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Abstract
This paper is concerned with the problem of robust stability of uncertain two-dimensional (2-D) discrete systems described
by the Roesser model with polytopic uncertain parameters. Based on a newly developed parameter-dependent Lyapunov–
Krasovski functional combined with Finsler’s lemma, new sufficient conditions for robust stability analysis are derived in
terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness and less conservatism of
the proposed results.
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1 Introduction

In the past few decades, research on two-dimensional (2-
D) state space representation has rapidly increased. The 2-D
linear models were introduced in the 1970s (Fornasini and
Marchesini 1976; Givone and Roesser 1972) and have found
many physical applications such as digital data filtering,
image processing (Roesser 1975), thermal power engineer-
ing (Roesser 1975). Thus a considerable interest has been
devoted to 2-D systems and a number of results have been
presented in the literature. To mention a few, the stability
analysis problem of 2-D systems has been addressed in Kar
and Singh (2003), Ooba (2000) and Badie et al. (2018a, b).
Moreover, the H∞ control problem for 2-D state-delayed
systems has been studied in Xu and Yu (2009), Feng et al.
(2012) and Ghous and Xiang (2015, 2016), and the authors
in Peng and Guan (2009) and Zhang et al. (2011) presented
a solution to H∞ filtering problem of 2-D systems. Yet,
all the results mentioned above are only for linear certain
2-D systems without parameter uncertainties. As is well
known, almost all existing physical and engineering systems
unavoidably include uncertainties because of the existence
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of external disturbance, modeling inaccuracies, component
aging, parameter variations or parameter fluctuation in the
process of implementations. The term uncertainty refers to
the differences or errors betweenmodels and real systems and
whatever methodology is used to express these errors will be
called a representation of uncertainty. In general, the norm-
bounded uncertainty is one of the important representation of
parametric uncertainty where the mathematical description
of the uncertain system explicitly exhibits a nominal model
located at the center of the hyper ellipsoid of uncertainty in
the parameter space (Hmamed et al. 2013; Yao et al. 2013).
Another important description of uncertainty is the so-called
polytopic uncertainty, where the set of system parameters is
supposed to be uncertain and unknown but belonging to a
known convex polytopic domain, and the nominal system is
located at the center of this convex polytopic domain (Peau-
celle et al. 2000; Kau et al. 2005). In recent years, a great
deal of attention has been devoted to the robustness analysis
and synthesis for 2-D systems with polytopic uncertainties,
and we can cite for example (El-Kasri et al. 2013; Boukili
et al. 2016; El-Amrani et al. 2017; Tadepalli and Leite 2018;
Badie et al. 2018).

On the other hand, the robust stability analysis problem is
an important issue for many physical and engineering appli-
cations, as it is the initial requirement for any design. The
Lyapunov stability theory has become an efficient method
for dealing with this problem, and it is well known that the
reduction in conservatism in robust stability criteria can be
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achievedmainly from the construction of an appropriate Lya-
punov functional. In particular, existing stability methods for
uncertain systems with polytopic uncertainties are classified
into two types: quadratic stability conditions and parameter-
dependent stability conditions. In the first case, the stability
of a polytope of matrices can be checked by using a single
Lyapunov matrix for all the sub-models, and therefore, the
obtained stability condition is rather conservative and some-
times very restrictive, but it does not contain a large number of
decision variables. Therefore, it is very simple to be checked
numerically. The parameter-dependent stability condition is
introduced in order to overcome the conservativeness of the
quadratic stability condition. For one-dimensional (1-D) sys-
tems with polytopic uncertainties, many considerable efforts
have been made to develop parameter-dependent approaches
(see Ramos and Peres 2002; Leite and Peres 2003; Oliveira
and Peres 2006), and in the past few years, the notion of
parameter dependence was further extended to 2-D systems.
For instance, in Alfidi and Hmamed (2007), new robust
stability conditions for 2-D linear continuous-time systems
described by Roesser model have been given. In Hmamed
et al. (2008) the problem of robust stability of uncertain
two-dimensional discrete systems described by Fornasini–
Marchesini second model has been investigated. In Jia et al.
(2013) the problem of stability analysis and control synthesis
of uncertain 2-D discrete systems in the Roesser model has
been studied.

Motivated by the idea to overcome the limitations of the
quadratic stability conditions, and further to improve the
parameter-dependent technique. In this paper, we consider
the problem of robust stability for a class of uncertain poly-
topic 2-D discrete systems described by the Roesser model.
Based on parameter-dependent Lyapunov function combined
with Finsler’s lemma new sufficient conditions for robust
stability analysis are derived. The obtained conditions are
expressed in terms of LMIs and can be viewed as general
cases of some existing conditions. Two numerical examples
are given to demonstrate the merits of the proposed methods.

The rest of this paper is organized as follows: In Sect. 2,
the problem under study is formulated and some prelimi-
nary results are given. In Sect. 3, new sufficient conditions
are proposed for verifying the robust asymptotical stability
of the uncertain 2-D discrete-time systems described by the
Roesser model. Numerical examples are given to illustrate
the results in Sect. 4. Finally, some conclusions are also given
in Sect. 5.

Notations Throughout the paper, R
n denotes the n-

dimensional real Euclidean space, Rn×m denotes the set of
n × m matrices. I and 0 represent identity matrix and zero
matrix, respectively. The superscripts ‘T’ stand for thematrix
transpose. P > 0 means that P is real symmetric and posi-
tive definite. sym(M) is the shorthand notation for M + MT

and diag{...} denotes a block diagonal matrix. In symmetric

blockmatrices or longmatrix expressions, we use an asterisk
(∗) to represent a term that is induced by symmetry.

2 Problem Statement and Preliminaries

Consider a 2-D discrete linear system represented by the
Roesser state-space model of the form Roesser (1975):

[
xh(k + 1, l)
xv(k, l + 1)

]
=

[
A11 A12

A21 A22

] [
xh(k, l)
xv(k, l)

]
, (1)

where xh(k, l) ∈ R
nh , xv(k, l) ∈ R

nv , are the horizontal and
the vertical states, respectively. A11, A12, A21, A22, are con-
stant matrices with appropriate dimensions. The boundary
conditions for system (1) are specified as:

{
xh(0, l) = f (l),
xv(k, 0) = g(k).

(2)

To simplify the notation, identify in the state-space model
(1) the matrix

A =
[
A11 A12

A21 A22

]
,

and define the vectors:

x+(k, l) =
[
xh(k + 1, l)
xv(k, l + 1)

]
, x(k, l) =

[
xh(k, l)
xv(k, l)

]
,

Hence, Eq. (1) is rewritten as:

x+(k, l) = Ax(k, l). (3)

We first present the notion of asymptotic stability of 2-D
discrete systems (1).

Definition 1 Du andXie (2002) The 2-D discrete systems (1)
is said to be asymptotically stable if supk,l ||x(k, l)|| < ∞
and limk,l→∞ x(k, l) = 0, with all boundary conditions in
(2) such that supl ||xh(0, l)|| < ∞, supk ||xv(k, 0)|| < ∞.

The following lemma presents a sufficient condition for the
asymptotic stability of 2-D discrete systems (1) in terms of
an LMI.

Lemma 1 (Du and Xie 2002) The 2-D discrete systems (1) is
asymptotically stable if there exists a block diagonal matrix
P = diag{Ph, Pv} > 0 where Ph ∈ R

nh×nh and Pv ∈
R
nv×nv such that

ATPA − P < 0, (4)
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Suppose now that the systemmatrix A is not precisely known,
but belongs to a convex bounded uncertain domain D that is
described by N vertices as follows:

A = A(α) =
[
A11(α) A12(α)

A21(α) A22(α)

]
∈ D, (5)

where

D :=
{
A(α) : A(α) =

N∑
i=1

αi Ai ;
N∑
i=1

αi = 1;αi ≥ 0

}
(6)

with the matrix

Ai =
[
A11
i A12

i
A21
i A22

i

]
,

representing the i th vertex of the polytope

Remark 1 As shown in Jin and Park (2001), the polytopic
model uncertainty described in (6) can be utilized to represent
the uncertain domain more exactly and cover large classes of
uncertainties than the norm-bounded uncertainty.

We start our study by defining robust stability of system (1)
under the structured model (6).

Definition 2 System (1) is robustly stable in the uncertainty
domain (6) if there exists matrix P(α) > 0 such that

AT (α)P(α)A(α) − P(α) < 0. (7)

An effective way of addressing such problem is to choose a
single Lyapunov matrix P(α) = P which solves inequality
(7). Unfortunately, this approach is known to provide quite
conservative results, but it constitutes one of the elementary
results in the quadratic approach. The test for this class of sta-
bility, also known as a quadratic stability test, is summarized
in the following lemma.

Lemma 2 (Jia et al. 2013) The 2-D discrete system (1) with
parameter uncertainties satisfying (6) is robustly asymptot-
ically stable if an appropriate-dimensional matrix P > 0
exists with

P =
[
P1 ∗
P3 P2

]
, P1 ∈ R

nh×nh,

P2 ∈ R
nv×nv, P3 ∈ R

nv×nh,

such that the following LMIs hold:

AT
i P Ai − P < 0, i = 1, 2, . . . , N ; (8)

sym(AT
i P A j ) − 2P < 0, 1 ≤ i < j ≤ N . (9)

The following lemma will be helpful in proving our main
result.

Lemma 3 (Finsler’s lemma de Oliveira and Skelton 2001)
Given ξ ∈ R

n, � = �T ∈ R
n×n and A ∈ R

p×n, if
rank(A) < n. The following conditions are equivalent

1. ξ T�ξ < 0 , ∀Aξ = 0 , ξ 	= 0,
2. ∃Γ ∈ R

n×p such that � + ΓA + ATΓ T < 0.

3 Main Results

In this section, based on the Lyapunov stability theorem com-
bined with the Finsler’s lemma, new parameter-dependent
approacheswill be developed to studies the problemof robust
stability of uncertain 2-D discrete systems described by the
Roesser model under polytopic uncertainty.

Theorem 1 The 2-D discrete system (1) with parameter
uncertainties satisfying (6) is robustly asymptotically stable
if there exist symmetric positive definitematrices Pi = PT

i >

0, i ∈ {1, . . . , N } and any appropriately dimensioned matri-
ces F and H, with

Pi =
[
Ph
i 0
∗ Pv

i

]
, Ph

i ∈ R
nh×nh, Pv

i ∈ R
nv×nv,

F =
[
Fh 0
0 Fv

]
, Fh ∈ R

nh×nh, Fv ∈ R
nv×nv,

H =
[
Hh 0
0 Hv

]
, Hh ∈ R

nh×nh, Hv ∈ R
nv×nv,

such that for all i ∈ {1, . . . , N } the followingmatrix inequal-
ities hold:

[− Pi + sym(FAi ) − F + AT
i H∗ Pi − sym(H)

]
< 0. (10)

Proof Consider the following parameter-dependent Lya-
punov function for the uncertain 2-D system (1)

V (k, l) = V h(k, l) + V v(k, l),

V h(k, l) = xhT (k, l)Ph(α)xh(k, l),

V v(k, l) = xvT (k, l)Pv(α)xv(k, l), (11)

where Ph(α) = Ph(α)T > 0, Pv(α) = Pv(α)T > 0 are
parameter-dependent Lyapunov matrices to be determined.

The difference of Lyapunov function V (i, j) is given by

�V (i, j) = �V h(i, j) + �V v(i, j),

�V h(i, j) = xhT (k + 1, l)Ph(α)xh(k + 1, l)

− xhT (k, l)Ph(α)xh(k, l),

�V v(i, j) = xvT (k, l + 1)Pv(α)xv(k, l + 1)

− xvT (k, l)Pv(α)xv(k, l). (12)
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and define

P(α) =
[
Ph(α) 0

∗ Pv(α)

]
,

Then �V (i, j) in (12) can be rewritten as

�V (i, j) = x+T (k, l)P(α)x+(k, l) − xT (k, l)P(α)x(k, l)

= ξ T (k, l)Π(α)ξ(k, l). (13)

where

ξ(k, l) =
[

x(k, l)
x+(k, l)

]
, Π(α) =

[− P(α) 0
∗ P(α)

]
.

It is well known that it suffices to show that the following
inequality is valid

Π(α) < 0, (14)

to prove that the 2-Ddiscrete system (1)with polytopic uncer-
tainties in (6) is robustly asymptotically stable.

To this end, defining

Γ =
[

F
HT

]
, A(α)T =

[
A(α)T

− I

]
. (15)

where F and H are matrices with appropriate dimensions
It follows from system (1) that A(α)ξ(k, l) = 0 for all

nonzero ξ(k, l) 	= 0, according to Finsler’s lemma, the con-
dition (14) with Aξ(k, l) = 0, ξ(k, l) 	= 0 is equivalent to
the following inequality:

Π(α) + ΓA(α) + AT (α)Γ T < 0. (16)

Assuming the corresponding parameter-dependent matrix of
the following affine form

P(α) =
N∑
i=1

αi Pi , (17)

and considering (6), the condition in (16) can be rewritten as

N∑
i=1

αi
(
Πi + ΓAi + AT

i Γ T
)

< 0. (18)

Thus, if the LMI (10) holds, inequality (18) obviously holds,
which guarantees the robust asymptotical stability of the
uncertain 2-D discrete system (1). This completes the proof.

��
Remark 2 Assume that system (1) is not subject to any uncer-
tainty, that is, N = 1. The stability condition of 2-D discrete

system given by Lemma 1 is a special case of Theorem 1.
Actually, if we set F = 0; H = Pi in (10), according to the
Schur complement (Boyd et al. 1994), we can see that the
inequality (10) reduces to (4). In addition, it is well known
that Lemma 1 is the starting point of many papers investigat-
ing analysis and design problems of 2-D discrete system. So
the proposed method in Theorem 1 can be extended to robust
analysis and design problems to get less conservative results.

Remark 3 Compared to 1-D systems, the analysis of 2-D sys-
tems are not easy due to their complex structures for which
the dynamics depend on two independent variables. Theo-
rem 1 gives a sufficient condition for the asymptotic stability
of uncertain 2-D discrete systems described by the Roesser
model. Note that if system (1) reduces to a 1-D system with
polytopic uncertainty, Theorem 1 coincides with the asymp-
totic stability for 1-D systems investigated in Peaucelle et al.
(2000). Thus, Theorem 1 can be viewed as an extension of
existing results on the asymptotic stability for 1-D systems
to the 2-D case.

Theorem 2 The 2 − D discrete system (1) with parameter
uncertainties satisfying (6) is robustly asymptotically stable
if there exist symmetric positive definitematrices Pi = PT

i >

0 and any appropriately dimensioned matrices Fi and Hi ,
i ∈ {1, . . . , N } with

Pi =
[
Ph
i 0
∗ Pv

i

]
, Ph

i ∈ R
nh×nh, Pv

i ∈ R
nv×nv,

Fi =
[
Fh
i 0
∗ Fv

i

]
, Fh

i ∈ R
nh×nh, Fv

i ∈ R
nv×nv,

Hi =
[
Hh
i 0

∗ Hv
i

]
, Hh

i ∈ R
nh×nh, Hv

i ∈ R
nv×nv,

such that the following LMIs hold:

[
Ξ1
i Ξ2

i
∗ Ξ3

i

]
< − I , i = 1, . . . , N (19)

[
Ξ4
i, j Ξ5

i, j
∗ Ξ6

i, j

]
<

1

(1 − N )2
I ,

i = 1, . . . , N ,

i 	= j,
j = 1, . . . , N ,

(20)

[
Ξ7
i, j,p Ξ8

i, j,p
∗ Ξ9

i, j,p

]
<

6

(1 − N )2
I ,

i = 1, . . . , N − 2,
j = i + 1, . . . , N − 1,
p = j + 1, . . . , N ,

(21)

where

Ξ1
i = −Pi + sym(Fi Ai )

Ξ2
i = −Fi + AT

i Hi

Ξ3
i = Pi − sym(Hi )

Ξ4
i, j = −2Pi − Pj + sym(Fi Ai + Fi A j + Fj Ai )
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Ξ5
i, j = −2Fi − Fj + AT

i Hi + AT
i Hj + AT

j Hi

Ξ6
i, j = 2Pi + Pj − 2sym(Hi ) − sym(Hj )

Ξ7
i, j,p = −2Pi − 2Pj − 2Pp + sym(Fi A j + Fi Ap

+Fj Ai + Fj Ap + Fp Ai + Fp A j )

Ξ8
i, j,n = −2Fi − 2Fj − 2Fp + AT

i Hj + AT
i Hp

+ AT
j Hi + AT

j Hp + AT
p Hi + AT

p Hj

Ξ9
i, j,p = 2Pi + 2Pj + 2Pp − 2sym(Hi + Hj + Hp).

Proof Similar to the proof of Theorem 1 and by choosing

Γ = Γ (α) =
N∑
i=1

αiΓi , Γi =
[

Fi
HT
i

]
, (22)

where Fi and Hi are matrices with appropriate dimensions.
Then we obtain

Π(α) + Γ (α)A(α) + AT (α)Γ T (α) < 0. (23)

In addition defining

Υ (α) = Π(α) + sym(Γ (α)A(α)). (24)

By considering (6), Υ (α) can be rewritten as

Υ (α) =
(

N∑
i=1

αi

)2

Π(α) +
(

N∑
i=1

αi

)
sym(Γ (α)A(α))

=
N∑
i=1

α3
i (Πi + sym(ΓiAi ))

+
N∑
i=1

N∑
j 	=i; j=1

α2
i α j

(
2Πi + Π j

+ sym(ΓiAi ) + sym(ΓiA j ) + sym(Γ jAi )
)

+
N−2∑
i=1

N−1∑
j=i+1

N∑
p= j+1

αiα jαp (2Πi

+ 2Π j + 2Πp + sym(ΓiA j )

+ sym(ΓiAp) + sym(Γ jAi ) + sym(Γ jAp)

+ sym(ΓpAi ) + sym(ΓpA j )
)
.

Imposing conditions (19)–(21), one gets

Υ (α) < −
⎛
⎝ N∑

i=1

α3
i − 1

(N − 1)2

N∑
i=1

N∑
j 	=i; j=1

α2
i α j

− 6

(N − 1)2

N−2∑
i=1

N−1∑
j=i+1

N∑
p= j+1

αiα jαp

⎞
⎠ I

= −Ξ(α)I . (25)

Table 1 Numbers of decision variables for different methods

Methods Numbers of decision variables

Lemma 2 1
2 (n2h + n2v + nh + nv)

Theorem 1 N
2 (n2h + n2v + nh + nv) + 2n2h

Theorem 2 N
2 (n2h + n2v + nh + nv) + 2n2h + 2(n2h + n2v)

Now, to analyze the sign of Ξ(α), define Φ(α) and Ψ (α) as

Φ(α) =
N∑
i=1

N∑
j=1

αi (αi − α j )
2

= (N − 1)
N∑
i=1

α3
i −

N∑
i=1

N∑
j 	=i; j=1

α2
i α j ≥ 0.

Ψ (α) =
N∑
i=1

N−1∑
j 	=i; j=1

N∑
p 	=i, j;p=2

αi (α j − αp)
2

= (N − 2)
N∑
i=1

N∑
j 	=i; j=1

α2
i α j

− 6
N−2∑
i=1

N−1∑
j=i+1

N∑
p= j+1

αiα jαp ≥ 0. (26)

Considering (26), Ξ(α) in (25) can be rewritten as

Ξ(α) = 1

(N − 1)
Φ(α) + 1

(N − 1)2
Ψ (α) ≥ 0. (27)

Inequality (25), together with condition (27), implies that
(23) holds,which guarantees the robust asymptotical stability
of the uncertain 2-D discrete system (1). This completes the
proof. ��
Remark 4 From the substitution (22), it can be seen that
the quadratic slack variables in Theorem 1 are replaced by
parameter-dependent slack variables in Theorem 2. As a
result, Theorem 2 includes as particular case the result of
Theorem 1. It will be shown in the Illustrative examples sec-
tion that the condition proposed in Theorem 2 is the least
conservative in comparison with Theorem 1 and Lemma 2.

Remark 5 The numbers of decision variables in Lemma 2,
Theorem 1, and Theorem 2 are shown in Table 1.

4 Illustrative Examples

Example 1 In this example, an exhaustive numerical com-
parison is provided to illustrate the effectiveness and less
conservatism of the proposed robust stability approaches.
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Table 2 Number of stable polytopes confirmedby the differentmethods
the different methods for 2 ≤ n ≤ 4, and 3 ≤ N ≤ 4

N nh nv Lemma 2 Theorem 1 Theorem 2

3 1 1 806 894 931

1 2 331 540 603

2 1 364 615 735

2 2 75 204 233

4 1 1 669 827 867

1 2 176 394 477

2 1 177 376 456

2 2 17 95 147

Thus, 1000 systemswere randomlygenerated for eachpair
{n, N }, (n = nh + nv), 2 ≤ n ≤ 4 and 3 ≤ N ≤ 4, giving
a total of 8000 stable polytopes. Each of these polytopes
was evaluated using Lemma 2, Theorem 1, and Theorem 2
to check whether the conditions successfully confirmed the
robust stability. The comparisons are given in Table 2.

Example 2 Consider the uncertain 2-D discrete linear system
n = 2 (nh = 1, nv = 1), N = 3 given by

A1 =
[
0.0356 0.8862
0.2469 0.0089

]
, A2 =

[
0.8149 0.1405
0.8799 0.0954

]
,

A3 =
[
0.6480 0.4334
0.1398 0.7519

]
.

Fig. 1 State trajectory of
xh(k, l): first vertex

Fig. 2 State trajectory of
xv(k, l): first vertex
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Fig. 3 State trajectory of
xh(k, l): second vertex

Fig. 4 State trajectory of
xv(k, l): second vertex

which define the stable polytope. The uncertain systems have
not been identified as stable by any of the Lemma 2 and The-
orem 1. However, the stability can be verified using Theorem
2, with a solution given as:

P1 =
[
35.3331 0

0 75.6912

]
, P2 =

[
119.0324 0

0 26.5928

]
,

P3 =
[
41.3948 0

0 69.0670

]
,

F1 =
[
10.2249 0

0 9.0197

]
, F2 =

[
42.0977 0

0 0.7606

]
,

F3 =
[
9.7406 0

0 17.6507

]
,

H1 =
[
43.3014 0

0 59.3318

]
, H2 =

[
74.2898 0

0 31.3625

]
,

H3 =
[
34.4231 0

0 48.5846

]
.

The trajectories of the horizontal and vertical states of the
three vertices are shown in Figs. 1, 2, 3, 4, 5 and 6 where the
initial conditions are set as

xh(0, l) =
{
6 cos(l), l < 30
0, l ≥ 30,

xv(k, 0) =
{
4 sin(k), k < 30
0, k ≥ 30.

Remark 6 From Remark 5, it can be seen that the the number
of decision variables used in Theorem 2 is larger than those
used in Lemma2 andTheorem1. Themain reason for obtain-
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Fig. 5 State trajectory of
xh(k, l): third vertex

Fig. 6 State trajectory of
xv(k, l): third vertex

ing such larger number is that Theorem 2 is derived based on
the use of the parameter-dependent Lyapunov functions (17),
and the introduction of the parameter dependent slack vari-
ables (22). As a result, proposed stability conditions gives
better results but with high computational cost. In the future
research, we will focus on reducing the number of decision
variables and solving the robust control synthesis problem.

5 Conclusions

This paper has presented sufficient conditions for robust sta-
bility of uncertain 2-D discrete systems described by the
Roesser model under polytopic uncertainty. These stability

criteria are less conservative for two reasons: one is that they
are parameter-dependent; another is the introduction of two
slack parameters by using Finsler’s lemma. All these results
are expressed in the terms of LMIswhich can be easily solved
byLMIToolbox inMATLAB.Twonumerical examples have
been given to verify the less conservative nature of the new
approaches.
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