemented
with some available electronic components such as resistors,
capacitors, analogue multipliers and operational amplifiers.

3 Circuit Realization of Proposed
Autonomous Helmholtz Jerk Oscillator

In this section, we design an electronic circuit to realize the
proposed autonomous Helmholtz jerk oscillator. Using the
operational amplifiers approach (Tamba et al. 2015; Jafari
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Fig. 9 a The schematic diagram of the designed circuit modeling the proposed autonomous Helmholtz jerk oscillator described by the system (4)
and b its experimental jerk circuit in operation

Fig. 10 (Color online) Phase portraits of the one-scroll chaotic attractor observed on the oscilloscope. The values resistances are Ra � 2 kΩ,

Rδ � 17.86 kΩ.

et al. 2016; Kingni et al. 2014; Pham et al. 2016), our circuit
is designed and presented in Fig. 9.

The designed circuit of Fig. 9 includes five operational
amplifiers, one analog multiplier, ten resistors and three
capacitors. The voltages at the outputs of three operational
amplifiers (U1,U2, U3) are denoted as X, Y, Z. From Fig. 9,
it is easy to derive the circuital equations of the circuit as
follows

dX

dt
� 1

RC
Y (11a)

dY

dt
� 1

RC

R

Ra
Z (11b)

dZ

dt
� 1

RC

(
−Z − R

Rδ

Y − X +
X2

1V

)
(11c)

The circuital equation of the circuit (11) corresponds to
the theoretical proposed Helmholtz jerk oscillator (4) with
a � R

Ra
,δ � R

Rδ
. The values of the resistors and capacitors

are chosen as R � 10 kΩ, C � 10 nF. The values of two
resistors Ra, Rδ can be changed to match with the values of
the parameters a and δ. Figure 10 presents the observations
on the oscilloscope of one-scroll chaotic attractor obtained
by the circuit of Fig. 9.

A good qualitative agreement is shown between one-scroll
chaotic attractor illustrated in Fig. 4a and the one-scroll
chaotic attractor obtained during the hardware experiments
in Fig. 10. Orcard-PSpice software is utilized to validate
the coexistence between period-3 oscillations and one-scroll
chaotic attractor for some given initial voltages, see Fig. 11
because it is not easy to achieve special initial voltages of
three capacitors in hardware circuit experiment (Argyris and
Andreadis 2000; Bao et al.2016; Bao et al. 2017).

Figure 11 reproduces Fig. 5b. From Fig. 11, it can be
noted that there is a good agreement between the numerical
simulations and the PSpice results.
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Fig. 11 (Color online) Coexisting attractors in planes
(
Vx � X , Vy � Y

)
observed on Orcard-PSPICE. The values resistances and capacitors are

Ra � 1.96 kΩ, Rδ � 18.18 kΩ

4 Amplitude and Largest Lyapunov
Exponent Control of Proposed
Autonomous Helmholtz Jerk Oscillator

Designing oscillators with adjustable properties is of interest
in the literature (Munmuangsaen et al. 2015; Li and Sprott
2014; Li et al. 2015; Li and Sprott 2013; de la Fraga et al.
2012; Carbajal-Gomez et al. 2014; de la Fraga and Tlelo-
Cuautle 2014). Amplitude control of chaotic oscillators is
essential to obtain the desired size of the attractor in some
engineering applications (Munmuangsaen et al. 2015; Li and
Sprott 2014; Li et al. 2015; Li and Sprott 2013). Another
important feature in chaotic oscillators is LLE. In Refs. de la
Fraga et al. (2012), Carbajal-Gomez et al. (2014) and de la
Fraga and Tlelo-Cuautle (2014), the authors designed oscil-
lators with desired LLE. In the following subsections, a more
flexible chaotic autonomous oscillator is constructed bymod-
ifying the proposed autonomous Helmholtz jerk oscillator.
To improve this jerk oscillator and achieve more adjustable
properties, two control parameters are added to the system
describing this jerk oscillator. The first parameter controls the
amplitude. The second control parameter is added to achieve
changeable LLE.

4.1 Total Amplitude Control

An amplitude control parameter γ1 in the form of a total
amplitude controller is considered to adjust attractor ampli-
tude. By inserting x → x

/
γ1, y → y

/
γ1 and z → z

/
γ1

in system (4), γ1 remains only in the quadratic term x2 as
shown in the following system:

dx

dt
� y, (12a)

dy

dt
� az, (12b)

dz

dt
� −z − δy − x + x2

/
γ1. (12c)

The set of Eq. (12) has two equilibrium points E1 �
(0, 0, 0) and E2 � (1, 0, 0). The characteristic equation
associated to E∗(x∗, y∗, z∗) is:

λ3 + λ2 + aδλ +
(
1 − 2x∗/γ1

)
a � 0 (13)

For the equilibrium E1 � (0, 0, 0), the characteristic
equation is λ3 + λ2 + aδλ + a � 0. Using Routh–Hurwitz
criteria, this equation has all roots with negative real parts
if and only if: a > 0 and a(δ − 1) > 0. Since a > 0 and
δ > 0, the equilibrium point E1 � (0, 0, 0) of system (12) is
stable if δ > 1 and unstable for δ < 1. For the equilibrium
point, E2 in the characteristic Eq. (13) yields the follow-
ing characteristic equation: λ3 + λ2 + aδλ − a � 0. Using
Routh–Hurwitz criteria, this equation has all roots with neg-
ative real parts if and only if: a < 0 and a(δ + 1) > 0. Since
a > 0 and δ > 0, the equilibrium point E2 of system (12) is
always unstable. So the equilibrium points and their stability
are independent from the parameter γ1.

To examine the dynamical properties of system (12), bifur-
cation diagrams and Lyapunov exponents are considered as
depicted in Fig. 12.

In Fig. 12, the amplitude of x(t) depends on the param-
eter γ1. The amplitudes of variables x(t), y(t) and z(t) are
simultaneously controlled by parameter γ1. In case γ1 > 1,
the amplitude of the variables is enlarged and if γ1 < 1, it
is shrunk. While the Lyapunov exponents are independent
on the parameter γ1, so it means that dynamical behavior of
attractor do not change in consequence of the parameter γ1.
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Fig. 12 (Color online)
Bifurcation diagram depicting
the maxima of x(t) and the
Lyapunov exponents versus the
parameter γ1 for specific values
of δ: a δ � 0.56 and
b δ � 0.8. The remaining
parameter is a � 5

4.2 Largest Lyapunov Exponent Control

A control parameter which adjusts the speed of the oscillator
to reach the attractor is used in order to achieve desirable
LLE. Therefore by taking dt → dt

/
γ2 in system (12), it

can be rewritten as

dx

dt
� γ2y (14a)

dy

dt
� γ2az (14b)

dz

dt
� γ2

(
−z − δy − x + x2

/
γ1

)
(14c)

By this way, it is possible to control the LLE by choos-
ing appropriate γ2. System (14) has two equilibrium points
E1 � (0, 0, 0) and E3 � (γ1, 0, 0). The characteristic equa-
tion associated to E∗(x∗, y∗, z∗) is:

λ3 + γ2λ
2 + aγ 2

2 δλ + γ 3
2

(
1 − 2x∗/γ1

)
a � 0 (15)

For the equilibrium E1 � (0, 0, 0), the characteristic
equation is λ3 + γ2λ

2 + aγ 2
2 δλ + γ 3

2 a � 0.
Using Routh–Hurwitz criteria, this equation has all roots

with negative real parts if: γ2 > 0, γ 3
2 > 0 and aγ 3

2 (δ − 1) >

0. Since γ2 > 0, a > 0 and δ > 0, the equilibrium point
E1 � (0, 0, 0) of system (14) is stable if δ > 1 and unstable
for δ < 1. For the equilibriumpoint, E3 in the characteristic

Fig. 13 Bifurcation diagram depicting the maxima of x(t) (a) and the
LLE (b) versus the parameter γ2 for δ � 0.56, a � 5 and γ1 � 1

Eq. (15) yields the following characteristic equation: λ3 +
γ2λ

2 + aδγ 2
2 λ − γ 3

2 a � 0. Using Routh–Hurwitz criteria,
this equation has all roots with negative real parts if and only
if: γ2 > 0, aγ 3

2 < 0 and aγ 3
2 (δ + 1) > 0. Since γ2 > 0,

a > 0 and δ > 0, the equilibrium point E3 of system (14)
is unstable.

To investigate the dynamical behavior of system (14), we
represent in Fig. 13, the bifurcation diagrams and the LLE
versus the parameter γ2.
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The output of x(t) is independent on the parameter γ2 in
Fig. 13a.While theLLE increases linearlywith the parameter
γ2.

Before the conclusion, one can note that the proposed
Helmholtz jerk oscillator studied here can generate Hopf
bifurcation, periodic attractors, one-scroll chaotic attractor
and coexisting attractors as the Universal Chua circuit or the
Duffing-like jerk oscillator (Kengne et al. 2016) or, a simi-
lar Helmholtz jerk oscillator investigated previously by some
authors of this work Tamba et al. (2018b). The new results
found in the proposed Helmholtz jerk oscillator studied are
bistable period-2 limit cycles, two types of one-scroll chaotic
attractor and the control of the coexisting attractors, ampli-
tude and largest Lyapunov exponents. Investigating control
in dynamical systems is very important because it helps to
design a system with desired features. Control can also help
to improve the performances of the existing dynamical sys-
tems with undesired behaviors.

5 Conclusion

This paper reports on the analytical, numerical and experi-
mental analyses of the proposed autonomous Helmholtz jerk
oscillator. For specific parameters, the proposed autonomous
Helmholtz jerk oscillator exhibitedHopf bifurcation, bistable
period-2 limit cycles and two types of one-scroll chaotic
attractors. The trajectories of one type of one-scroll chaotic
attractor are characterized by large spikes with randomly dis-
tributed amplitudes. While the trajectories of the other type
of one-scroll chaotic attractor are constituted of large spikes
with randomly distributed amplitudes, alternatively followed
by irregular burst of smaller amplitudes, the coexistence
between period-3 limit cycle and one-scroll chaotic attrac-
tor was also found in the proposed autonomous Helmholtz
jerk oscillator. The coexistence of attractors found in pro-
posed autonomous Helmholtz jerk oscillator was controlled
to a desired trajectory by using the parameter modulation
method. Furthermore, hardware experiments and PSpice cir-
cuit simulations were performed to well verify the numerical
simulations. Finally by adding two new parameters: the first
parameter for total amplitude control without any change
in largest Lyapunov exponent and the second parameter for
controlling the largest Lyapunov exponent, the proposed
autonomous Helmholtz jerk oscillator was controlled. The
flexible chaotic autonomous Helmholtz jerk oscillator with
amplitude and largest Lyapunov exponent controls would be
benefitted especially in electronic, communication and infor-
mation engineering.
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