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Abstract
In this paper, a robust fault estimation method based on unknown input observer (UIO) is proposed to estimate states, actuator
and sensor faults simultaneously in a discrete-time system. TheUIO is designed by using an H∞ technique, which is developed
to both maintain the estimation error stable and reduce the disturbances that cannot be decoupled. In the first part of this paper,
the observer is addressed for discrete-time linear systems subjected to sensor noise and process disturbances. In sequence,
the method is extended to handle Lipschitz nonlinear systems. The proposed method is validated through two numerical
examples, and a comparison between the proposed techniques and Extended Kalman Filter is presented. The results show
the proposed approach as a better observer in terms of state and fault estimation, and process disturbance and sensor noise
rejection.

Keywords Fault estimation · Discrete-time system · Robust control · Linear matrix inequality (LMI) · Unknown input
observer (UIO)

1 Introduction

Modern industrial processes must guarantee efficiency of
industrial production. In general, many equipments operate
in an interconnected way. This happens when the measured
variable, corresponding to a particular device, influences the
operation of another equipment. The presence of malfunc-
tions or defects in a single component may affect drastically
the whole system performance. In order to avoid deteriora-
tion or damage to machines and human beings, fault-tolerant
control (FTC) is incorporated into the processes. This type
of control is able to detect and compensate faults quickly, so
their effects are not propagated to the other components in
the process. FTC has become an important line of research
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because it increases the safety and reliability of control loop.
During the last two decades, many papers related to FTC
techniques were published (Patton and Chen 1997; Li et al.
2012; Cao et al. 2011), as well as, their application, i.e., in
level control, power converters and vehicle model control
(Noura et al. 2009; Li et al. 2016; Chen et al. 2018).

An important role of FTC is the fault compensation in
control systems. Those faults may affect the performances of
the actuators, sensors and the plant itself. Particularly, fault
estimation is a powerful feature of an active FTC because
it can provide information about the magnitude and shape
of the fault. The fault reconstruction is an important feature
in various applications in control reconfiguration and real-
time decisions. There are many observer-based approaches
that can be used to perform the state and fault estimation, e.g.,
slidingmode observers (Chen andSaif 2007;Van et al. 2013),
adaptive scheme (Wen et al. 2015; Reppa et al. 2014), differ-
ential geometricmethod (Persis and Isidori 2001;Meskin and
Khorasani 2010) and unknown input observer (UIO) which
was proposed in Chen et al. (1996) and was used for robust
state estimation in systems affected by uncertainties in Vu
et al. (2017), although they were proposed for continuous-
time system and for states estimates only.

The main drawback of aforementioned methods is that
most of the implemented controllers based inmicro-processed
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devices which must be analyzed as a discrete-time process.
Many researchers have focused on discrete-time observers
for discrete-time systems subjected to faults. For instance,
Jia et al. (2015) andWitczak et al. (2016) present approaches
which are able to estimate faults in nonlinear systems. How-
ever, they do not perform both actuator and sensor fault
estimation simultaneously. TheUIOdesignmethodproposed
by Gao (2015) is able to estimate the states and both actuator
and sensor fault signal in a system affected by process dis-
turbances and sensor noise. Nevertheless, it does not extend
the approach to a Lipschitz nonlinear system. Additionally,
although the observer proposed in Gu and Yang (2018) is
able to simultaneously perform fault estimation in actuator
and sensor of Lipschitz nonlinear systems, it does not con-
sider sensor disturbances, and to obtain the estimator design,
the sensor fault distribution matrix must be exactly known,
which is unrealistic in many practical applications.

As seen, new approaches should address to UIO capable
of handling sensor and actuator fault estimation for Lips-
chitz nonlinear discrete-time systems subjected to process
and measurement disturbances. Under this assumption, we
propose a robust actuator and sensor fault estimator design
to discrete-time systems. In order to achieve this objective,
firstly, an augmented system is obtained from an augmented
state vector composed of system states and faults. This aug-
mented system is based on themethodology presented inGao
et al. (2016). After that, the appropriated robust observer is
used to decoupling process disturbances. In addition, suffi-
cient conditions for observer existence are described. Then,
the robust UIO gainmatrices are obtained using linear matrix
inequality (LMI) optimization techniqueswhich are based on
Vu et al. (2017) and Rotondo et al. (2016). These approaches
were used to ensure error estimation dynamics stable and to
attenuate the other disturbances that cannot be decoupled.

The reminder of this paper is organized as follows. In
Sect. 2, the proposed method is presented in linear discrete-
time system context. In sequence, in Sect. 3, the proposed
technique is extended toLipschitz nonlinear systems. Finally,
the effectiveness of the proposedmethods is validated by two
numerical examples, in Sect. 4.

Notations Throughout this paper, the notation Rn and
Rn×m stand for the n-dimensional Euclidean space and the
set of n × m real matrices, respectively. In denotes identity
matrix with dimension of n × n. 0n×m is a matrix which all
entries are zero and its dimension is n × m. The superscript
T denotes the transpose of matrices or vectors. The notations
X > 0 and X < 0 indicate that the symmetric matrix X is
positive definite and negative definite, respectively. |xk | rep-
resents the standard norm of xk , and ||xk ||l2 =

√∑∞
k=0 x

T
k xk

stands for Euclidean norm of sequences of vectors. More-
over, we also have

[
M1 ∗
M2 M3

]
=

[
M1 MT

2
M2 M3

]

in large matrix expressions.

2 Linear Case

In this section, UIO fault estimation methods are described
for a linear system subjected to actuator and sensor faults,
process disturbances and sensor noise.

Consider a dynamic linear discrete in time system repre-
sented in state-space form as:

xk+1 = Axk + Buk + B1dk + B2fak, (1a)

yk = Cxk + D1nk + D2fsk, (1b)

where xk ∈ Rn is the system states vector, uk ∈ Rm is
the control input vector, yk ∈ Rp is the system output
vector, fak ∈ Rl f a and fsk ∈ Rl f s stand for actuator and
sensor fault vector, respectively, dk ∈ Rld and nk ∈ Rln are
norm-bounded disturbances or uncertainties associated with
state and output equations respectively, and A, B, B1, B2,
C, D1 and D2 are known constant coefficient matrices with
appropriate dimensions. In addition, B1 is considered of full
column rank. The system (1) can be represented as:

xk+1 = Axk + Buk + B1dk + Fx fk, (2a)

yk = Cxk + D1nk + Fyfk, (2b)

where fk = [
fTak fTsk

]T
, Fx = [

B2 0n×l fs

]
, and Fy =[

0l fa×p D2
]
.

The fault vector dynamics can be calculated as follows:

fk+1 = fk + ξ k, (3)

where ξ k is the fault deviation and satisfies ||ξ k ||l2 < ∞.
By defining an augmented state vector as:

x̄k = [
xTk fTk

]T ∈ Rn̄, (4)

where n̄ = n + l f , with l f = l f a + l f s, one obtains the
following augmented system:

x̄k+1 = Āx̄k + B̄uk + B̄1dk + Fξ k, (5a)

yk = C̄x̄k + D1nk, (5b)

where Ā =
[

A Fx

0l f ×n Il f

]
∈ Rn̄×n̄ , B̄ =

[
B

0l f ×m

]
∈ Rn̄×m ,

B̄1 =
[

B1

0l f ×ld

]
∈ Rn̄×ld , F =

[
0n×l f
Il f

]
∈ Rn̄×l f and

C̄ = [
C Fy

] ∈ Rp×n̄ .
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The proposed UIO is

zk+1 = Mzk + Nuk + Kyk, (6a)
ˆ̄xk = zk + Lyk, (6b)

where zk ∈ Rn̄ is the observer state vector and ˆ̄xk ∈ Rn̄

is the estimate of x̄k , while M ∈ Rn̄×n̄ , N ∈ Rn̄×m , K =
K1 + K2 ∈ Rn̄×p, and L ∈ Rn̄×p are the observer gain
matrices to be determined.

Defining the estimation error as

ek = x̄k − ˆ̄xk, (7)

and using (6b) in (7), one has

ek = x̄k − zk − Lyk
= Rx̄k − zk − LD1nk, (8)

where R = In̄ − LC̄.
The estimation error dynamic is:

ek+1 = Rx̄k+1 − zk+1 − LD1nk+1

= RĀx̄k + RB̄uk + RB̄1dk + RFξ k − Mzk
−Nuk − K1C̄x̄k − K1D1nk − K2yk
−LD1nk+1

= (RĀ − K1C̄)ek + (RĀ − K1C̄ − M)zk
+(RB̄ − N)uk + ((RĀ − K1C̄)L − K2)yk
+RB̄1dk + RFξ k − K1D1nk − LD1nk+1, (9)

If one can make the following relationships hold:

RB̄1 = 0, (10)

M = RĀ − K1C̄, (11)

N = RB̄, (12)

K2 = ML, (13)

the state estimation error dynamic (9) reduces to

ek+1 = Mek + RFξ k − K1D1nk − LD1nk+1. (14)

Theorem 1 The necessary conditions for the existence of
UIO defined in (6) for the system (5) are

(i) rank(CB1) = rank(B1),
(ii) the pair (C̄,RĀ) is detectable.

Proof The proof of Theorem 1 can be referred to Gao et al.
(2016) and Hsu et al. (2001) and is omitted here.

Remark 1 The condition (i) of Theorem 1 means that (10) is
solvable. Then, L can be found as:

L = B̄1[(C̄B̄1)
T (C̄B̄1)]−1(C̄B̄1)

T. (15)

Remark 2 The condition (ii) of Theorem 1 means that the
unstable poles of M can be assigned arbitrarily. It implies
that the desired UIO response can be achieved through L
design.

One can rewrite (14) in a matrix form as

ek+1 = [
M W̄1 W̄2

]
⎡
⎣

ek
ωk

ωk+1

⎤
⎦ , (16)

where ωk = [
ξTk nTk

]T ∈ Rlω and W̄1 = W1 −K1W2 and
W̄2 = −LW2 with lω = l f + ln , W1 = [

RF 0n̄×ln

]
and

W2 = [
0p×l f D1

]
.

The next step for designing robust observers (6) is to
guarantee that the estimation error ek is asymptotically con-
vergent, making the matrix M stable, and reducing the
influence from the vector ωk , which contain the fault devia-
tion vector and the sensor noise.

The following lemmas are useful to derive the Theorems 2
and 3.

Lemma 1 (Boyd et al. 1994) The ensuing statements are
equivalent:

(i) X = XT, X > 0 and YTX−1Y + W < 0,

(ii)

[
W YT

Y −X

]
< 0.

Lemma 2 (Li et al. 2008) For any matrices X ∈ Rs×t and
Y ∈ Rt×s , and any scalar ε > 0, we have

XY + YTXT ≤ ε−1XTX + εYTY.

Theorem 2 If there exists a positive definite symmetricmatrix
P and a matrix Q and a constant λ > 0 such that the LMI

⎡
⎢⎢⎣

−P + In̄ ∗ ∗ ∗
0lω×n̄ −λ2Ilω ∗ ∗
0lω×n̄ 0lω×lω −λ2Ilω ∗

PRĀ − QC̄ PW1 − QW2 PW̄2 −P

⎤
⎥⎥⎦ < 0 (17)

holds. Then, the robust UIO, defined by (6), for the system
(5) is solvable and is able to guarantee the following upper
bound

||ek ||l2 ≤ α||ωk ||l2 , (18)

where α = √
2λ > 0 is a prescribed H∞ performance index

and Q = PK1.
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Proof The problem of H∞ observer design Li and Fu (1997),
Rotondo et al. (2016) is to determine the matrixK1 such that

lim
k→∞ ek = 0 for ωk = 0 ∀k, (19)

||ek ||l2 ≤ α||ωk ||l2 for ωk 	= 0, e0 = 0. (20)

By taking the following Lyapunov candidate function:

Vk = eTk Pek, (21)

one has

�Vk = Vk+1 − Vk

= eTk+1Pek+1 − eTk Pek . (22)

Substituting (16) in (22), one has

�Vk =
⎡
⎣

ek
ωk

ωk+1

⎤
⎦
T

(
�TP� + �

)
⎡
⎣

ek
ωk

ωk+1

⎤
⎦ , (23)

where � = [
M W̄1 W̄2

]
and � =

[ −P 0n̄×2lω
02lω×n̄ 02lω×2lω

]
.

According to the Lemma 1, one can see that (17) indicates
MTPM−P < 0. When ωk = 0, from (23) one has �Vk < 0
which implies that the error dynamic is asymptotically stable.

Defining:

J =
∞∑
k=0

(�Vk + eTk ek − λ2ωT
k ωk − λ2ωT

k+1ωk+1), (24)

one has

J =
∞∑
k=0

⎡
⎣

ek
ωk

ωk+1

⎤
⎦
T

�

⎡
⎣

ek
ωk

ωk+1

⎤
⎦ , (25)

where

� = (�TP)P−1(P�) +
[−P + In̄ 0n̄×2lω

02lω×n̄ −λ2I2lω

]
. (26)

It is noticeable, in terms of Lemma 1, that (17) implies
� < 0, which leads to J < 0. Therefore, one can write (24)
as

∞∑
k=0

eTk ek −
∞∑
k=0

λ2ωT
k ωk −

∞∑
k=0

λ2ωT
k+1ωk+1

+ V∞ − V0 < 0. (27)

Knowing that

∞∑
k=0

λ2ωT
k+1ωk+1 −

∞∑
k=0

λ2ωT
k ωk = −λ2ωT

0ω0, (28)

and substituting (28) in (27), one has

∞∑
k=0

eTk ek − 2λ2
∞∑
k=0

ωT
k ωk < −λ2ωT

0ω0 − V∞ + V0. (29)

As V∞ ≥ 0 and knowing that V0 = 0 for e0 = 0, one has

∞∑
k=0

eTk ek − 2λ2
∞∑
k=0

ωT
k ωk < 0, (30)

or

√√√√
∞∑
k=0

eTk ek <
√
2λ

√√√√
∞∑
k=0

ωT
k ωk, (31)

which is equivalent to (18). The proof is completed.

Summarily, the procedure to design an UIO for linear
discrete-time system is detailed in Algorithm 1.

Algorithm 1: Procedure to design UIO
Input: Linear discrete-time system matrices.
Output: UIO Parameters.
1: Obtain the augmented system in the form of (5);
2: Select the matrix L in the form of (15);
3: Solve the LMI (17) to obtain the matrices P and Q, and calculate

the gain K1 = P−1Q;
4: Calculate the other gain matrices;

3 Nonlinear Case

In this section, an UIO actuator and sensor fault estimation
approach is proposed for a Lipschitz nonlinear system sub-
jected to process disturbances and sensor noise, described
by:

{
xk+1 = Axk + Buk + �(k, x, u) + B1dk + B2fak,
yk = Cxk + D1nk + D2fsk,

(32)

where �(k, x, u) ∈ Rn is a real nonlinear vector function
with Lipschitz constant β which satisfies

||�(k, x1, u) − �(k, x2, u)|| ≤ β||x1 − x2||,
∀(k, x1, u), (k, x2, u) ∈ R × Rn × Rm . (33)
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Defining an augmented state vector in (4) form, one can
obtain an equivalent augmented system as follows:

{
x̄k+1 = Āx̄k + B̄uk + B̄1dk + E�(k, x, u) + Fξ k,

yk = C̄x̄k + D1nk,
(34)

where E = [
In 0n×l f

]T ∈ Rn̄×n , and the other symbols
are defined the same as those in (5).

The nonlinear UIO is in the form of
{
zk+1 = Mzk + Nuk + Wyk + RE�(k, x̂, u),

ˆ̄xk = zk + Lyk .
(35)

The estimation error is defined by (8). In terms of (8), (34)
and (35). The estimation error dynamic is represented as

ek+1 = (RĀ − K1C̄)ek + (RĀ − K1C̄ − M)zk
+(RB̄ − N)uk + RB̄1dk + RFξ k − K1D1nk
+((RĀ − K1C̄)L − K2)yk − LD1nk+1

+RE�(k, x, u) − RE�(k, x̂, u). (36)

Using (10)–(13) into (36) yields

ek+1 = Mek + RFξ k + RE��k − K1D1nk
−LD1nk+1, (37)

where ��k = �(k, x, u) − �(k, x̂, u).
One can rewrite (37) as:

ek+1 = �

⎡
⎣

ek
ωk

ωk+1

⎤
⎦ + REΔ�k, (38)

where ωk and � are equivalent to the ones defined in Sect. 2.

Theorem 3 If there exists a positive definite symmetricmatrix
P, a matrix Q and constants λ > 0 and μ > 0, such that the
following LMIs hold:

⎡
⎢⎢⎣

(1 + μβ2)In̄ − P ∗ ∗ ∗
0lω×n̄ −λ2Ilω ∗ ∗
0lω×n̄ 0lω×lω −λ2Ilω ∗

PRĀ − QC̄ PW1 − QW2 PW̄2 − 1
2P

⎤
⎥⎥⎦

< 0, (39)[−μIn ∗
PRE − 1

2P

]
< 0, (40)

then the robust observer, defined by (35) for the system (34), is
solvable and is able to guarantee the following upper bound:

||ek ||l2 ≤ α||ωk ||l2 , (41)

where α is an H∞ performance index in equivalent form as
in Theorem 2.

Proof Considering the following Lyapunov candidate func-
tion:

Vk = eTk Pek, (42)

one has

�Vk = Vk+1 − Vk

= eTk+1Pek+1 − eTk Pek . (43)

Substituting (38) in (43), one has

�Vk =
⎡
⎣

ek
ωk

ωk+1

⎤
⎦
T (

�TP� + �
)

⎡
⎣

ek
ωk

ωk+1

⎤
⎦

+
⎡
⎣

ek
ωk

ωk+1

⎤
⎦
T

�TPRE��k

+��T
k (RE)TP�

⎡
⎣

ek
ωk

ωk+1

⎤
⎦

+��T
k (RE)TPRE��k

+(μ��T
k �k − μ��T

k �k). (44)

Applying Lemma 2 and using (33) in (44), one has

�Vk

≤
⎡
⎣

ek
ωk

ωk+1

⎤
⎦
T (

2�TP� +
[−P + μβ2In̄ 0n̄×2lω

02lω×n̄ 02lω×2lω

] )

×
⎡
⎣

ek
ωk

ωk+1

⎤
⎦ + ��T

k (2(RE)TPRE − μIn)��k . (45)

In terms of Lemma 1, one can see that (39) and (40) imply
in 2MTPM − P + μβ2In̄ < 0 and 2(RE)TPRE − μIn < 0,
respectively. When ωk = 0, from (45) one has �Vk < 0,
which implies that the error dynamic is asymptotically stable.

Let

J =
∞∑
k=0

(eTk ek − λ2ωT
k ωk − λ2ωT

k+1ωk+1 + �Vk). (46)

Substituting (45) in (46), one has

J ≤
∞∑
k=0

⎡
⎢⎢⎣

ek
ωk

ωk+1

��k

⎤
⎥⎥⎦

T
[

�1 0(n̄+2lω)×n

0n×(n̄+2lω) �2

]
⎡
⎢⎢⎣

ek
ωk

ωk+1

��k

⎤
⎥⎥⎦ ,

(47)
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where

�1 = (�TP)(2P−1)(P�)

+
[

(1 + μβ2)In̄ − P 0n̄×2lω
02lω×n̄ −λ2I2lω

]
, (48)

and

�2 = (RE)TP(2P−1)PRE − μIn . (49)

Note that
∑∞

k=0 �Vk = eT∞Pe∞ > 0. In terms of
Lemma 1, one can see that (39) and (40) imply in

[
�1 0(n̄+2lω)×n

0n×(n̄+2lω) �2

]
< 0. (50)

Similar to the proof of Theorem 2, it is noticeable that (50)
leads to J < 0, which indicates that ||ek ||l2 < α||ωk ||l2 . This
concludes the proof.

Summarily, the procedure to design an UIO for Lipschitz
nonlinear system subjected to process disturbances and sen-
sor noise is detailed in Algorithm 2.

Algorithm 2: Procedure to design Nonlinear UIO
Input: Lipschitz nonlinear system matrices.
Output: UIO Parameters.
1: Obtain the augmented system in the form of (34);
2: Select the matrix L in the form of (15);
3: Solve the LMI set (39) and (40) to obtain μ and the matrices P and

Q, and calculate the gain
K1 = P−1Q;

4: Calculate the other gain matrices;

4 Simulation Example

In this section, simulation results are presented to show the
efficiency of the proposed method. Firstly, the robust UIO
is used to estimate state and faults in a linear system. In
sequence, the proposed technique is employed in a nonlinear
system. Both techniques are compared to Extended Kalman
Filter which is nonlinear and is a very known state observer
in the literature (Hmida et al. 2012; Jiang and Chowdhury
2005).

4.1 Linear Case

Let us consider a crane system (Edwards and Tan 2006),
which was discretized with a sample time Ts = 0.01 s. The
linear discrete-time model of the system is given in the same
form of (1), where

A =

⎡
⎢⎢⎣

0 1 0 0
−32.42 −0.148 0 11.55

0 0 0 1
0.86 0.3 0 −3.123

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣

0
12.354

0
−9.115

⎤
⎥⎥⎦ ,

C =
⎡
⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎦ .

The fault and disturbances distribution matrices are,
respectively, B2 = B,

D2 =
⎡
⎣
0
0
1

⎤
⎦, B1 =

⎡
⎢⎢⎣

0.08
0.03
0

0.06

⎤
⎥⎥⎦, D1 =

⎡
⎣

0.01
−0.01
0.01

⎤
⎦.

The disturbance input is dk = 0.1sin(0.1k), the sensor
noise is nk = 0.005sin(0.06k), and the control input is
uk = 0.2sin(0.02k) and the initial state vector is x(0) =[
0.05 0.5 0 0

]T
. The actuator fault is

fak =
{
0, for k ≤ 600,
0.1sin(0.002k), for k > 600,

(51)

and the sensor fault is

fsk =
⎧
⎨
⎩
0, for k ≤ 1000,
0.01k − 10, for 1000 < k ≤ 1100,
1, for k > 1100,

(52)

Choosing λ = 2.5 and using the Algorithm 1, one can
obtain the observer gains as follows:

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.64 0 0.48
0.24 0 0.18
0 0 0

0.48 0 0.36
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,N =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.04
0.14
0

−0.06
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.37 −6.48 −0.49
−0.05 −64.6 −0.25
0.01 1.71 0
0.22 47 −0.31
0.16 −186.7 −0.21

−0.72 −38.34 0.96

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0 6.48 0.18 0.04 0.17
−0.46 1 64.6 0.23 0.14 0.11

0 0 −0.71 0.01 0 0
−0.64 0 −47 0.97 −0.06 −0.01
0.12 0 186.7 0.42 1 0.42
0.38 0 38.3 −1.22 0 −0.22

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 1 presents the evolution of the three system states.
In order to highlight UIO characteristics in this figure, the
curves corresponding to the estimated, measured and real
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Fig. 1 Measured states and its estimations

Fig. 2 x2, its measurement and its estimation

states are shown. Despite the addition of sensor fault at k =
1000, the UIO is able to match the real states and actuator
faults, and measurement and sensor noise do not affect the
states.

Figure 2 shows the state x2 evolution and the estimation
results obtained by the proposed UIO and EKF, respectively.
Considering that this state is unmeasurable, the results are
satisfactory. As depicted in figure, EKF is not able to match
real states, in the presence of input disturbance, sensor noise
and faults. On the other hand, the proposed UIO converges
to the real value in a satisfactory interval of time.

Another important aspect to consider is the fault estima-
tion, shown in Figs. 3 and 4. As seen, EKF states is not able
to converge to fault signal, which means that the EKF can-
not decouple inserted faults. On the other hand, the proposed
UIO converges to the fault signal even in the presence of
process disturbances and sensor noise.

Fig. 3 fak and its estimation

Fig. 4 fsk and its estimation

4.2 Nonlinear Case

Consider the nonlinear Lipschitz system described as:

x1k+1 = 0.5sin(x2k) + 1.25uk,

x2k+1 = x1k,

x3k+1 = 0.5x2k,

x4k+1 = −x3k,

with sample time of Ts = 0.01 s.
The system can be written in the form of (32), where

A =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0.5 0 0
0 0 −1 0

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣

1.25
0
0
0

⎤
⎥⎥⎦ ,
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C =
⎡
⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎦ ,�(k, x, u) =

⎡
⎢⎢⎣

0.5sin(x2k)
0
0
0

⎤
⎥⎥⎦ .

The faults and disturbances distribution matrices are, respec-
tively, B2 = B,

D2 =
⎡
⎣
0
1
0

⎤
⎦ ,B1 =

⎡
⎢⎢⎣

0.2
0.1

−0.1
−0.2

⎤
⎥⎥⎦ ,D1 =

⎡
⎣
0.1
0.1
0.1

⎤
⎦ .

The disturbance input is dk = sin(0.2πk), the sensor noise
nk is an uniform random number between -0.1 to 0.1. The
control input is uk = 0.5sin(0.2πk) and the initial state vec-

tor is x(0) = [
0 1 0 0

]T
. The actuator fault is

fak =
⎧
⎨
⎩
0, k ≤ 200,
0.5, 200 < k ≤ 525,
0.5 + 0.5sin(0.02k), k > 525,

and the sensor fault is

fsk =

⎧
⎪⎪⎨
⎪⎪⎩

0, k ≤ 300,
0.01k − 3, 300 < k ≤ 400,
1, 400 < k ≤ 440,
1 + 0.5sin(0.1k), k > 440.

Choosing λ = 0.64, β = 0.0333 and using the Algorithm
2, one obtains the observer gains as follows:

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.44 − 0.22 − 0.44
0.22 − 0.11 − 0.22

− 0.22 0.11 0.22
− 0.44 0.22 0.44

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,N =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.69
− 0.28
0.28
0.56
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.68 0.18 0.31
0.73 0.12 − 0.47
0.27 − 0.11 0.21
0.54 − 0.25 0.45
0.97 − 0.05 1
0 0.99 − 0.49

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 0.93 0.11 − 0.50 − 0.05 0.69 0.16
0.27 0.06 − 0.34 0.47 − 0.28 − 0.01

− 0.28 0.44 0.33 − 0.20 0.28 0
− 0.74 − 0.11 − 0.20 − 0.25 0.56 0.13
− 1.36 0 0.24 − 0.61 1 0.24
− 0.09 0 − 0.94 0.58 0 0.06

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Figure 5 presents the evolution of three system states x1,
x3 and x4. The real, measured and estimated signals are
shown . Note that a sensor fault is added to x3 state, affecting
clearly the measurement. Despite the fault addition, the UIO

Fig. 5 Measured states and its estimations

Fig. 6 x2k , its measurement and its estimation

is able tomatch the real states, maintaining bounded the error
between real and estimated state values.

Figure 6 shows the obtained results with the proposedUIO
and EKF, respectively. As depicted in figure, EKF is not able
to match real states due to input disturbance, sensor noise
and faults presences. On the other hand, the proposed UIO
converges to the real state, although the system is under the
same conditions. Additionally, once the state has converged,
observation estimation error remains bounded.

Figures 7 and 8 show the proposed UIO and EKF per-
formances as actuator and sensor estimator. Note that EKF
estimation is not able to converge to fault signals, which
means the EKF is not able to decouple inserted disturbances.
On the other hand, the proposed UIO rapidly converges to
fault signals.

The proposed UIO design, based on Theorem 3, is able
to maintain estimation error norm bounded. Figure 9 shows
the evolution of estimation error norm. Note that the estima-
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Fig. 7 fak and its estimation

Fig. 8 fsk and its estimation

tion error values are high in the beginning of the simulation.
That happens because the initial estimated state values are
different from the real ones. In this case, presented for-
mulation grants that estimation error norm values decrease
asymptotically. One can note that as the error diminishes the
perturbation effect becomemore evident and theUIO tends to
maintain the observation error bounded. Figure 10 shows the
behavior of ratio between �
k and estimation error norm.
The proposed UIO satisfies Theorem 3 by maintaining the
ratio lower than β level.

Remark 3 The parameter λ in (17) and (39) should be mini-
mized, so that the estimation error is asminimum as possible,
which yields better results. On the other hand, as the value
of λ decreases, the optimization problem becomes more
restrictive, which causes the LMI solver to perform more
interactions until it converges to the solution.

Fig. 9 Estimation error norm

Fig. 10 Satisfaction of Theorem 3

5 Conclusion

In this paper, a novel robust fault estimation technique based
on UIO for discrete-time time systems has been proposed. It
was proved to be able to simultaneously estimate actuator and
sensor faults, as well as, system states. The UIO technique
plays an important role decoupling the process disturbances
and attenuating the fault deviation and sensor noise influ-
ences through a LMI technique.

The designed estimators for both linear and nonlinear sys-
tems are presented and validated by numerical simulations
with linear and nonlinear examples, presenting excellent
results. From the point of view of digital applications, the
proposed techniques are quite suitable for use in real-time
implementationswithmicroprocessors andmicrocontrollers.

Future works shall address to extend proposed techniques
to uncertain systems whose parameters vary linearly with
time, based on the techniques proposed in Mondal et al.
(2010). Additionally, researches shall investigate fault esti-
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mation algorithms for discrete-time Takagi-Sugeno fuzzy
systems, since they are an interesting way of modeling and
discretize nonlinear systems.
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