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Abstract
Individual torques at each vehicle wheel are important intermediate variables for the design of Advanced Driver Assistance
Systems, and their knowledge stays an interesting research problem. In this study, a nonlinear high-gain unknown inputs state
observer is designed to compute simultaneously longitudinal and transversal tire forces, resultant torques applied to wheels
and the vehicle speeds. The necessary measurements are the usual rotation speed. Having validated the model of knowledge
using a realistic vehicle simulator, the observer is tested under the same conditions and shows good performances for the
vehicle state, tire forces and the unknown torques reconstruction.

Keywords Vehicle dynamics · Unknown input observer · High gain · Torque · Tyres force

1 Introduction

Due to the heavy tasks to improve safety, comfort and vehi-
cle handling, advanced technologies have been used such as
Antilock Brake System (ABS) and Direct Staking Control
(DYC) as developed by Falcone et al. (2007), Mirzaei and
Mirzaeinejad (2012) andYang et al. (2009).AdvancedDriver
Assistant Systems designed for vehicle safety build effec-
tive automatic control strategies from a vehicle dynamical
state whose components are either measured or estimated.
Embedded measurements such as wheels rotation speeds,
yaw rate or lateral acceleration are now generalized, but
nowadays economic conditions lead to killing the production
costs and at least ban the introduction of new components.
Nevertheless, the scientific and technological progression is
not stopped and it should be noted that the classical wheel
bearings have evolved from a purely mechanical device to
a mechatronic component that now integrates rotation speed
measurements. Plied to the wheel would decrease from now
hundred thousand euros to a small amount of euros. The
present article anticipates the use of these newly affordable
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measurements by showing how it is possible to estimate the
torques applied to the wheels as unknown inputs and the
vehicle dynamic: longitudinal speed, lateral speed, yaw rate,
yaw angle, sideslip angle, longitudinal and transversal tire
forces.

Those estimated torques may be used in Active Drive-
line Torque Management, Pyabongkarn et al. (2010), in the
Electronic Stability Control in complement of the existing
brake-based actuation with the obvious economic and eco-
logical advantages that energy is not necessarily lost during
the actuation. These variables are now issued from proce-
dures that use open-loop calibrated models. For example,
the engine torques applied to the wheels are computed from
the engine speed by using look-up tables and a powertrain
model, Pfiffner et al. (2003). In the same way, the braking
torque is computed from the measured pressure in the mas-
ter cylinder and the “Electronic Brake Distribution” function
that uses a model of brake disks friction.

This research anticipates that the estimated torque may
be used in Active Driveline Torque Management [ADTM—
Pyabongkarn et al. (2010)] in the ESC in complement of the
existing brake-based actuation with the obvious economic
and ecological advantages that energy is not necessarily lost
during the actuation.

In engineering field, to improve the performance of the
integrated technologies, numerous control strategies have
been presented, such as fuzzy control (Li et al. 2015), robust
control (Hu et al. 2016) and sliding mode control (Fang et al.
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Fig. 1 Vehicle variables for chassis: top view for longitudinal and transversal dynamics

2011) and lateral dynamic controlwith delay (Zhu et al. 2015;
Yang et al. 2016). Most of these controls assume that some
variables are measured. But this is not generally the case
because of very expensive sensors or absence of technology.

An alternative strategy based upon state observation the-
ory is proposed in this work with the advantages of the
closed-loop structure. This technology has been spread up
in the industry under the “software sensor” denomination.
Examples are the works of Doumiati et al. (2009) who
present experimental embedded validations of tire/road force
observer and Stéphant et al. (2007) who give a sideslip angle
observer. Some works on observers assume that resultant
torques applied towheels are ”measured” (Ray1997;M’Sirdi
et al. 2008). But, in actual vehicles, these variables are esti-
mated using the first solution.

The estimated state and unknown input can then be used as
input of actual ADAS. The technique called ”high gain” can
be applied without transformation of the initial system: In
this case, the design of the observer is directly obtained from
the system structure (Thau 1973; Kou et al. 1975; Gauthier

et al. 1992; Raghavan and Hedrick 1994; Kreisselmeier and
Engel 2003; Farza et al. 2005).

This work proposes to estimate simultaneously tire forces,
vehicle speed and resultant torques applied to the wheel of
a vehicle. The observer designed in Sect. 3 uses measure-
ments of wheels rotation speeds and normal forces together
with a nonlinear model of the vehicle defined and calibrated
in Sect. 2. A vehicle simulator is used to validate the vehi-
cle model (Sect. 4.3) and the designed observer (Sect. 4.4).
It will be shown that the vehicle state observation is accu-
rate in spite of the fact that resultant torques applied to the
wheels are unknown. The different notations are indicated in
“Appendix 6” and Fig. 1.

2 State-SpaceModel of Vehicle Dynamics

2.1 Chassis Dynamics

Considering the motion of the vehicle on a planar and hori-
zontal road with neglected sprung masses, its configuration
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is composed of the coordinates xG and yG of its center of
gravity together with the yaw angle ψ ; these variables being
defined in an earth-fixed reference frameW = {Ow, iw, jw}
(see top of Fig. 1 which is assumed to be inertial.

In this communication, the dynamics are considered from
the viewpoint of the vehicle. The chassis dynamics model
is thus hereafter represented in the mobile reference frame
M = {G, i, j}. All variables are displayed in Fig. 1.

The motion is originated by the four forces applied at the
tire/road interfaces. Each one of those forces is expressed
in the wheel frame (see bottom of Fig. 1; Fxi j denotes the
longitudinal component, Fyi j ) the lateral one and Fzi j is the
normal one. δi j terms the steering angle of the i j wheel. It
is generated by the steering driveline for the front wheels
(i =F ) and represents the effects of the toe angle for the
two rear wheels. MV denotes the vehicle mass and Izz its
yaw inertia. Applying Newton’s law in the mobile frame, the
longitudinal (Vx ), lateral (Vy) and yaw speeds (ψ̇) evolve as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x = 1

MV

∑

i, j

(
Fxi j cos(δi j ) − Fyi j sin(δi j )

) + ψ̇Vy

V̇y = 1

MV

∑

i, j

(
Fxi j sin(δi j ) + Fyi j cos(δi j )

) − ψ̇Vx

Izzψ̈ = L f
∑

j=R,L

(
FxF j sin(δF j ) + FyF j sin(δF j )

)

−Lr
∑

j=R,L

(
FxRj sin(δRj ) + FyRj sin(δRj )

)

+ ∑

i=F,R
Ei R

(
Fxi R cos(δi R) − Fyi R sin(δi R)

)

− ∑

i=F,R
EiL

(
Fxi L cos(δi L) − Fyi L sin(δi L)

)

(1)

In the sequel, we propose to explicit the links between the
forces and the variables that describe the motion in order to
establish a state-space model of the motion. This is done by
starting from the wheels.

2.2 Wheel Rotational Dynamics

The rotation of the i j wheel (Fig. 2) is generated by the longi-
tudinal force Fxi j stemming from the road together with the
resultant torque Ti j induced by both the vehicle (engine and
brakes for instance) and the environment (effects of the slope
and aerodynamics effects). Iwi j being the wheel inertia, the
moment equation around its rotation axis is:

ω̇i j = 1

Iwi j

(−Rli j · Fxi j + Ti j
)
. (2)

In this expression, the moment of the longitudinal force is(−Rli j .Fxi j
)
where Rli j is the “loaded radius” shown in

F
zij
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ij V

ij

T
ij

F
xij

Fig. 2 Variables of the wheels dynamics
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Fig. 3 Wheel and tire radii—Free, loaded and rolling radii

Fig. 3 and defined by Gillespie Gillespie (1992) as “the dis-
tance from the center of tire contact to the wheel center.” It
can be computed by (3) as the free radius R0i j minus the
deflection deduced from both the tire vertical stiffness kzi j
and the normal load (Fzi j ).

Rli j � R0i j − Fzi j
kzi j

(3)

2.3 Slip Ratio

It is well known that the origin of the forces at the tire/road
interfaces is linked with the deformation of the tire which is
itself described by slip ratio.

The longitudinal slip ratio (LSR, gli j ) if defined by the
normalized skidding speed between the wheel spin velocity
(ωi j ) and the equivalent spin velocity of a straight free rolling
tire (Vxi j/Rri j ).

gli j = −Vi j cos(βi j ) − ωi i Rri j

Vi j cos(βi j )
(4)

The LSR is positive during driving and negative for brak-
ing. The rolling radius (Rr) is the radius of a rigid wheel
whose centers are displaced of the same distance as the center
of the (non-rigid) real tire while performing an equal num-
ber of turns (Fig. 3). This radius may be computed using
the free radius R0i j and the vertical load applied to the
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wheel by equation (5) where ai j and bi j are parameters to be
identified

Rri j � R0i j − Fzi j
ai j Fzi j + bi j

. (5)

β being the sideslip angle at the center of gravity (Fig. 1) and
defined by:

β = arctan

(
Vy

Vx

)

, (6)

the norm of the speed of the center of each wheel speed is
linked with the one of the centers of gravity by using kine-
matics relations:

⎧
⎪⎪⎨

⎪⎪⎩

VFL = VG − ψ̇
(
EFL − L f sin(β)

)

VFR = VG + ψ̇
(
EFR + L f sin(β)

)

VRL = VG − ψ̇ (ERL + Lr sin(β))

VRR = VG + ψ̇ (ERR − Lr sin(β))

. (7)

The transversal slip ratio is defined as the tangent of the tire
sideslip angle.

gti j = tan(βi j ) (8)

The sideslip angle (Fig. 1) of each wheel can be calculated
using geometry and kinematics relations with the velocity of
the center of gravity (Kiencke and Nielsen 2000):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βFL = δFL − arctan

(
VG sin(β) + ψ̇dFL cos(νFL)

VG cos(β) − ψ̇dFL sin(νFL)

)

,

βFR = δFR − arctan

(
VG sin(β) + ψ̇dFR sin(νFR)

VG cos(β) + ψ̇dFR cos(νFR)

)

,

βRL = δRL − arctan

(
VG sin(β) − ψ̇dRL sin(νRL)

VG cos(β) − ψ̇dRL cos(νRL)

)

,

βRR = δRR − arctan

(
VG sin(β) − ψ̇dRR cos(νRR)

VG cos(β) + ψ̇dRR sin(νRR)

)

.

(9)

In these expressions, di j is the distance between the center
of gravity and the wheel/road contact point and νi j denotes
the angle between the vehicle coordinate systems and the
wheel/road contact point. Those expressions are defined ana-
lytically by (10,11), and the νi j angles are displayed in Fig. 1.

di j =
√

L2
j + E2

i j (10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νFL = arctan

(
EFL

L f

)

νFR = arctan

(
L f

EFR

)

νRL = arctan

(
Lr

ERL

)

νRR = arctan

(
ERR

Lr

)

(11)

The resultant wheel slip is a ratio that combines longitudinal
and transversal wheel slip phenomena.

gi j =
√

g2li j + g2ti j (12)

2.4 Tire/Road Contact Force Model

Among the numerous models of tire/road contact forces
(Pacejka 2002), we propose to consider a simplified Bur-
ckhardt model (Burckhardt and Reimpell 1993) that is a
good compromise between the number of parameters and
the accuracy of the description. It is based on a non-
linear representation of the tire/road friction coefficient
scaled by the normal force acting on the tire/road contact
patch.

This tire/road friction coefficient is written as a function
of the resultant slip ratio (12):

μi j (gi j ) = c1i j (1 − exp(−c2i j gi j )) − c3i j gi j (13)

Coefficients c1i j , c2i j and c3i j are representative of the road
surface. An example of the representativity of this model
where the results of the Burckhardt formula (13) is compared
to data from a physical based model.

The forces are produced by contact between the road and
tires. They are transmitted through the dynamics of wheels
and vehicle. They are of major importance for the dynamic
behavior of a road vehicle. Hence, accurate tire models are
necessary components of models aimed at analyzing or sim-
ulating vehicle motion in real driving conditions. The driver
can then control the vehicle trough this dynamic. A lot of
work has been done in the area of tires model fitting and esti-
mation. Many models have been previously used to describe
the tire forces. Some of them are theoretical in the sense that
they aim at modeling the physical processes that generates
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the forces. Other ones are empirically oriented, and their aim
is to describe observed phenomena in a simple way. In this
work, we consider the relaxation model which represents the
forces is a model of the first order (Doumiati et al. 2008;
Ouahi et al. 2015). The forces of the contact wheel/ground
are formulated according to a differential equation of the first
order, and the main parameter is the relaxation length σ . The
relaxation length is the distance traveled by the tire during
the settling time of the effort. In this model, the longitudinal
and lateral force evolves as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ḟxi j = Vx

σxi j
(−Fxi j + Fx0i j )

Ḟyi j = Vy

σyi j
(−Fyi j + Fy0i j )

(14)

where Fx0i j and Fy0i j is calculatedwith a simplifiedmodel of
Burckhardt. Among the numerous models of tire force, this
study is altogether compact and thorough for the considered
problem. Its expression (15) includes the normal load Fzi j
and a nonlinear friction coefficient
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fx0i j = gli j
gi j

μi j (gi j )Fzi j

Fy0i j = gti j
gi j

μi j (gi j )Fzi j

(15)

Finally, The vertical tire/road force is proportional to from
a longitudinal and lateral acceleration and an equation of
moment equilibrium. The vertical load applied to the wheel
is (Fzi j ). This force could be estimated by equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FzFL = Lr MV g

2L
− MVhgax

2L
− Lr MV hgay

LEFL

FzFR = Lr MV g

2L
− MVhgax

2L
+ Lr MV hgay

LEFR

FzRL = L f MV g

2L
+ MVhgax

2L
− L f MV hgay

LERL

FzRR = L f MV g

2L
+ MVhgax

2L
+ L f MV hgay

LERR

(16)

where L = L f + Lr .

2.5 State-Space Model of the Vehicle

By assembling the chassis dynamics (1), the wheels dynam-
ics (2) and injecting the Burckhardt tire/road force model
(14), it comes to the following state-space model of the vehi-
cle:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇FL = 1
IwFL

(−RlFL · FxFL + TFL)

ω̇FR = 1
IwFR

(−RlFR · FxFR + TFR)

ω̇RL = 1
IwRL

(−RlRL · FxRL + TRL)

ω̇RR = 1
IwRR

(−RlRR · FxRR + TRR)

V̇x = 1
MV

∑

i, j

(
Fxi j cos(δi j ) − Fyi j sin(δi j )

) + ψ̇Vy

V̇y = 1
MV

∑

i, j

(
Fxi j sin(δi j ) + Fyi j cos(δi j )

) − ψ̇Vx

ψ̈ = 1
Izz

{L f
∑

j=R,L

(
FxFj sin(δFj) + FyFj sin(δFj)

)

− Lr
∑

j=R,L

(
FxRj sin(δRj) + FyRj sin(δRj)

)

+ ∑

i=F,R
Ei R

(
Fxi R cos(δi R) − Fyi R sin(δi R)

)

− ∑

i=F,R
EiL

(
Fxi L cos(δi L) − Fyi L sin(δi L)

)}

ḞxFL = Vx

σxFL
(−FxFL + Fx0FL)

ḞxFR = Vx

σxFR
(−FxFR + Fx0FR)

ḞxRL = Vx

σxRL
(−FxRL + Fx0RL)

ḞxRR = Vx

σxRR
(−FxRR + Fx0RR)

ḞyFL = Vy

σyFL
(−FyFL + Fy0FL)

ḞyFR = Vy

σyFR
(−FyFR + Fy0FR)

ḞyRL = Vx

σyRL
(−FyRL + Fy0RL)

ḞyRR = Vx

σyRR
(−FyRR + Fy0RR)

(17)

3 Design of a Software Sensor in the Form of
a High-Gain Unknown Inputs Observer

3.1 Observer Principle

It often happens that all state variables of a system are not
accessible to measurement or input not measurable because
of very expensive sensors or absence of technology. The idea
is to rebuild the state and the input not measurable from
information available that is to say the output and known
inputs.

The aim of an unknown input observer (O) is to esti-
mate simultaneously the state (x) and the unknown input (ū)
applied to a physical system using measured input (u), mea-
sured output (y) and a knowledge model (�) of the system.
The principle of this kind of observer is shown in Fig. 4.
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Physical
Systemu

y x̂
u

û

Observer

Model
Σ

Obs

Fig. 4 Unknown inputs observer principle

In the unknown inputs observer theory, our objective is to
synthesize observers to simultaneously estimate the whole
state as well as all unknown inputs.

Let us consider the nonlinear high-gain unknown inputs
observer (47) proposed by Liu et al. (2006).

3.2 Model Formatting

The state-space variable of vehicle model (17) is:

x = (
x1 X

)T
(18)

where the state is split into two parts x1 = (ωFL, ωFR, ωRL,

ωRR)T and X = (X1, X2)T with: X1 = (Vx , Vy, ψ̇, FxFL,

FxFR, FxRL, FxRR)T and X2 = (FyFL, FyFR, FyRL, FyRR)T.
Assuming that the rotational wheel speed is measured (for

example, using ABS sensors), it is possible to build a mea-
sured output to this model.

y = (ωFL, ωFR, ωRL, ωRR)T (19)

Assuming that the steering geometry is known, it is pos-
sible to use the driver steering angle to compute the different
wheel steering angles. The longitudinal and transversal accel-
erations aremeasured by interferometers. It gives ameasured
input described by:

u = (δFL, δFR, δRL, δRR, ax , ay)
T (20)

Finally, an unknown input comprising the resulting
torques applied to the wheels is defined.

ū = (TFL, TFR, TRL, TRR)T (21)

It should be noted that the number of unknown inputs is
equal to the number of measures and that there is no input in
the measurement equation.

Measurements are the usual wheel rotation speed. The
model can now be expressed under a state equation (17).

�

{
ẋ = f (x, u) + G(u)ū
y = Cx

(22)

where the state is split into two parts

x1 = y = (ωFL, ωFR, ωRL, ωRR)T

is the measured one and X the other one.

The f (x, u) = (
f 1(x, u) fX (x, u)

)
is the state function,

the matrix G(u) = (
G1(u) GX (u)

)
and C = (

I 0
)

Such synthesis necessitates the adoption of appropriate
assumptions which shall be given in due courses.

A nonlinear high-gain unknown inputs observer is
designed (Liu et al. 2006). To build this kind of observer,
some hypothesis must be checked:

1. The matrix G1 must be full column rank (Rang(CG(u))

= Rang(G1(u))).
∃α, β > 0; ∀t ≥ 0 :
0 < α2 I < (G1(u))T(G1(u)) < β2 I

2. The time derivative, ε(t), of the unknown input ū is
a completely unknown function which is uniformly
bounded. sup||ε(t)|| ≤ ρ for t ≥ 0 (where ρ > 0 is
a real number).

3. There exists a symmetric positive-definite matrix p(t)
such that (detectability condition):

(a) ∃α1, α2 > 0; ∀t ≥ 0 :
α1 I4 ≤ p(t) ≤ α2 I4

(b) ∃α3 > 0,∀u ∈ R
4,∀x1 ∈ R

4,∀X ∈ R
4 :

ṗ(t) + p(t)
∂ fX
∂X

(x1, X , u)

+∂ fX
∂X

(x1, X , u)T p(t) ≤ −α3 I4

Now, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϒ1 = (G1(u))(G1(u))+

ϒX = (GX (u))(G1(u))+

ϒ =
(

ϒ1

ϒX

)
(23)

Consider the following change in coordinates,

⎛

⎜
⎜
⎜
⎝

x̄11

x̄12

X̄

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

I 0 0

0 I 0

−ϒ 0 I

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1

ū

X

⎞

⎟
⎟
⎟
⎠

(24)

where I is the dimension appropriate.
For system (22), the formatted system is now written by

(25)

�

⎧
⎪⎪⎨

⎪⎪⎩

˙̄x1 = f̄ 1(x̄11 , X̄ , u) + Ḡ1(u)ū + ε̄(t)

˙̄X = f̄ X̄ (x̄11 , X̄ , u) + ϒ̇X x̄11

y = x̄11

(25)
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where x̄1 =
(
x̄11
x̄12

)

, X̄ = X − ϒX x1, f̄ 1(x̄11 , X̄ , u) =
(
f 1(x, u)

0

)

, f̄ X̄ (x̄11 , X̄ , u) = fX (x, u) − ϒX f 1(x, u),

Ḡ1(u) =
(
0 G1(u)

0 0

)

and ε̄(t) =
(

0
ε(t)

)

.

Now, let the following coordinate changes:

z1 =
⎛

⎝
z11

z12

⎞

⎠

= �x̄1

= �(x̄1, u)

(26)

where � = diag
(
I ,G1(u)

)

Before describing the dynamics of z1, we note the follow-
ing identity:

�Ḡ(u) = A� (27)

where A =
(
0 I
0 0

)

The dynamic of z1 is

ż1 = ∂�(x̄1,u)

∂ x̄1
˙̄x1 + ∂�(x̄1,u)

∂u u̇

= Az + � f̄ 1(x̄11 , X̄ , u) + �ε̄ + ∂�(x̄1,u)
∂u u̇

= Az + ϕ(z, u) + �ε̄

(28)

The observer synthesis needs the following additional
assumptions:

4) The function ϕ(z, u) is globally Lipschitz with respect
to z uniformly in u.

The initial observation problem becomes standard since
the objective is now to design an observer for following the
nonlinear systems

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż1 = Az + ϕ(z1, X̄ , u) + �ε̄

˙̄X = f̄ X̄ (z11, X̄ , u) + ϒ̇X z11

y = z11 = Cz1

(29)

It should be noted that the number of unknown inputs is
equal to the number of measures and that there is no input in
the measurement equation.

3.3 Observer Synthesis

Before giving our candidate observer, one introduces the fol-
lowing notations.

• let �θ be the block diagonal matrix defined by:

�θ = diag
(
I , I

θ

)
(30)

where θ > 0 is a real number.
• Let S be the unique solution of the algebraic Lyapunov
equation (31)

S + ATS + SA − CTC = 0 (31)

One can show that S is symmetric positive definite and
in particular one has:

S−1CT =
(
2I
I

)

(32)

A candidate observer for system (29) is:

�̂

{ ˙̂z1 = Aẑ + ϕ(ẑ1, ˆ̄X , u) − θ�−1
θ S−1CT(ẑ11 − z11)˙̄̂

X = f̄ X̄ (z11,
ˆ̄X , u) + ϒ̇X z11

(33)

where ẑ1 =
(
ẑ11
ẑ12

)

and θ is the observer tuning parameter.

From the equation of the system (�) and (�̂), the obser-
vation error is:
{
e1 = ẑ − z
e2 = X̂ − X

(34)

Lemma Suppose the system (29) satisfied hypothesis (1), (2),
(3) and (4), alors,

(1) ∃θ̄ > 0, ∃λ1 > 0, ∃λ2 > 0,∀θ > θ̄, ∃μ(θ) >

0, ∃M(θ)

||e1(t)|| ≤ λ1θ exp(−μ(θ)t)||e2(0)||
+λ2 exp(−α3t)||e2(0)|| + M(θ)ρ

(2) ∃σ > 0, on a ||e2(t)|| ≤ σ exp(−α3t)||e2(0)||

Proof Furthermore, one can easily check the following iden-
tities: �θ A�−1

θ = θ A and C�θ = C .
Set

{
ē1 = �θe1

ē2 = e2
(35)

Using the theorem of average value for the second error,
the dynamics errors are obtained by:

⎧
⎪⎪⎨

⎪⎪⎩

˙̄e1 = θ
(
A − S−1CTC

)
ē1+

�θ

(
ϕ(ẑ1, ˆ̄X , u) − ϕ(z1, X̄ , u)

)
− �θ�ε̄

˙̄e2 = ∂ f̄ X̄
∂ X̄

(z11, X̄ , u)ē2
(36)
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TheLyapunov function candidate isV (ē1, ē2) = V1(ē1)+
V2(ē2), Where:

⎧
⎨

⎩

V1(ē1) = (ē1)TSē1

V2(ē2) = (ē2)T p(t)ē2
(37)

One has:

V̇1(ē1) = 2(ē1)TS ˙̄e1

= − θV1(ē1) − (ē1)TCTC ˙̄e1 − 2(ē1)TS�θ�ε̄

+ 2(ē1)TS�θ

(
ϕ(ẑ1, ˆ̄X , u) − ϕ(z1, X̄ , u)

)

≤ − θV1(ē1) + 2||ē||||S|| ||�θ�ε̄||

+ 2||ē||||S||
∣
∣
∣

∣
∣
∣�θ

(
ϕ(ẑ1, ˆ̄X , u) − ϕ(z1, X̄ , u)

)∣
∣
∣

∣
∣
∣

(38)

According to the Lipschitz condition on these function,
one can easily show that:

∣
∣
∣

∣
∣
∣�θ

(
ϕ(ẑ1, ˆ̄X , u) − ϕ(z1, X̄ , u)

)∣
∣
∣

∣
∣
∣ ≤ k1||ē1|| + k2||ē2||

(39)

According to the structures of ε̄, one has:

||�θ�ε̄|| =
∣
∣
∣
∣

∣
∣
∣
∣
G1(u)ε

θ

∣
∣
∣
∣

∣
∣
∣
∣ ≤ βρ

θ
(40)

for some constants β and ρ which do not depend on θ .
According to the previous developments, inequality (41)

can be written as follows:

V̇1(ē
1) ≤ −(θ − c1)V1(ē

1)

+ c2
√
V1(ē1)

√
V2(ē2) + c3ρ

θ

√
V1(ē1) (41)

with: c1 = 2K1||S||
λmin(S)

, c2, c3 for some constant real posi-

tive number c1 = 2K1||S||
λmin(S)

, c2 = 2K2||S||√
λmin(S)

, c3 = 2β||S||√
λmin(S)

(λmin(S) etant la plus petite valeur propre de (S) ) which do
not depend on θ .

Otherwise, under hypothesis (3), one can show that:

V̇2(ē
2) ≤ −α3V2(ē

2) (42)

or equivalently

||e2(t)|| ≤ σ exp(−α3t

2
)||e2(0)|| (43)

with: σ = α2
α1
.

We deduce

√
V1(ē1) ≤ exp

(
− (θ−c1)t

2

) √
V1(ē1(0)) + c2σ

θ−c1−α3
(
exp(−α3t

2 ) − exp
(
− (θ−c1)t

2

))
||e2(0)||

c3ρ
θ(θ−c1)

(
1 − exp

(
− (θ−c1)t

2

))

(44)

now choosing θ > 1 + c1 + α3, we obtain:

√
V1(ē1) ≤ exp

(
− (θ−c1)t

2

) √
V1(ē1(0)) + c2σ

exp(−α3t
2 )||e2(0)|| + c3ρ

θ(θ−c1)

(45)

We now use the fact that ||ē1|| ≤ ||e1|| ≤ θ ||ē1|| and
obtain:

||e1|| ≤ λmax (S)θ
λmin(S)

exp
(
− (θ−c1)t

2

)
||e1(0)||+

θc2σ
λmin(S)

exp(−α3t
2 )||e2(0)|| + c3ρ

λmin(S)(θ−c1)

(46)

Finally, set θ̄ = 1 + c1 + α3, λ1 = λmax (S)
λmin(S)

, λ2 = c2σ
λmin(S)

,

μ(θ) = (θ−c1)t
2 , M(θ) = c3

λmin(S)(θ−c1)
. This ends the proof.

	

These expressions will be given in the new coordinates z

in order to easily check hypothesis (1), (2), (3) and (4) as well
as in the original coordinates x in order to easily recognize
the structure of the resulting observers.

The observer for the system (22) is:

�̂

⎧
⎨

⎩

˙̂x1 = f (x̂1, X̃ , u) + G(u) ˆ̄u + 2θD(u)(y − x̂1)

ˆ̄u = θ2(G1(u))+(y − x̂1)
(47)

where x̂ =
(
x̂1

X̂

)

is estimation of the state vector, ū is esti-

mation of the unknown input, D(u) =
(

I
ϒX

)

and X̃ =
X̂ − ϒX (x̂1 − x1).
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3.4 Summary for the Observer Applied to the
Vehicle Model

To estimate simultaneously the state and the unknown inputs
of the vehicle (17), the observer is explicitly:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂ωFL = 1
IwFL

(
−RlFL · F̂xFL + T̂FL

)
+ 2θ (ωFL − ω̂FL)

˙̂ωFR = 1
IwFR

(
−RlFR · F̂xFR + T̂FR

)
+ 2θ (ωFR − ω̂FR)

˙̂ωRL = 1
IwRL

(
−RlRL · F̂xRL + T̂RL

)
+ 2θ (ωRL − ω̂RL)

˙̂ωRR = 1
IwRR

(
−RlRR · F̂xRR + T̂RR

)
+ 2θ (ωRL − ω̂RL)

˙̂Vx = 1
MV

∑

i, j

(
F̂xi j cos(δi j ) − F̂yi j sin(δi j )

)
+ ˙̂

ψ V̂y

˙̂Vy = 1
MV

∑

i, j

(
F̂xi j sin(δi j ) + F̂yi j cos(δi j )

)
− ˙̂

ψ V̂x

¨̂
ψ = 1

Izz

{

L f
∑

j=R,L

(
F̂xFj sin(δFj) + F̂yFj sin(δFj)

)

−Lr
∑

j=R,L

(
FxRj sin(δRj) + FyRj sin(δRj)

)

+ ∑

i=F,R
EiR

(
F̂x iR cos(δiR) − F̂yiR sin(δiR)

)

− ∑

i=F,R
EiL

(
F̂x iL cos(δiL) − F̂yiL sin(δiL)

)}

˙̂FxFL = V̂x

σxFL
(−F̂xFL + F̂x0FL)

˙̂FxFR = V̂x

σxFR
(−F̂xFR + F̂x0FR)

˙̂FxRL = V̂x

σxRL
(−F̂xRL + F̂x0RL)

˙̂FxRR = V̂x

σxRR
(−F̂xRR + F̂x0RR)

˙̂FyFL = V̂y

σyFL
(−F̂yFL + F̂y0FL)

˙̂FyFR = V̂y

σyFR
(−F̂yFR + F̂y0FR)

˙̂FyRL = V̂x

σyRL
(−F̂yRL + F̂y0RL)

˙̂FyRR = V̂x

σyRR
(−F̂yRR + F̂y0RR)

˙̂T FL = θ2 IwFL (ωFL − ω̂FL)

˙̂T FR = θ2 IwFR (ωFR − ω̂FR)

˙̂TRL = θ2 IwRL (ωRL − ω̂RL)

˙̂TRR = θ2 IwRR (ωRR − ω̂RR)

(48)

4 Model and Observer Validation

The objective of this paper is to estimate non-measured
variables by state-space observers deduced from available
measurements interpreted by using the progression equation
(17). A first step in this design consists to validate this model
in the situations that will be studied. This is the subject of the
following section.

4.1 Vehicle Simulator

Realistic simulators are useful intermediate between real
experiments and simplified models which are used to design
controllers or state observers.

Callas Lechner et al. (1997) is a realistic vehicle simu-
lator software distributed by Oktal company (http://www.
oktal.fr). It has been validated by some French car manu-
facturers and research institutions. The Callas model is a
physical knowledge-based one and takes into account phe-
nomena such as nonlinear vertical dynamics (suspension,
tires), kinematics, elasto-kinematics, tire adhesion, aerody-
namics . . . and the road profile. The validation tests that are
shown in this section display the comparison between the
behaviors of both a Callas model of a “Peugeot 406” car
and the low-order state-space model (17). The relevance of
those tests stems from the more complete physical descrip-
tion of the Callas model together with the fact that inner
variables such as the torques and normal forces on all wheels
are recorded. Those variables are the inputs of themodel (17)
to be validated. This is truly advantageous since the mea-
surement of all those variables is rare and expensive, which
is again a motivation of the present study that proposes to
estimate indirectly the non-affordable measurements.

4.2 Simulation Conditions

In this paper, model and observer are evaluated using the
following simulation conditions. The driver simulator is con-
figured to perform a braking in turn. This kind of test is used
to evaluate model’s performances in the case of coupling
effects between longitudinal and transversal dynamics. The
driver increases the steering wheel angle at 70 [km/h]. When
a trajectory radius of 100 [m] is reached, a force of 40 [daN] is
applied on the break pedal. Simulation conditions are shown
in Fig. 5.

For the following simulations, parameters of the nonlinear
friction coefficient (13) are identified to match the friction
curve during a braking and turning phase at wheel locked.

On all figures, only the front left (i j = FL) and the rear
right (i j = RR) variables are shown. The front right (rear
left) variables are similar to the front left variables (rear right).
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Fig. 6 Rotational wheel speed calculated by the open-loop model with
known torque. Callas reference and modeling error

4.3 Model Validation

Model validation is the first stage of a software sensor design.
To do this, model (17) is used with all known inputs. Ti j are
extracted from Callas.

On the top of Fig. 6, the rotational speeds of wheels
issued from Callas (”ref” label) and from the model (”BO”
label) are shown. In the bottom, the modeling error is pre-
sented. On the rear right wheel, the maximum error is
1.7rads−1 � 1.8km h−1]. On the front left wheel, the max-
imum error is around 2.1km h−1]. This indicates that the
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Fig. 7 Longitudinal speed of vehicle compared by the open-loopmodel
and the unknown input observer. Callas reference, modeling error and
observation error

model of rotational acceleration is correct when the resultant
torque applied to the wheel is known.

4.4 Observer Validation

On the top of Fig. 7, the longitudinal speed of vehicle esti-
mation V̂x (”UIO” label) is compared to the Callas reference
(”ref” label) and to the open-loop model with known torques
(”BO” label). In the bottom, the observer and modeling error
are presented. On the open-loop model, the maximum error
is 0.3m s−1]. On the unknown input observer, the maximum
error is around 0.06ms−1]. This figure indicates that observer
results are better than the ones of the calibrated open-loop
model.

The top of Fig. 8 displays the results of the unknown input
observer (48). The lateral vehicle speed of vehicle (chassis
over ground speed) is presented. Callas reference is indicated
by the label ref, open-loop model with known torque by the
label BO and observed speed V̂y by observer. A maximum
error of 0.16ms−1 shows that the speed estimation is accu-
rate despite the lack of knowledge of torques applied to the
wheels. Then, observer results are better than the ones of the
calibrated open-loop model.

The top of Fig. 9 presents the observation the yaw angle
compared with Callas reference and the one which was mod-
elized by the open-loop model with known inputs. In the
bottom, the observer and modeling errors are presented. One
can see that the trends are good. The yaw angle ψ estima-
tion (”UIO” label) is compared to the Callas reference (”ref”
label) and to the open-loopmodel with known torques (”BO”
label). On the open-loop model, the maximum error is 4.92
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deg. On the unknown input observer, the maximum error is
around 0.37 deg.

In Fig. 10, the vehicle sideslip angle observed by the
unknown inputs observer is compared to the Callas reference
and the one which was modelized by the open-loop model
with known inputs. First of all, the vehicle has small sideslip
angle, because the curvature radius for the presented test is
around 100m for a speed of 70 km/h. The lateral acceleration
is not important (less than 0.4 g). During the path at constant
speed, open-loop model and observer give the same results.
During the braking phase which begins at time 4 s, observer
performance is better than the open-loop model.
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Fig. 10 Vehicle sideslip angle computed by the open-loop model with
known torque and by the unknown input observer. Callas reference,
modeling error and observation error
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Fig. 11 Longitudinal tire/road force calculated by the open-loopmodel
with known torque. Callas reference and modeling error

On the top of Fig 11 the longitudinal tire/road forces
issued fromCallas (indicated by the ”ref” label) and from the
observer (”UIO” label) are shown. In the bottom, the model-
ing error is presented. On the front left wheel, the maximum
error is 13 daN. For the rear wheel, the maximum error is
7 daN. This indicates that model of longitudinal forces (14)
is accurate when the resultant torque applied to the wheel is
known. It should be noted that the relative error is around
2%.

Figure 12 presents the observer performances to compute
the lateral tire/road contact forces. One can see that the trends
are good. A relative error of about 10% can be noted.

In the upper part of Fig. 13, the vertical tire/road forces
issued both from Callas (”ref” label) and from the model
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Fig. 14 Resultant torque calculated by the unknown input observer.
Callas reference and observation error

(”UIO” label) are shown. In the bottom, the observer error
is presented. On an average, the absolute value of the force
error on all wheels is less than 17.13 daN for front lift wheels
and −11.45daN for the rear right ones.

Finally, Fig. 14 presents the unknown torque estimated by
the observer confronted to the resultant torque applied to the
wheels by the Callas simulator. On an average, performances
of the observer are very accurate.

It is important to indicate here that the unknown input
calculated is not directly the resultant torque (sum of braking
and driving torque). Indeed, this unknown input is made up
of:

• Effective resultant torque
• Errors on radius estimation
• Non-modelized torque

5 Conclusion

This paper has presented a nonlinear unknown inputs
observer to estimate simultaneously torque, tire forces and
vehicle speed from rotational wheel speed measurements.
Having validated the model of knowledge using Callas as a
realistic vehicle simulator, the observer has been tested under
the same conditions and showed good performances for the
reconstruction of the vehicle state and the unknown torques
applied to the wheels.

This paper follows the work we have developed in Ouahi
et al. (2010, 2011, 2013)which enables estimating the couple
from measurements of wheel speed rotation.

Those estimated torques may be used in ADTM in the
ESC in complement of the existing brake-based actuation
with the obvious economic and ecological advantages that
energy is not necessarily lost during the actuation.

6 Notations

i = F, R wheel or tire number (front, rear)
j = L, R wheel or tire number (left, right)
EFL: Half-way front right (m)
EFR: Half-way front left (m)
ERL: Half-way rear right (m)
ERR: Half-way rear left (m)
Fzi j : Normal force (i,j) (N)
Fxi j : Longitudinal tire/road force—tire (i,j) (N)
Fyi j : Lateral tire/road force - tire (i,j) (N)
gi j : Resultant slip ratio tire (i,j) (−)

gli j : Longitudinal slip ratio tire (i,j) (−)

gti j : Lateral slip ratio tire (i,j) (−)

Iwi j : Inertia—wheel (i,j) (kgm2)

kzi j : Vertical stiffness—tire (i,j) (Nm−1)
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L f : Distance from CG to front axle (m)
Lr : Distance from CG to rear axle (m)
R0i j : Nominal radius - tire (i,j) (m)
Rri j : Rolling radius - tire (i,j) (m)
Rli j : Loaded radius - tire (i,j) (m)
Ti j : Torque applied to the wheel (i,j) (Nm)
Vx : Longitudinal velocity (ms−1)

Vy : Lateral velocity (ms−1)

β: Center of gravity side slip angle (rad)
βi j : Wheel side slip angle (i,j) (rad)
μi j : Longitudinal friction coefficient tire (i,j) (−)

ω: Angular velocity (Nrad−1)

ψ : Angle rate (rad)
σxi j : Longitudinal relaxation - tire (i,j) (m)
σyi j : Lateral relaxation - tire (i,j) (m)
θ : Observer tuning parameter (s−1/2)

MV : Total vehicle mass (kg)
.̂ : Observed variable (−)
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