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Abstract
This paper presents a statistical learning method capable of classifying the incidence level of partial discharges in power
transformers. By using the results from acoustic emission measurements, it is possible to detect the presence of partial
discharges inside the equipment, allowing the qualitative healthmonitoringof the transformer’s insulation.Therefore, the use of
aBayesianNetwork is proposed, combinedwith aCompactGeneticAlgorithm tailored for solvingmixed integer programming
problems, for discretization of the continuous metrics extracted from acoustic emission measurement. Comparing the results
with Multilayer Perceptron Neural Network and Decision Tree and after a suitable amount of runs of the algorithm, it was
verified that the Bayesian Networks presented superior results.

Keywords Acoustic emission · Bayes procedures · Decision support systems · Feedforward Neural Networks · Genetic
Algorithms · Partial discharges

1 Introduction

To offer quality of service with minimal cost and without
interruption is a goal of electric utilities. For this to occur,
the important and expensive equipment, power transform-
ers, work without faults or defects that cause interruptions in
power supplying are necessary, because their replacement
results in an expensive and long process (Marques et al.
2014).

Several studies in the literature emphasize the importance
of developing predictive techniques to identify the defects
and incipient faults in power transformers. In Marques et al.
(2014), 33years of monitoring of equipment faults is pre-
sented and the importance of the implementation of fault
detection methods is exposed. In Wang et al. (2002), statis-
tics of faults in power transformers are presented, as well as
diagnostic methods such as the measure of the quality of the
oil are described. In Júnior et al. (2015), a review of defects
and faults in power transformers and how the existing predic-
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tion methods can help to identify them before a catastrophic
failure occurs are shown.

The transformer insulation system, particularly the cellu-
losic material, is the component that is degraded the most
and, therefore, defines the useful life of the equipment. In
order to avoid the unavailability of the service and to reduce
the amount of corrective maintenance, predictive techniques
have been developed to detect incipient faults resulting from
partial discharges (PD), caused by the decrease in the dielec-
tric strength of the insulation system. Among the currently
used techniques, the acoustic emission (AE) measurement
stands out as it is noninvasive and enables the localization
of PDs (Mohammadi et al. 2006), allowing the identification
of the defect and the monitoring of the equipment while it is
operating.

For a complete and efficient analysis of the condition of
the equipment, computational classification tools can be used
in conjunction with the predictive techniques to create expert
systems which aids the decision-making process by a human
expert. Many references in the literature address the problem
of pattern classification of power transformers using mea-
sured data. Among them, Tang et al. (2008) and Hao and
Cai-xin (2007) work with Dissolved Gas Analysis (DGA),
using Bayesian Networks (BN) and Neural Networks (NN),
respectively. In Kuo (2009), a Multilayer Perceptron Neu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-018-0399-2&domain=pdf
http://orcid.org/0000-0001-9077-084X


606 Journal of Control, Automation and Electrical Systems (2018) 29:605–613

Table 1 Description of the data
collected by the sensors

Quantity Description

Time (s) Instant of time that the activity was detected by the sensor

Amplitude (dB) The maximum amplitude of the signal during detection of the activity

Energy Energy accumulated during the detection

Duration (µs) Duration of the activity

Rise time (µs) Time between the beginning of the activity and the peak amplitude

ral Network (MLP) is used, trained using acoustic emission
measured data to identify the defect by classifying features
extracted from real-time AE measurements.

This paper presents an approach using AE measurement
to estimate the health of the power transformer, in which a
Bayesian Network, combined with a Compact Genetic Algo-
rithm (Harik et al. 1999) adapted for solving mixed integer
programming problems (MIPcGA), is trained to classify the
state of the equipment. This approach allows the qualita-
tive health monitoring of the equipment while in operation.
Therefore, if there are signs of incipient faults, preventive
maintenance procedures are scheduled, which, by its char-
acteristics, imply in lower expenses, risks, and wear with
customers, especially the possibility of prior communication
to consumers on the occasion of the need to temporarily sus-
pend the power supply. The aim of the method proposed
in this paper is to provide subsidy to the maintenance staff
regarding the appropriate decision-making process on the
intervention, or not, in the equipment.

This approach provides some advantages over the former
ones: (i) allows to correlate variables, in addition to work-
ing with degrees of belief (probabilities), if compared with
the NN; (ii) allows the calculation of posterior probabilities,
which can provide classifications using a subset of nodes; and
(iii) an incorrect result is not ruled out, due to the property
exposed in items i and ii.

2 Incipient Failures and Partial Discharges

According to Butler-Purry and Bagriyanik (2003), incipi-
ent faults are those that slowly develop through a gradual
deterioration of the insulating system. Because they are not
observed at all instants of time, they are difficult to detect.
It is therefore of great importance to early detect these fail-
ures, because, over time,when the condition of the equipment
is degraded due to electrical, chemical, and thermal effects,
incipient faults begin to persist and to intensify in the system
(Butler-Purry and Bagriyanik 2003). To that end, important
techniques for PDs detection emerged, which, according to
Mohammadi et al. (2006) andAzevedo et al. (2009), are small
sparks resulted from the degradation of the insulating system

of the transformer and which indicate possible incipient fail-
ure.

Among the various techniques to detect PDs, in this paper,
AE measurement was chosen to use, as it is a noninvasive
method that allows the localization of the discharges bymon-
itoring the equipment by using ultrasonic transducers (IEEE
2007), which, positioned strategically and securely on its
outer surface, detect any acoustic wave from inside the trans-
former.

When comparing existing predictive techniques, the dis-
solved gas analysis (DGA) of the insulating oil, even being
an already-established technique in the electricity sector,
presents some weaknesses, mainly because of its low sen-
sitivity for detection of partial discharges (IEEE 2007;
Azevedo et al. 2009), which does not allow the detection
of the incipient faults inside the transformer. In this con-
text, the detection of partial discharges (PDs) by the acoustic
emissionmethod (AE) is efficient and also indicates the coor-
dinates of the regionwhere the activities of PDs are occurring
(Azevedo et al. 2009). However, as a good practice, it may
be considered in conjunction with the DGA method in order
to complement the analyst’s decision-making process.

The acquisition of the waveform of the acoustic sig-
nal is made optionally by the equipment. Because of the
length of each acoustic measurement, which in this work was
24h(to contemplate the complete cycle of the transformer’s
load), the storage of the acoustic signal becomes unfeasible,
because, grossly, a total of: 14 sensors·12 bits·10Msps·24 h·
60min·60 s ≈ 20.5 TByteswould be needed for each equip-
ment, by measurement. Therefore, it was decided to use data
obtained from the waveform which are extracted from the
parameters from Table 1. On each occurred acoustic activity,
only these parameters, not the waveform, are stored in file,
which significantly reduces the amount of stored data.

The most important parameters collected by the instru-
ment that records the acoustic signals generated by PDs and
collected by the sensors are presented in Table 1. The wave-
form of a typical acoustic signal waveform is shown in Fig. 1.

In possession of the data provided by the sensors, a pro-
cedure is necessary to distinguish between acoustic signals
caused by noise and signals caused by PDs. Empirically, it
can be noted that the most intense partial discharges occur in
the voltage peaks, both positive and negative. It is observed
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Fig. 1 Representation of the activity (occurrence of an acoustic signal
waveform) captured by the sensors

Fig. 2 Variation in energy count as a function of monitoring time, for
signals of: a total noise, without indication of PDs, and bwith indication
of PDs (Color figure online)

that two activitieswith a time difference equal to 1/(2·60Hz)
s, equivalent to an angular difference of 180◦, can be consid-
ered as evidence of partial discharges. It is noteworthy that
this calculation must be remade in the case of systems oper-
ating in a different frequency of 60Hz. In addition to this
fact, employed sensors have a passband of around 150kHz,
which, for field measurements, is the most suitable range for
capturing acoustic signals from partial discharges. In Fig. 2,
the results of a measurement are presented with: total noise
signals (represented by the blue color) and signals identified
with evidence of PDs (represented in red), where count is
the number of activities, mean is the average value of energy
recorded, and %T is the percentage of minutes where activi-
ties were detected.

3 Bayesian Networks

Bayesian Networks are Directed Acyclic Graphs (DAG),
which nodes have a finite set of states. For each node, there
is a table of conditional probabilities that relates each of its
values to each possible value from its parents. It is an appro-

priate reasoning model to classify defective equipment, as it
allows easy detection of patterns if a suitable set of data is
provided (Jensen and Nielsen 2007).

3.1 Bayes Rules

As the foundation of Bayesian Networks, Bayes’ theorem
is a mathematical tool to calculate conditional probabilities.
Its mathematical formula allows the update of unobserved
variables probabilities, in light of observed variables. Know-
ing that P(x |e) is the probability of x given the evidence
e, P(e|x) the likelihood P(x |e), P(x), and P(e) the prior
probabilities of x and e, respectively, Bayes’ Theorem states
that:

P(x |e) = P(e|x)P(x)

P(e)
(1)

3.2 Structure Learning

The process of learning structures of BNsmay be done in two
ways: (i) by using a prior knowledge of a specialist or (ii) by
using an automated tool for structure learning. It is desired to
use the latter, as it is an unsupervised way of learning, which
allows the detection, at each training, of the best structure for
the selected data.

The simplest way to learn the structure of a BN would be
to compare all combinations and find which one fits best. For
this problem, the exhaustive search becomes impracticable,
because the solution space grows super-exponentially as you
add nodes (Rudolf Kruse 2013). Therefore, heuristics meth-
ods are used to find the best structure for the BN. This paper,
therefore, suggests the use of two structure learningmethods,
K2 (Algorithm1) andHill-Climbing (Algorithm2), selecting
the one with the best score.

The K2 (Lerner and Malka 2011) is a greedy search
method, which uses its own metric (3) to evaluate the struc-
ture. Be Ni jk the number of cases in the training database in
which the variable ui is instantiated with its kth value and
his parents are instantiated with their j th value, π(ui ) the
parents of ui , qi the number of possible instances of π(ui ),
and rui the number of possible discrete values of ui :

Ni j =
rui∑

k=1

Ni jk (2)

g(i, π(ui )) =
qi∏

j=1

(rui − 1)!
(Ni j + rui − 1)!

rui∏

k=1

Ni jk ! (3)

where g(i, π(ui )) is the score of the training database given
that the parents of ui are π(ui ).
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Algorithm 1 K2
Input: Set of network nodesU , list of examples for training, maximum
number of parents.

Output: Directed Acyclic Graph.
For each node ui ∈ U do:
1. Find node u′

i ∈ U (i �= i ′ and i ′ precedes i in the order of nodes)
which maximizes the value of g(i, π(ui ) ∪ {u′

i }).
2. Add u u′

i to π(ui ).
3. Continue until you cannot find the variable u′

i in step 1, or until
the number of parents of this node reaches the maximum number.

What makes the K2 attractive is also one of its drawbacks.
To run the algorithm, the prior knowledge of the correct
order of the nodes is necessary, which is not always pos-
sible. Therefore, additionally, the use of the Hill-Climbing
algorithm (Jensen and Nielsen 2007) is suggested using the
BIC metric (4) and thereby choosing the best structure. Be
n the number of nodes and N the number of cases in the
training base, D the database of known data and G the DAG
to be scored; the BIC score is given as:

BIC(G, D) =
n∑

i=1

qi∑

j=1

rui∑

k=1

Ni jk · log2
(
Ni jk

Ni j

)

− log2 N

2

n∑

i=1

qi
(
rui − 1

)
(4)

The BIC metric has the advantage of being equivalent
(Darwiche 2009), i.e., equivalent structures have the same
score. Consequently, when generating a new structure, it only
requires to calculate the difference between the new and old
one, without any need to calculate the score of the entire
structure. The valid operations are add an arc, remove an
arc, and invert the direction of the arc, always searching for
acyclic structures.

Algorithm 2 Hill-Climbing
Input: Initial Structure S (or consider all nodes disconnected).
Output: Directed Acyclic Graph.
Repeat

1. Calculate the BIC score for each valid operation in the
2. structure S.
3. Be�∗ themaximumscore obtained in step 1.Be A∗ the operation

responsible
4. for �∗.
5. If �∗ > 0, persist A∗ in S.

Until S is a local optimum or the number of maximum iterations has
been reached.

A third way of constructing a structure is through the use
of a naive classifier where all nodes have the same and single
parent node.

In this study, two structures were generated, one with each
method described (K2 and Hill-Climbing) and the best score
was selected as (4). A naive classifier was also employed.

3.3 Parameters Learning

The MLE (Maximum Likelihood Estimation) and the EM
(ExpectationMaximization) aremethods for learning param-
eters. The first operates with complete data, while the latter
deals with incomplete data. As the sensors always pro-
vide all data related to the activity inside the equipment,
the MLE method is recommended, as, according to Dar-
wiche (2009), it is a counting problem, in the form of
P(X |Y ) = N (X ,Y )/N (Y ), where N (X ,Y ) is the number
of cases where X and Y occur and N (Y ) is the number of
cases where Y occurs.

3.4 Inference Engine

Several inference engines inBayesianNetworks are available
in the literature (Jensen and Nielsen 2007; Darwiche 2009).
This work uses the method of variable elimination, capable
of solving exact queries (the probability calculated is exact,
not an approximate) of prior probabilities, posterior proba-
bilities, most probable explanation (MPE), and maximum a
posteriori probability (MAP), through successive elimination
of variables during the process.

3.5 Discretization of Continuous Values

The parameterization of the BN requires knowledge of the
conditional probability distributions of nodes and their parent
nodes, which in the case of continuous variables, would not
be a counting problem. Some papers address this problem.
Driver and Morrell (1995) use a weighted sum of Gaussians
to approximate the prior probabilities (root node) and con-
ditional probabilities, and in Darwiche (2009); Lucas and
Hommersom (2015) the continuous variables have to follow
a Gaussian distribution.

Therefore, in this work, only discrete values are used. In
order to properly and automatically establish the intervals of
the parameters, a discretization method is proposed for con-
tinuous variables by assigning discrete values,with lower and
upper boundaries, to continuous intervals, by using a Com-
pact Genetic Algorithm adapted for solving mixed integer
programming problems, the MIPcGA.

4 Compact Genetic Algorithm for Solving
Mixed Integer Programming Problems

In a traditionalGeneticAlgorithm (GA), individuals compete
against each other and the allele frequency can increase or
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Table 2 Fitness and binary representation of each solution

Solution Chromosome Fitness

a 111011 5

b 110100 3

decrease depending on the good or bad decisions made by
the GA (Harik et al. 1999). In the cGA, the selection occurs
unlike a GA, where genes are evaluated in the context of
individuals as a whole. Let us assume two solutions, a and
b, that are competing with each other in an onemax problem,
where the objective is to maximize the number of ones in a
binary string (Prugel-Bennett et al. 2015).

As presented in Table 2, during the competition, the solu-
tion awill win by having a greater fitness. The problem in this
approach happens in position 4 of the chromosome, where
an error occurs by the bit 0 being selected instead of the bit
1. Therefore, Harik et al. (1999) propose a similar schema
to a tournament selection: On each iteration, the proportion
of winners’ genes will grow by 1/n, being n the size of the
population, benefiting the best genes on each tournament.

By using an appropriate procedure for codification of inte-
ger and real variables into bits and a procedure based on
Harik et al. (1999) for constraint handling, this paper pro-
poses the use of the cGA tailored for solving mixed integer
programming problems, the MIPcGA, for the discretization
of continuous variables used in the BN classification process.

TheMIPcGA is presented inAlgorithm 3. It is noteworthy
that between two solutions, the algorithm selects the candi-
date with a lower constraint violation, or, if they have the
same amount, it selects the onewith the best evaluation of the
objective function. This procedure is similar to Deb (2007).
Therefore, individual solutions are compared using the fol-
lowing rules:

1. A solution that violates a smaller quantity of constraints
is always preferred over a solution that violates more;

2. Among two feasible solutions, the one having better fit-
ness is preferred.

3. Among two solutions that violate the same quantity of
constraints, the one having smaller constraint violation
is preferred.

Considering the algorithms proposed, the problem of dis-
cretization of continuous parameters of the BN is defined
as:

Maximize f (X),

Subject to li ≤ xi ≤ ui ,

ai j ∈ {0, 1},
xi j ∈ Z.

Table 3 Example of valid values of boundaries

Integer variable Real variable

1 301

0 9874

0 3479

0 1000

1 455

Table 4 Example of discrete values

Integer variable Real variable

1 [0, 301]

2 (301, 756]

3 (757, 1756]

where f (X) is the classification rate of the BN, ai j repre-
sents the bit to enable or to disable the j th boundary of the
i th continuous parameter xi j , li and ui are the minimum and
maximum values of this parameter, and X is the set contain-
ing all xi j .

Using MIPcGA for discretization of continuous variable
implies a solution to a problem of 2n variables, where n is
the maximum number of intervals. An example of a valid
solution is shown in Table 3 and its discrete representation
in Table 4, where 0 is the lowest value and 1756 is the high-
est possible value for the variable. If the integer variable is
0, the real variable is not used to compose the boundaries
(it is disabled). If it is one, the real variable composes the
boundaries.

To apply the discretization method, the steps below are
applied:

1. Learn a BN using an initial solution;
2. Apply the MIPcGA algorithm to enable/disable the

boundaries for continuous parameters, selecting genes
whichmaximize the classification rate of the BN.At each
generation of the algorithm, new BNs are learned and
compared using the selected boundaries.

To evaluate the solutions, in this paper, the steps presented
in Algorithm 4 were used to calculate the objective function.

5 Power Transformers Classification Using
Acoustic EmissionMeasurements Data

A method is proposed, in this study, for qualitative health
monitoring of the power transformers using the procedures
described and measurements of acoustic sensors.
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Algorithm 3 MIPcGA
Input: n: size of the population,

nr : number of real variables,
ni : number of integer variables,
nrbits : number of bits for real variables,
maxi : maximum number of iterations;

Output: p: final solution.
1: ti = max(maxx − minx + 1);
2: nibi ts = 
log2 (ti − 1) + 1�;
3: for j = 1 to maxi do
4: a = Generate();
5: b = Generate();

(Note that solutions a and b compete using the proposed comparison
criteria, bi tswin represents the bits of the winner, and bitsloss
represents the bits of the loser.)

6: (bitswin, bitsloss) = Compete(a, b);
7: idx = 0;
8: for j = 1 to ni do
9: for k = 1 to nibi ts do
10: idx = idx + 1;
11: if bitswinidx �= bitslossidx then
12: pidx = pidx + 1

n ;
13: else
14: pidx = pidx − 1

n ;
15: end if
16: end for
17: end for
18: for j = 1 to nr do
19: for k = 1 to nrbits do
20: idx = idx + 1;
21: if bitswinidx �= bitslossidx then
22: pidx = pidx + 1

n ;
23: else
24: pidx = pidx − 1

n ;
25: end if
26: end for
27: end for
28: end for

Algorithm 4 Evaluate Solution

1. The collected data are split in two groups: 70% for learning and
30% for validation, chosen at random.

2. Using the learning data and considering the boundaries of the
solution to be evaluated:
(a) Learn the structure of the BN by using the algorithms

described in Sect. 3.2 or by using a naive classifier.
(b) Learn the parameters by using theMLEmethod (Sect. 3.3).

3. Check the performance of the BN by measuring the correct clas-
sification of the validation data:
(a) For each case i in the validation data: scorei = scorei +

prob(ic) + hit(i), where prob(ic)
(b) returns the probability of the correct classification of i and

hit(i) returns 0 in case of a misclassification and 1 in case
of a correct classification.

4. The value of the objective function to be minimized is: f (x) =∑
scorei .

In order to assist the decision-making process, classifi-
cations (from “A” to “D” ) were used, with their respective
recommended actions, as presented in Table 5 (Marques et al.
2016). The parameters from Table 6 were used in the con-

struction of the BN, which are extracted from data obtained
from the measurement (Table 1), as a result of the performed
studies described in Marques et al. (2016).

6 Results and Discussion

To evaluate the method, 40 measurements performed in
power transformers of the company Enel Distribuiçá Goiás
were used, with power ranging from 32.0to 75.0MVA, with
diversified structural designs. The data were collected during
AE measurements performed in the field, with the trans-
former in operation, during 24h, i.e., a complete load cycle,
to ensure all different operating conditions were evaluated.

Fourteen sensors from a DISP device of Physical Acous-
tics Corporation were used, with a sampling rate of 10 Msps
and operating around 150kHz, positioned at strategic parts
of the equipment, requiring full knowledge of the geometry
of the design of the active part, tank, and bushings of the
power transformer. Each sensor of each measurement was
classified, resulting in 560 cases composed by the parame-
ters presented in Table 6. The approach presented in Sect. 2 to
distinguish between signals of noise and partial discharges
detected by the sensors was used. The optimization algo-
rithm seeks to generate a classification method capable of
providing results equal to those given by the specialists who
pre-classified the available data set. Therefore, there were
392 samples for training the BNs and 168 samples to validate
(70–30%), including all possible classifications, from “A” to
“D.” Algorithm 4 was applied 30 times, both to the structure
learning (Sect. 3.2) and to the naive classifier (BN-Naive),
and for each BN, the performance was verified 100 times, by
selecting the learning and validation groups at random. To
the continuous values, log 10 was applied, as it reduces the
scale of the search space of the MIPcGA optimizer.

By using structure learning, among the 30 BNs created,
a correct classification average of 79.94% was obtained,
with the average maximum of 85.67% and the minimum
of 72.25%. Figure 3 shows all executions of the algorithm.
The BN-Naive obtained a correct classification average of
81.82%, with the average maximum of 88% and the min-
imum of 77.33%. Figure 4 shows all executions of the
algorithm using a naive classifier.

For comparison purposes, Multilayer Neural Network
(MLP) trained using the Levenberg–Marquardt algorithm
(Mohamad et al. 2010) and Decision Tree (DTree) created
with the CART algorithm (Kuhn and Johnson 2013) were
used. Different combinations of neurons and layers were
tested, for the MLP, and it was found that, for this specific
problem, one inner layer with five neurons was the best con-
figuration. The process of classification was run 100 times,
and the measurements data were split into two groups, learn-
ing and validation, of 70 and 30% of the data, respectively.
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Table 5 Possible classifications

Classification Action

A Continue to operate normally

B Continue to operate normally being attentive to the evolution of PDs in the next measurements

C Continue the investigation and conduct other tests as soon as possible to confirm the measurements and trend of PDs

D Plan an emergency removal of the operating equipment for an inner inspection, localization, and correction of the defect

Table 6 Information used for classification

Node Description

Count Number of activities detected by the sensors

Mean Average value of energy recorded in the measurement

Percentage The percentage of minutes during the measurement where activities were detected
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Fig. 3 Evaluation of the algorithm using structure learning

The number of neurons and inner layers of the MLP was var-
ied, confirming that, for this problem, an inner layer with five
neurons was the best setting. The correct classification mean
of the MLP was 73.67%, with its minimum value of 8.33%
and the maximum of 100%. The correct classification mean
of the Decision Tree illustrated in Fig. 5 was 77.17%, with its
minimum value of 33.33% and the maximum of 100%. The
application log 10 in continuous values showed no improve-
ment on the results of the DTree and the MLP.

Table 7 shows a comparison of correct classification rate
of the algorithms. To choose the best BN, the intervals which
lead to the best average rate of correct classifications were
used.

Figure 6a, b shows structures of a naive classifier and the
BN using the structure learning algorithm, chosen at random.
Tables 8 and 9 show boundaries found by the MIPcGA.
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Fig. 4 Evaluation of the algorithm using a naive classifier

A B C

B D

Count < 77084   

   57.8 < naeM   5.22 < egatnecreP

Count < 1.46934e+07   

  Count >= 77084

  Percentage >= 22.5   Mean >= 8.75

  Count >= 1.46934e+07

Fig. 5 Example of a decision tree used for classification

7 Conclusion

This paper presented a method capable of learning a suitable
BayesianNetwork for classification of the health condition of
power transformers, considering acoustic emission measure-
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Table 7 Comparison of the
classification algorithms

Amount of success (%) BN (%) BN-Naive (%) MLP (%) DTree (%)

Smallest 50 66.67 8.33 33.33

Average 85.67 88 73.67 77.17

Greatest 100 100 100 100

(a) (b)

Fig. 6 BNs’ structures: a Naive classifier, b structure learned by the
algorithm

Table 8 Discrete values of one of the 30 naive classifiers chosen at
random

Discrete value Count Percentage Mean

1 [0, 3.9111] [0, 100%] [0, 1.55]

2 (3.9111, 6.2815] – (1.55, 2.64]

3 (6.2815, 7.4667] – (2.64, 9.95]

4 – – (9.95, 12.2]

Table 9 Discrete values of one of the 30 BN using structure learning
chosen at random

Discrete value Count Percentage Mean

1 [0, 4.503] [0, 1.72%] [0, 1.1]

2 (4.503, 7.4667] (1.72%, 1.91%] (1.1, 4]

3 – (1.91%, 100%] (4, 12.2]

4 – – –

ments data. Such network is able to indicate the classification
of the equipment, but also the percentage of the belief in the
result, given the evidence. A solver was proposed, for the dis-
cretization of continuous values that feed the Network, based
on the Compact Genetic Algorithm for solving mixed inte-
ger optimization problems with restrictions. The proposed
method involves the learning of a BN and the discretization
using the MIPcGA. Running a metaheuristic algorithm can
be time-consuming; however, the algorithm only needs to
be used as the BN needs to be relearned. Therefore, after the
BN is learned, quick classifications can be performedwithout
running the solver.

As comparison criteria,Multilayer PerceptronNeuralNet-
works and Decision Trees were created, both are suitable

methods for a classification problem, and it was found that
the BN achieved superior performance. Therefore, the pro-
posedmethod presented better results, both in the worst case,
as on average when compared to the MLP and DTree and in
the best scenario, showed superior results to the MLP and
the same result as the DTree.

The results indicatedBN-Naive as themost suitable for the
classification process, and then the BN with structure learn-
ing. It is noteworthy that the method is suitable for other
classification problems, as it can use both discrete and con-
tinuous parameters and, also, use structures indicated by an
expert, a BN-Naive, or a BN with structure with learning,
provided that there is an adequate set of learning data.
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