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Abstract
This paper is concerned with the stabilization of a class of two-dimensional discrete state-delayed systems described by the
Fornasini–Marchesini second local state-space model subject to polytopic uncertainties. A delay-dependent stability criterion
is derived for the existence of a memoryless state feedback controller such that the closed-loop system is robustly stable.
To match practical issues the influence of finite wordlength nonlinearities in control implementation, delays and parameter
uncertainties belonging to a known convex polytope are also discussed. The presented criteria are obtained by employing
parameter-dependent Lyapunov–Krasovskii function and slack variables that augments the searching space allowing less
conservative solutions. Finally, examples are provided to show the effectiveness of the proposal.

Keywords Two-dimensional system · Robust stabilization · Delay-dependent · Parameter-dependent Lyapunov–Krasovskii
functions · Polytopic uncertainty

1 Introduction

A number of relevant processes can be modeled as a two-
dimensional system, i.e., a system with two independent
variables.Most of the studies found in the literature are based
on models such as Roesser (1975), Fornasini and March-
esini (1976, 1978) and Kurek (1985). In many cases the
independent variables have a time relation: one related to
continuous time variation and the other being the iteration
number (Pozdyayev 2015). Some examples concern repeti-
tive processes like pick-and-place tasks performed by robot
arms (Cichy et al. 2014), irrigation channels (Knorn andMid-
dleton 2013), traveling waves (Yu et al. 2013) and heating
flow processes (Caldeira et al. 2015). Note that, in case of
digital controlled systems, both independent variables can be
modeled in a discrete-time domain, being one of the focus of
this paper.
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The fundamental problems of stability and stabilization
of 2-D systems have being investigated during the past two
decades. Although these problems are in concept similar to
those found in the 1-D framework, the application of respec-
tive theory for 2-D systems is much more complicated. A
number of key results can be found in the literature includ-
ing (Chesi and Middleton 2016, 2015; Pozdyayev 2015;
Bouagada and Dooren 2013; Gałkowski et al. 2003). Among
these works, it is interesting to note that only Chesi and
Middleton (2016) handles the robust stabilization. A dif-
ferent approach is proposed in Cichy et al. (2014) where
an iterative and robust learning control is employed using
non-causal data. Gain-scheduled control of discrete-time 2-
D systems has been considered in Osowsky (2013) by means
of quadratically parameter-dependent Lyapunov function. In
the context of robust filtering design, see (Souza et al. 2010)
where H2 and H∞ performance indexes are used to han-
dle Fornasini–Marchesini second model with the aid of a
parameter-dependent Lyapunov function.

In practice, models are subject to uncertainties related to
parameters errors, drifting, neglected dynamics, etc., which
can deteriorate performance or even lead the controlled sys-
tem to instability. Moreover, the presence of delays adds
another source of performance degradation and instability in
the control loop (Niculescu 2001). In particular, state delay
can arrive in systems from three sources (Gu et al. 2003):
sensor delay; it is intentionally introduced in control law (for
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example in vibration control); or it belongs to the system
dynamics and it shows up after the closed loop. Therefore, it
is important to incorporate uncertainties and delays in the
model of a system. Another practical issue concerns the
implementation errors of the controller due to finite word
length in digital computers.

Many results have been reported on the stability of uncer-
tain 2-D discrete delayed systems (Chen and Fong 2007;
Chen 2010; Dey and Kar 2014; Xu and Yu 2009a; Feng et al.
2010; Xu and Yu 2009b; Paszke et al. 2004). The results
can be classified into delay-independent (Paszke et al. 2004)
and delay-dependent (Chen and Fong 2007; Chen 2010; Dey
and Kar 2014; Xu and Yu 2009a; Feng et al. 2010; Xu and
Yu 2009b; Tadepalli et al. 2015a) stability criteria. In gen-
eral, delay-dependent stability conditions are preferred due
to practical reasons: in real systems the delay is usually finite
and often bounded in an interval. On the other hand, delay-
independent conditions may be of special interest from a
mathematical point of view. This kind of condition allows
to characterize a stronger stability property, where the finite
delay may not affect the stability properties. It is well known
that, the delay-dependent stability criteria have the advantage
of yielding less conservative results as compared to delay-
independent criteria in practical issues.Majority of the results
have been obtained for 2-D discrete systems with norm-
bounded parametric uncertainties (Dey andKar 2014;Xu and
Yu 2009a; Feng et al. 2010; Paszke et al. 2004; Tadepalli et al.
2015a).When uncertainty is described as norm-bounded, the
mathematical tools employed in robust control take it as time-
varying.On the other hand, polytopic approach allows to deal
with time-invariant uncertainty, leading, in general, to a less
conservative stability analysis conditions. Some results for
2-D discrete systems with polytopic uncertainties (Chen and
Fong 2007; Hmamed et al. 2008; Xu et al. 2010a, b; Wang
and Liu 2013; Xie et al. 2015) may be mentioned.

The problem of robust H∞ filtering for 2-D discrete state-
delayed systems in the presence of polytopic uncertainties
has been considered in Chen and Fong (2007); Boukili et al.
(2016). A delay-dependent stability criterion was developed
for the case where constant delays are present in the state.
In Hmamed et al. (2008), a stability criterion employing
parameter-dependent Lyapunov function has been obtained
for 2-D discrete delay-free systems in the presence of poly-
topic uncertainties. The problem of non-fragile H2 and H∞
filter designs for 2-D discrete delay-free systems has been
considered in Xu et al. (2010a) and Xu et al. (2010b). In
Benzaouia et al. (2011), the problem of asymptotic stability
of discrete 2-D switching systems with state feedback con-
trol has been considered. To the best of authors’ knowledge, a
delay-dependent stability criterion to estimate the controller
gain for assuring the stability of the 2-D discrete systems in
the presence of time-varying delays and polytopic uncertain-
ties has not been dealt previously.

The other issue discussed in this paper is the stability of
discrete systems in the presence of finite wordlength nonlin-
earities.When a discrete system is implemented using special
purpose hardware, errors may arise due to the finite regis-
ter length. It may happen that while performing arithmetic
operations with such hardware the result may exceed the
maximumvalue that can be represented. In otherwords, over-
flow may occur. Saturation arithmetic is widely employed as
a overflowcorrection technique, as the nonlinearity arising by
employing saturation arithmetic yields less restrictive stabil-
ity conditions (see, [Chen 2010; Singh 2006;Kar 2007; Singh
2013; Tadepalli and Kandanvli 2016; Tadepalli et al. 2015],
and the references cited therein). The stability of discrete
systems during the fixed-point implementation of discrete
systems is therefore, an important issue. Such a study is
motivated by the applications involving finite wordlength
implementation of: digital control systems, discrete sys-
tems represented by the Darboux equation (Dey and Kar
2014; Tadepalli et al. 2016), networked controlled systems,
wireless sensor platforms employing fixed-point digital pro-
cessors (Sumanasena and Bauer 2011), iterative learning
control schemes (Tadepalli et al. 2015a) and so on. The
problem of asymptotic stability of discrete 2-D systems
described by the Fornasini–Marchesini second local state-
space (FMSLSS) model in the presence of saturation finite
wordlength nonlinearities and delays was dealt in Chen
(2010). To the best of authors’ knowledge, the problem
of asymptotic stability of discrete 2-D systems described
by the FMSLSS model in the presence of saturation finite
wordlength nonlinearities, delays and polytopic uncertain-
ties has not been previously studied.

Following are the main contributions of this paper: (a)
A new delay-dependent stability criterion has been devel-
oped for 2-D discrete systems with delay and polytopic
uncertainties. (b) A new criterion for estimating the con-
troller gain such that the system is robustly stable has been
developed. (c) A new delay-dependent stability criterion is
provided for discrete 2-D systems in the presence of satu-
ration finite wordlength nonlinearities, delays and polytopic
uncertainties. (d)Aparameter-dependent Lyapunov function
is employed to achieve less conservative results.

The paper is organized as follows. The system under con-
sideration is described in Sect. 2. Section 3 presents the main
results of this paper. Examples illustrating the applicability
of the presented results are shown in Sect. 4.

Notations The notations used in this paper are quite stan-
dard: Rp denotes the p-dimensional Euclidean space; Rp×q

is the set of p × q real matrices; 0 represents null matrix or
null vector of appropriate dimension; I is the identity matrix
of appropriate dimension; BT stands for the transpose of the
matrix (or vector) B; B > 0 (≥ 0) means that B is positive
definite (semidefinite) symmetric matrix; B < 0 represents
that B is negative definite symmetric matrix; Z+ is the set
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of nonnegative integers; ‖ · ‖ represents any vector or matrix
norm; sup{·} denotes the supremum or least upper bound of
a set; B = block-diag {B1, B2} represents a block diago-
nal matrix B with the elements B1 and B2 on the principal
diagonal; the symbol ‘∗’ represents the symmetric terms in
a symmetric matrix.

2 SystemDescription

Consider the following uncertain 2-D discrete system with
delays in the state and described by the FMSLSS (Fornasini
and Marchesini 1978) model:

x(i + 1, j + 1) = A1(λ)x(i, j + 1) + A2(λ)x(i + 1, j)

+ Ad1(λ)x(i − α(i), j + 1)

+ Ad2(λ)x(i + 1, j − β( j))

+ B1(λ)u(i, j + 1) + B2(λ)u(i + 1, j)
(1a)

where i ∈ Z+ and j ∈ Z+ are horizontal coordinate and ver-
tical coordinate, respectively; x(i, j) ∈ R

n is the local state
vector; u(i, j) ∈ R

m is the control input; α(i) and β( j) are
delays along horizontal and vertical directions, respectively.
Assume that α(i) and β( j) satisfy

1 ≤ αl ≤ α(i) ≤ αh, 1 ≤ βl ≤ β( j) ≤ βh, (1b)

where αl and βl are constant nonnegative integers repre-
senting the lower delay bounds along horizontal and vertical
directions, respectively; αh and βh are constant nonnegative
integers representing the upper delay bounds along horizon-
tal and vertical directions, respectively.
The system matrices A1(λ), A2(λ), Ad1(λ), Ad2(λ) ∈
R
n×n , Bk(λ) ∈ R

n×m (k = 1, 2) are subject to the uncer-
tainties and belong to the polytope Ω given by

Ω =
{[

A1(λ), A2(λ), Ad1(λ), Ad2(λ), B1(λ), B2(λ)

]

:=
p∑

s=1

λs

[
A1s, A2s, Ad1s , Ad2s , B1s, B2s

]
,

p∑
s=1

λs = 1, λs ≥ 0

}
(1c)

It is assumed (Chen 2010; Dey and Kar 2014; Xu and Yu
2009a; Feng et al. 2010; Xu and Yu 2009b) that system (1)
has a finite set of boundary conditions, i.e., there exist two
positive integers k1 and k2 such that

x(i, j) = 0,∀i ≥ k1, j = −βh,−βh + 1, . . . , 0,

x(i, j) = ui j ,∀ 0 ≤ i < k1, j = −βh,−βh + 1, . . . , 0,

x(i, j) = 0,∀ j ≥ k2, i = −αh,−αh + 1, . . . , 0,

x(i, j) = vi j ,∀ 0 ≤ j < k2, i = −αh,−αh + 1, . . . , 0

u00 = v00 (1d)

Under the assumption that the system state is available for
feedback, the following memoryless state feedback control
law is considered:

u(i, j) = Kx(i, j) (2)

where K ∈ R
q×n

Applying the state feedback controller (2) to the system
(1a) would yield the closed-loop system

x(i + 1, j + 1) = Ã1(λ)x(i, j + 1) + Ã2(λ)x(i + 1, j)

+ Ad1(λ)x(i − α(i), j + 1)

+ Ad2(λ)x(i + 1, j − β( j)) (3a)

where

Ã1(λ) = (
A1(λ) + B1(λ)K

)
, Ã2(λ) =(

A2(λ) + B2(λ)K
)

(3b)

and Ã1(λ), Ã2(λ), Ad1(λ), Ad2(λ) belong to the polytope

� =
{[

Ã1(λ), Ã2(λ), Ad1(λ), Ad2(λ)

]

:=
p∑

s=1

λs

[
Ã1s, Ã2s, Ad1s , Ad2s

]
,

p∑
s=1

λs = 1, λs≥0

}
.

(3c)

Equation (1a)maybeused to represent a broad class of dis-
crete dynamical uncertain systems. For example the control
of thermal processes in chemical reactors, heat exchangers
and pipe furnaces can be easily formulated in the form of
(1a).

Next, a definition that formalizes the asymptotical stability
concept for the considered class of 2-D systems is presented.

Definition 1 (Paszke et al. 2004) The systemdescribed by (1)
is asymptotically stable if lim

l→∞ xl = 0 for all boundary con-

ditions in (1d), where xl = sup {‖x(i, j)‖ : i + j = l, i, j
≥ 1}.

3 Main Results

Solutions to the fundamental problems of robust stability
analysis and robust stabilization of discrete 2-D systems are
provided in this section. Moreover, a condition ensuring the
robust stability of the closed-loop system under saturation
finite wordlength nonlinearities is provided.
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3.1 Asymptotic Stability Analysis

The objective of this section is to develop a criterion for the
robust stability analysis of the system (3).

Theorem 1 For 1 ≤ αl ≤ α(i) ≤ αh and 1 ≤ βl ≤ β( j) ≤
βh, the system (3) with boundary conditions (1d) is asymptot-
ically stable if there exist positive definite symmetricmatrices
P1s , P2s , Q1s , Q2s , Z1s , Z2s ∈ R

n×n (s = 1, 2, . . . , p), a
matrix X ∈ R

9n×n, such that

Ψ s + XBs + BT
s X

T < 0, s = 1, 2, . . . , p (4)

where

Bs =
[
I − Ã1s − Ã2s −Ad1s −Ad2s 0 0 0 0

]
(5)

Ψ s = block-diag
{
Ms,−Q1s,−Q2s,−Z1s,−Z2s,

− Z1s,−Z2s

}
(6)

and

Ms =
⎡
⎣ M11s −(αh + 1)Z1s −(βh + 1)Z2s

∗ M22s 0
∗ ∗ M33s

⎤
⎦ (7)

M11s = P1s + (αh + 1)Z1s + P2s + (βh + 1)Z2s (8a)

M22s = (αhl + 1)Q1s − P1s + (αh + 1)Z1s (8b)

M33s = (βhl + 1)Q2s − P2s + (βh + 1)Z2s (8c)

Proof Consider the followingparameter-dependentLyapunov–
Krasovskii function:

V (x(i, j)) = V̄ (x(i, j)) + V̂ (x(i, j)) (9)


�
where

V̄ (x(i, j)) = xT (i, j)P1(λ)x(i, j)

+
−1∑

l=−α(i)

xT (i + l, j)Q1(λ)x(i + l, j)

+
1−αl∑

θ=2−αh

−1∑
l=−1+θ

xT (i + l, j)Q1(λ)x(i + l, j)

+
−1∑

θ=−αh

−1∑
l=θ

ηT
1 (i + l, j)Z1(λ)η1(i + l, j)

+
−1∑

l=−α(i)

ηT
1 (i + l, j)Z1(λ)η1(i + l, j) (10)

V̂ (x(i, j)) = xT (i, j)P2(λ)x(i, j)

+
−1∑

r=−β( j)

xT (i, j + r)Q2(λ)x(i, j + r)

+
1−βl∑

θ=2−βh

−1∑
r=−1+θ

xT (i, j + r)Q2(λ)x(i, j + r)

+
−1∑

θ=−βh

−1∑
r=θ

ηT
2 (i, j + r)Z2(λ)η2(i, j + r)

+
−1∑

r=−β( j)

ηT
2 (i, j + r)Z2(λ)η2(i, j + r) (11)

and

η1(i, j + 1) = x(i + 1, j + 1) − x(i, j + 1) (12a)

η2(i + 1, j) = x(i + 1, j + 1) − x(i + 1, j). (12b)

Taking the forward difference of the Lyapunov–Krasovskii
function along the trajectories of the system (3) yields

ΔV (x(i, j)) = V̄ (x(i + 1, j + 1)) − V̄ (x(i, j + 1))

+ V̂ (x(i + 1, j + 1)) − V̂ (x(i + 1, j))

= ΔV̄ (x(i, j)) + ΔV̂ (x(i, j)) (13)

where

ΔV̄ (x(i, j))

= xT (i + 1, j + 1)P1(λ)x(i + 1, j + 1)

− xT (i, j + 1)P1(λ)x(i, j + 1)

+ xT (i, j + 1)Q1(λ)x(i, j + 1)

− xT (i − α(i), j + 1)Q1(λ)x(i − α(i), j + 1)

+ αhl xT (i, j + 1)Q1(λ)x(i, j + 1)

−
−αl∑

l=−αh+1

xT (i + l, j + 1)Q1(λ)x(i + l, j + 1)

+ αhη
T
1 (i, j + 1)Z1(λ)η1(i, j + 1)

−
−1∑

l=−αh

ηT
1 (i + l, j + 1)Z1(λ)η1(i + l, j + 1)

+ ηT
1 (i, j + 1)Z1(λ)η1(i, j + 1)

− ηT
1 (i − α(i), j + 1)Z1(λ)η1(i − α(i), j + 1) (14)

ΔV̂ (x(i, j))

= xT (i + 1, j + 1)P2(λ)x(i + 1, j + 1)

− xT (i + 1, j)P2(λ)x(i + 1, j)

+ xT (i + 1, j)Q2(λ)x(i + 1, j)
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− xT (i + 1, j − β( j))Q2(λ)x(i + 1, j − β( j))

+ βhl xT (i + 1, j)Q2(λ)x(i + 1, j)

−
−βl∑

r=−βh+1

xT (i + 1, j + r)Q2(λ)x(i + 1, j + r)

+ βhη
T
2 (i + 1, j)Z2(λ)η2(i + 1, j)

−
−1∑

r=−βh

ηT
2 (i + 1, j + r)Z2(λ)η2(i + 1, j + r)

+ ηT
2 (i + 1, j)Z2(λ)η2(i + 1, j)

− ηT
2 (i + 1, j − β( j))Z2(λ)η2(i + 1, j − β( j)) (15)

Now,

−
−αl∑

l=−αh+1

xT (i + l, j + 1)Q1(λ)x(i + l, j + 1)

≤ −xT (i − α(i), j + 1)Q1(λ)x(i − α(i), j + 1) (16)

and

−
−1∑

l=−αh

ηT
1 (i + l, j + 1)Z1(λ)η1(i + l, j + 1)

≤ −ηT
1 (i − αh, j + 1)Z1(λ)η1(i − αh, j + 1) (17)

Similarly,

−
−βl∑

r=−βh+1

xT (i + 1, j + r)Q2(λ)x(i + 1, j + r)

≤ −xT (i + 1, j − β( j))Q2(λ)x(i + 1, j − β( j)) (18)

and

−
−1∑

r=−βh

ηT
2 (i + 1, j + r)Z2(λ)η2(i + 1, j + r)

≤ −ηT
2 (i + 1, j − βh)Z2(λ)η2(i + 1, j − βh) (19)

Employing (12–19) the following inequality is obtained

ΔV (x(i, j)) ≤ ξT (i, j)Ψ (λ)ξ(i, j) (20)

where

ξ T (i, j) = [
xT (i + 1, j + 1) xT (i, j + 1) xT (i + 1, j)

xT (i − α(i), j + 1) xT (i + 1, j − β( j))

ηT
1 (i − αh, j + 1) ηT

2 (i + 1, j − βh)

ηT
1 (i − α(i), j + 1) ηT

2 (i + 1, j − β( j))
]

(21)

Ψ (λ) = block-diag
{
M(λ),−Q1(λ),−Q2(λ),−Z1(λ),

− Z2(λ),−Z1(λ),−Z2(λ)
}

(22)

and

M(λ) =
⎡
⎣ M11(λ) −(αh + 1)Z1(λ) −(βh + 1)Z2(λ)

∗ M22(λ) 0
∗ ∗ M33(λ)

⎤
⎦

M11(λ) = P1(λ) + (αh + 1)Z1(λ) + P2(λ)

+ (βh + 1)Z2(λ) (23a)

M22(λ) = (αhl + 1)Q1(λ) − P1(λ) + (αh + 1)Z1(λ)

(23b)

M33(λ) = (βhl + 1)Q2(λ) − P2(λ) + (βh + 1)Z2(λ)

(23c)

From (20), one can observe that ΔV (x(i, j)) < 0 for
ξ(i, j) �= 0 if Ψ (λ) < 0. Further, ΔV (x(i, j)) = 0 only
when ξ(i, j) = 0. Now, with the help of Definition 1, and
following Xu and Yu (2009b), it can be easily shown that
x(i, j) −→ 0 as i −→ ∞ and/or j −→ ∞ for any bound-
ary conditions satisfying (1d) if ΔV (x(i, j)) < 0. Thus,
Ψ (λ) < 0 is a sufficient condition for the asymptotic stabil-
ity of the system (3). From equation (3a)

0 = x(i+1, j+1)− Ã1(λ)x(i, j+1)− Ã2(λ)x(i + 1, j)

− Ad1(λ)x(i−α(i), j+1)−Ad2(λ)x(i+1, j−β( j))
(24a)

or

0 = B(λ)ξ T (i, j) (24b)

where

B(λ) = [I − Ã1(λ) − Ã2(λ) − Ad1(λ) − Ad2(λ) 0 0 0 0]
(24c)

Using (24) and employing the well-known Finsler’s Lemma
(see Lemma 1 of Miranda and Leite 2011) to (20) the fol-
lowing condition is obtained

Ψ (λ) + X(λ)B(λ) + BT (λ)XT (λ) < 0 (25)

where X(λ) ∈ R
9n×n .

Assuming an affine structure in λ for matrices P1(λ),
P2(λ), Q1(λ), Q2(λ), Z1(λ), Z2(λ), these matrices can be
written as P1(λ) = ∑p

s=1 λs Ps , P2(λ) = ∑p
s=1 λs P2s ,

Q1(λ) = ∑p
s=1 λs Q1s , Q2(λ) = ∑p

s=1 λs Q2s , Z1(λ) =∑p
s=1 λsZ1s , Z2(λ) =

∑p
s=1 λsZ2s and X(λ) = X and λ

belonging to the convex hull. Then, (25) can be recovered as
a convex combination of equations in (4). Similarly, M can

123



Journal of Control, Automation and Electrical Systems (2018) 29:280–291 285

be recovered as a convex combination of Ms given in Eq. (7).
This completes the proof of Theorem 1.

Remark 1 The use of Finsler’s lemma may help in obtaining
less conservative results by the introduction of a matrix X .
The other advantage of using Finsler’s lemma is the fact that
the synthesis of controller gain K becomes decoupled from
the Lyapunov matrices.

Next, a criterion is presented for the existence of a robust
feedback gain controller such that the system (1) is asymp-
totically stable.

3.2 Synthesis of Robust Controller

We define the following theorem for the existence of a robust
feedback gain controller.

Theorem 2 The system (1a)with delay given by (1b), bound-
ary conditions represented by (1d), is robustly stabilizable
with the control law given by (2) if there exist positive definite
symmetric matrices P1s , P2s , Q1s , Q2s , Z1s , Z2s ∈ R

n×n,
matrices U ∈ R

q×n and S ∈ R
n×n such that

block-diag
{
M̄s,−Q1s,−Q2s,−Z1s,−Z2s,−Z1s,−Z2s

}
<0,

s = 1, 2, . . . , p (26)

where

M̄s =
⎡
⎣ M̄11s M̄12s M̄13s

∗ M22s 0
∗ ∗ M33s

⎤
⎦ ,

M̄11s = P1s+(αh + 1)Z1s+P2s+(βh + 1)Z2s+ST +S,

(27a)

M̄12s = −(αh + 1)Z1s − ST AT
1s − UT BT

1s, (27b)

M̄13s = −(βh + 1)Z2s − ST AT
2s − UT BT

2s . (27c)

Proof Note that

x(i + 1, j + 1) = Ã1(λ)x(i, j + 1) + Ã2(λ)x(i + 1, j)

+Ad1(λ)x(i − α(i), j + 1)

+Ad2(λ)x(i + 1, j − β( j)) (28)

is stable if and only if

x(i + 1, j + 1) = Ã
T
1 (λ)x(i, j + 1) + Ã

T
2 (λ)x(i + 1, j)

+AT
d1(λ)x(i − α(i), j + 1)

+AT
d2(λ)x(i + 1, j − β( j)) (29)

is stable (Miranda and Leite 2011). In Theorem 1, replacing

Ã1s and Ã2s by Ã
T
1s = (A1s + B1sK )T and Ã

T
2s = (A2s +

B2sK )T , respectively and defining X = [S 0n×8n]T where
KS = U one obtains Theorem 2. 
�

3.3 Stability of Uncertain 2-D Discrete Systems in
the Presence of Delay and Saturation Finite
Wordlength Nonlinearities

Consider a class of 2-D discrete uncertain systems repre-
sented by the FMSLSS model (Fornasini and Marchesini
1978) with delays under the influence of saturation finite
wordlength nonlinearities. Specifically, the system under
consideration is described by

x(i + 1, j + 1) = f ( y(i, j))

= [ f1(y1(i, j)) f2(y2(i, j)) · · · fn(yn(i, j))]
T , (30a)

y(i, j) = A1(λ)x(i, j + 1) + A2(λ)x(i + 1, j)

+ Ad1(λ)x(i − α(i), j + 1)

+ Ad2(λ)x(i + 1, j − β( j))

= [y1(i, j) y2(i, j) . . . yn(i, j)]T , (30b)

where i ∈ Z+ and j ∈ Z+ are horizontal coordinate and
vertical coordinate, respectively; x(i, j) ∈ R

n is the local
state vector; α(i) and β( j) are delays along horizontal direc-
tion and vertical direction, respectively, satisfying (1b). The
system matrices A1(λ), A2(λ), Ad1(λ), Ad2(λ) ∈ R

n×n ,
are subject to the uncertainties and belong to the polytope Ω̂

given by

Ω̂ =
{[

A1(λ), A2(λ), Ad1(λ), Ad2(λ)

]

:=
p∑

s=1

λs

[
A1s, A2s, Ad1s , Ad2s

]
,

p∑
s=1

λs = 1, λs ≥ 0

}
. (31)

The saturation nonlinearities given by

fk(yk(i, j)) = yk(i, j), |yk(i, j)| ≤ 1

fk(yk(i, j)) = 1, yk(i, j) > 1

fk(yk(i, j)) = −1, yk(i, j) < −1

⎫⎪⎬
⎪⎭ , k = 1, 2, . . . , n

(32)

are under consideration, and the boundary conditions are
defined by (1d).
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Equations (30)–(32), (1b) and (1d) can be used to rep-
resent finite wordlength implementation of discrete systems
represented by the Darboux equation (Dey and Kar 2014;
Tadepalli et al. 2016), heat exchangers (Tadepalli et al.
2015a), networked controlled systems, wireless sensor plat-
forms employing fixed-point digital processors (Sumanasena
and Bauer 2011), iterative learning control schemes (Tade-
palli et al. 2015a) and so on.

In what follows, we will establish delay-dependent stabil-
ity criteria for the asymptotic stability of the system given by
(30)–(32), (1b) and (1d).

Theorem 3 The system represented by (30)–(32), (1b) and
(1d) is asymptotically stable if there exist positive defi-
nite symmetric matrices P1s , P2s , Q1s , Q2s , Z1s , Z2s ∈
R
n×n (s = 1, 2, . . . , p), such that

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ 11s Γ 12s Γ 13s CT Ad1s CT Ad2s 0 0 0 0
∗ Γ 22s 0 0 0 0 0 0 0
∗ ∗ Γ 33s 0 0 0 0 0 0
∗ ∗ ∗ −Q1s 0 0 0 0 0
∗ ∗ ∗ ∗ −Q2s 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Z1s 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z2s 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1s 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (33)

where

Γ 11s = P1s + P2s + (αh + 1)Z1s + (βh + 1)Z2s

− (C + CT ) (34a)

Γ 12s = CT A1s − (αh + 1)Z1s (34b)

Γ 13s = CT A2s − (βh + 1)Z2s (34c)

Γ 22s = −P1s + (αhl + 1)Q1s + (αh + 1)Z1s (34d)

Γ 33s = −P2s + (βhl + 1)Q2s + (βh + 1)Z2s (34e)

and C = [cuv] ∈ R
n×n denotes a matrix (Kar 2007; Tade-

palli and Kandanvli 2016) defined by

cuu =
n∑

v=1,v �=u

(αuv + βuv), u = 1, 2, ..., n, (35a)

cuv = αuv − βuv, u, v = 1, 2, ..., n (u �= v), (35b)

αuv > 0, βuv > 0, u, v = 1, 2, ..., n (u �= v), (35c)

where for n = 1, C corresponds to a scalar μ > 0.

Proof Let

η1(i, j + 1) = x(i + 1, j + 1) − x(i, j + 1)

= f ( y(i, j)) − x(i, j + 1) (36a)

η2(i + 1, j) = x(i + 1, j + 1) − x(i + 1, j)

= f ( y(i, j)) − x(i + 1, j). (36b)

By choosing the Lyapunov–Krasovskii function (9)–(11)
and employing (13)–(19) and (36) to obtain the forward
difference of the Lyapunov–Krasovskii function along the
trajectories of the system (30)–(32), the following inequality
can be obtained

ΔV (x(i, j)) ≤ ξ̂
T
(i, j)Γ (λ)ξ̂(i, j) − δ (37)


�

where

Γ (λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ 11(λ) Γ 12(λ) Γ 13(λ) CT Ad1(λ) CT Ad2(λ) 0 0 0 0
∗ Γ 22(λ) 0 0 0 0 0 0 0
∗ ∗ Γ 33(λ) 0 0 0 0 0 0
∗ ∗ ∗ −Q1(λ) 0 0 0 0 0
∗ ∗ ∗ ∗ −Q2(λ) 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Z1(λ) 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z2(λ) 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1(λ) 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2(λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (38)
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where

Γ 11(λ) = P1(λ) + P2(λ) + (αh + 1)Z1(λ)

+ (βh + 1)Z2(λ) − (C + CT ) (39a)

Γ 12(λ) = CT A1(λ) − (αh + 1)Z1(λ) (39b)

Γ 13(λ) = CT A2(λ) − (βh + 1)Z2(λ) (39c)

Γ 22(λ) = −P1(λ) + (αhl + 1)Q1(λ) + (αh + 1)Z1(λ)

(39d)

Γ 33(λ) = −P2(λ) + (βhl + 1)Q2(λ) + (βh + 1)Z2(λ)

(39e)

δ =
n∑

u=1

2[yu(i, j) − fu(yu(i, j))]

×
⎡
⎣ n∑

v=1,v �=u

{(αuv + βuv) fu(yu(i, j))

+(αuv − βuv) fv(yv(i, j))}
⎤
⎦

= yT (i, j)C f ( y(i, j)) + f T ( y(i, j))CT y(i, j)

− f T ( y(i, j))(C + CT ) f ( y(i, j)), (40)

ξ̂
T
(i, j) = [

f T ( y(i, j)) xT (i, j + 1) xT (i + 1, j)

xT (i − α(i), j + 1) xT (i + 1, j − β( j))

ηT
1 (i − αh, j + 1) ηT

2 (i + 1, j − βh)

ηT
1 (i − α(i), j + 1) ηT

2 (i + 1, j − β( j))
]

(41)

Observe that, for the saturation nonlinearities given by
(32) alongwith (35), the quantity δ (see (40)) is nonnegative
(Kar 2007; Tadepalli and Kandanvli 2016). From (37), it is
clear that ΔV (x(i, j)) < 0 for ξ̂(i, j) �= 0 if Γ (λ) < 0.
Further, ΔV (x(i, j)) = 0 only when ξ̂(i, j) = 0. With the
help of Definition 1, and following Xu and Yu (2009b), it
can be easily shown that x(i, j) −→ 0 as i −→ ∞ and/or
j −→ ∞ for any boundary conditions satisfying (1d) if
ΔV (x(i, j)) < 0. Thus, Γ (λ) < 0 is a sufficient condition
for the asymptotic stability of the system represented by (30)–
(32), (1b) and (1d).

It may be observed that the condition (38) is non convex
due to the continuous nature of λ. Thus to obtain a convex
condition, i.e., Theorem 3, the systemmatrices and thematri-
ces P1(λ), P2(λ), Q1(λ), Q2(λ), Z1(λ), Z2(λ) are assumed
to have a convex formulation, i.e., P1(λ) = ∑p

s=1 λs P1s ,
P2(λ) = ∑p

s=1 λs P2s , Q1(λ) = ∑p
s=1 λs Q1s , Q2(λ) =∑p

s=1 λs Q2s , Z1(λ) = ∑p
s=1 λsZ1s , and Z2(λ) = ∑p

s=1 λs
Z2s . This yields equation (33) from (38).This completes the
proof of Theorem 3.

The criteria presented are in the form of linear matrix
inequality (LMI) which can be solved easily in theMATLAB

environment employing YALMIP 3.0 (Löfberg 2004) parser
alongwith SeDuMi 1.21 (Sturm 1999) solver.

Remark 2 It is well known that delay-dependent criteria gen-
erally have a higher computational burden as compared to
delay-independent criteria. So it is important to estimate the
computational burden of the presented criteria.
Computational burden depends on the solver used and can
be calculated by knowing the number of rows (L) and the
number of decision variables (M)of theLMI. ForTheorem1,
the number of rows L1 = 15np and the number of decision
variables M1 = 3n(n + 1)p + 9n2. For Theorem 2, the
number of rows L2 = 15np and the number of decision
variables M2 = 3n(n+1)p+ pn+n2, while for Theorem 3,
number of rows L3 = 2n2 + (15p − 2)n and number of
decision variables M3 = (3p + 2)n2 + (3p − 2)n. Using
SeDuMi solver, for a given number of rows L and a given
number of decision variables M the numerical complexity is

proportional to M2L
5
2 + L

7
2 (Sturm 1999).

Remark 3 The criterion presented in Theorem 3 is able to
determine the asymptotic stability of 2-D discrete systems in
the presence of saturation finite wordlength nonlinearities,
delays in the state and uncertainties modeled as belong-
ing to a polytope. To the best of authors’ knowledge the
study of discrete-time 1-D systems in the presence of finite
wordlength nonlinearities and polytopic uncertainties has not
been explicitly done, althoughnumerous results exist for such
1-D systems employing norm-bounded modeling of uncer-
tainties. In this light, the methodology used for the proof of
Theorem 3 may be employed for obtaining results for finite
wordlength implementation of discrete-time 1-D systems.

Next, we present a criterion for the stability of a class of
systems represented by (30) in the absence of uncertainties.

Corollary 1 Consider the system represented by (30)–(32),
(1b) and (1d) in the absence of uncertainties, that is the
system becomes

x(i + 1, j + 1) = f ( y(i, j))

= [ f1(y1(i, j)) f2(y2(i, j)) · · · fn(yn(i, j))]
T , (42a)

y(i, j) = A1x(i, j + 1) + A2x(i + 1, j)

+ Ad1x(i − α(i), j + 1)

+ Ad2x(i + 1, j − β( j))

= [y1(i, j) y2(i, j) . . . yn(i, j)]T . (42b)

Then, the system represented by (42), (1b) and (1d) is asymp-
totically stable if there exists positive definite symmetric
matrices P1, P2, Q1, Q2, Z1, Z2 ∈ R

n×n, such that

123



288 Journal of Control, Automation and Electrical Systems (2018) 29:280–291

Γ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂ 11 Γ̂ 12 Γ̂ 13 CT Ad1 CT Ad2 0 0 0 0
∗ Γ̂ 22 0 0 0 0 0 0 0
∗ ∗ Γ̂ 33 0 0 0 0 0 0
∗ ∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Z1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (43)

where

Γ̂ 11 = P1 + P2 + (αh + 1)Z1 + (βh + 1)Z2 − (C + CT )

(44a)

Γ̂ 12 = CT A1 − (αh + 1)Z1 (44b)

Γ̂ 13 = CT A2 − (βh + 1)Z2 (44c)

Γ̂ 22 = −P1 + (αhl + 1)Q1 + (αh + 1)Z1 (44d)

Γ̂ 33 = −P2 + (βhl + 1)Q2 + (βh + 1)Z2 (44e)

Proof Consider the Lyapunov function

V (x(i, j)) = V1(x(i, j)) + V2(x(i, j)) (45)

where

V1(x(i, j)) = xT (i, j)P1x(i, j)

+
−1∑

l=−α(i)

xT (i + l, j)Q1x(i + l, j)

+
1−αl∑

θ=2−αh

−1∑
l=−1+θ

xT (i + l, j)Q1x(i + l, j)

+
−1∑

θ=−αh

−1∑
l=θ

ηT
1 (i + l, j)Z1η1(i + l, j)

+
−1∑

l=−α(i)

ηT
1 (i + l, j)Z1η1(i + l, j) (46)

V2(x(i, j)) = xT (i, j)P2x(i, j)

+
−1∑

r=−β( j)

xT (i, j + r)Q2x(i, j + r)

+
1−βl∑

θ=2−βh

−1∑
r=−1+θ

xT (i, j + r)Q2x(i, j + r)

+
−1∑

θ=−βh

−1∑
r=θ

ηT
2 (i, j + r)Z2η2(i, j + r)

+
−1∑

r=−β( j)

ηT
2 (i, j + r)Z2η2(i, j + r). (47)

Now, following the steps similar to the proof of Theorem 3
one can easily obtain the conditions presented in Corollary 1.


�
Remark 4 A criterion for the system represented by (42) is
also presented in Chen (2010). It may be observed that for the
criterion presented in Theorem 1 of Chen (2010), the number
of rows L4 = 24n and the number of decision variables is
M4 = 9n2 +6n, whereas for Corollary 1 the number of rows
L5 = 13n + 2n2 and the number of decision variables is
M5 = 5n2 + n, where n is the system order. On comparison
one can easily arrive at the conclusion that Corollary 1 has
a significantly smaller computational burden as compared to
Theorem 1 of Chen (2010).

4 Examples

To demonstrate the effectiveness of the proposed criteria the
following examples are presented.

Example 1 Consider the system (3) with system matrices
(Tadepalli et al. 2016)

Ã1 =
[

0.02 1
−0.09 0.15

]
, Ã2 =

[
0.2 0
0.26 0.12

]
,

Ad1 =
[
0 0.1
0 0

]
, Ad2 =

[
0.02 0
0 −0.12

]
(48)

The system matrices Ã1, Ã2, Ad1 , Ad2 are assumed to be
under the influence of the multiplicative uncertainty (1+ ρ)

where ρ ≥ 0. This results in a polytopic uncertainty repre-
sentation with the vertices

Ã1s = Ã1(1 + (−1)sρ) (49a)

Ã2s = Ã2(1 + (−1)sρ) (49b)
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Ad1s = Ad1(1 + (−1)sρ) (49c)

Ad2s = Ad2(1 + (−1)sρ), s = 1, 2. (49d)

Now, by using ρ = 0.01, αl = 3, αh = 7, βl = 2 and
employing Theorem 1, the upper delay bound βh = 11 is
obtained for the asymptotic stability of the system (3).

Example 2 Consider the system (1) with the parameters
(Peng and Hua 2015)

A1 =
[
0 0.6
0 0.2

]
, A2 =

[
0 0.1
0.2 0.65

]
, Ad1 =

[
0 0.25

−0.2 0

]
,

Ad2 =
[
0.2 0
0 0.3

]
, B1 =

[
0.2 0
0.1 0

]
, B2 =

[
0.4 0.1
0.8 0

]
.

(50)

The time-varying state delays are expected to satisfy 1 ≤
α(i) ≤ 20, 3 ≤ β( j) ≤ 11. It is easy to show that the system
described by (50) can be represented by (49). Further, we
consider ρ = 0 for representing a system in the absence of
uncertainties. Using Theorem 2we find that the system under
consideration can be stabilized by a state feedback controller

with K =
[−0.1102 −0.5480

−0.6198 1.4798

]
.

By employing Theorem 2 in Peng and Hua (2015), the
above system was found to be stabilizable using a suitable
state feedback gain. But the advantage of the proposed The-
orem 2 over the Theorem 2 in Peng and Hua (2015) is a
significant reduction in the computational burden. It may
also be noted that, by taking a nonzero value of ρ the effect
of uncertainties may also be studied employing Theorem 2
which is an added advantage as the criterion presented in
Peng and Hua (2015) does not take into account the effect of
uncertainties.

Example 3 Consider a system represented by the following
Darboux’s equation (Xu and Yu 2009a)

∂θ(x, t)

∂x
= − ∂θ(x, t)

∂t
− a0θ(x, t) − a1θ(x, t − τ) + bu(x, t) (51)

where θ(x, t) is the temperature at space x ∈ [0, x f ] and time
t ∈ [0,∞), τ is the time delay, a0 and a1 are real coefficients.
Equation (51) may be used to describe thermal processes in
chemical reactors, heat exchangers and pipe furnaces (Xu
and Yu 2009a, b), etc. Equation (51) can be transformed into
the 2-D FMSLSS model (Xu and Yu 2009b) with

A1 =
[
0 1
0 0

]
, A2 =

[
0 0
Δt
Δx (1 − Δt

Δx − a0Δt)

]
,

Ad1 =
[
0 0
0 0

]
,

Table 1 Delay-dependent
robust control performance

βh Controller gain K

10 [− 3.0171 − 1.0811]
18 [− 3.0332 − 1.0164]
30 [− 2.9608 − 1.2079]
50 [− 2.9245 − 1.3113]

Ad2 =
[
0 0
0 −a1Δt

]
, B1 =

[
0
0

]
, B2 =

[
0

bΔt

]
. (52)

Let the system be under the influence of multiplicative
uncertainty (1+ρ), where ρ = 0.01. The various parameters
of the system are assumed to beΔt = 0.1,Δx = 0.4, a0 = 5,
a1 = 1.2 andb = 1. EmployingYALMIP3.0Löfberg (2004)
parser and SeDuMi 1.21 Sturm (1999) solver it is observed
with the help of Theorem 1 that the above system under open
loop (with u(i,j) = 0) is infeasible for βh = 18, αl = 3,
αh = 9 and βl = 2.

Now, it remains to determine the closed-loop stability of
the above system by employing a suitable controller. Using
Theorem2, it is observed that the closed-loop system is stable
for the delay bounds αl = 3, αh = 9, βl = 2 and βh = 18
with a control law u(i, j) = Kx(i, j)where K = [−3.0332−
1.0164]. Table 1 shows how a delay-dependent robust control
performance can be achieved by employing a suitable control
law. It may be noted that it was possible to obtain a suitable
controller for βh → ∞.

Example 4 In this example we present the effect of finite
wordlength implementation of the system (52).

Consider the system represented by (52) with Δt = 0.1,
Δx = 0.4, a0 = 5, a1 = 1.2 and b = 1 implemented with a
suitable control law u(i, j) = Kx(i, j) where for example
K = [-3.0332 -1.0164]. Now, under finite wordlength imple-
mentation, i.e., saturation nonlinearities (finite wordlength
implementation of such system has been widely considered
in the literature, see for example Dey and Kar (2014) and
Tadepalli et al. (2016) and under the influence of uncertain-
ties it remains to be found that for what values of delay ranges
the above system is stable. Assuming αl = 3, αh = 9, βl = 2
and multiplicative uncertainty (1 + ρ), where ρ = 0.01 our
objective is to determine the upper bound of β( j), i.e., βh .
By iteratively solving it was observed that Theorem 3 was
able to determine the asymptotic stability of the system under
consideration for βh = 44.

Example 5 In this example we compare the criterion pre-
sented in Corollary 1 with an existing criterion (Theorem
1) in Chen (2010). Consider a system represented by (42)
with the parameters Chen (2010)

A1 =
[−0.24 −0.01

0.2 0.13

]
, A2 =

[−0.22 0.2
0.29 −0.14

]
,
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Ad1 =
[

0.1 0.03
−0.05 0.12

]
, Ad2 =

[
0.05 0.08
0.12 0.1

]
(53)

and under the influence of saturation nonlinearities. It is
observed that Corollary 1 is able to test the stability of the
above system for 2 ≤ α(i) ≤ 11 and 3 ≤ β( j) ≤ 5. Theorem
1 in Chen (2010) was also able to determine the asymptotic
stability of the above system for the same delay range but
with a heavier computational burden (see, Remark 4). By
assuming αl = αh and βl = βh Corollary 1 can also be
employed for the cases of systems with constant delays.

Recently, a criterion was proposed in Kokil (2017) for the
study of 2-D discrete systems described by FMSLSS second
model with constant delays and saturation nonlinearities. In
Kokil (2017) additional restrictions are imposed on the sys-
tem matrices A1, A2, Ad1 and Ad2 , i.e., the sum of modulus
of all the elements in the first row of A1, A2, Ad1 and Ad2
must be greater than 1 and the sum of modulus of all the ele-
ments in the second row of A1, A2, Ad1 and Ad2 must be less
than 1 in order to test the stability. Due to the above restric-
tions the system considered in this example falls outside the
application scope of the criterion presented in Kokil (2017).
Thus, Corollary 1 is advantageous as it does not employ any
restrictions on the system matrices.

5 Conclusion

This paper presented a criterion (Theorem 1) for the robust
stability analysis of uncertain 2-D discrete systems described
by the FMSLSS model with delays. A criterion (Theorem 2)
was proposed for the existence of a robust feedback gain con-
troller such that the 2-D discrete systems under consideration
are asymptotically stable. Finally, a newdelay-dependent sta-
bility criterion (Theorem 3) is proposed for the asymptotic
stability of a class of uncertain 2-D discrete systems in the
presence of saturation finite wordlength nonlinearities and
delays. Using examples it is shown that the criteria presented
are advantageous in terms of computational burden and do
not present any restrictions on the system matrices for their
study. The presented results can be extended for the study of
guaranteed cost control problem for multidimensional sys-
tems.
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