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Abstract
This paper presents an analytical method based on the solution of the nonlinear Riccati equation for the design of coordinated,
decentralized damping controllers for power systems. While other approaches use analytical methods that ensure robustness
with respect to uncertainties in the system operating conditions by considering a controller of the same order as the plant,
which results in high-order controller structures, the proposed method has the advantage of providing robust and decentralized
low-order controllers. The method is applied to two IEEE benchmarks, and the designed controllers are assessed by modal
analysis and nonlinear time-domain simulation.

Keywords Power system small-signal stability · Uncertainties · Riccati equation

1 Introduction

The small-signal stability problem in power systems must
be considered to avoid undesirable and very costly events
such as blackouts and severe constraints in the power transfer
capacity of transmission lines. In recent years, the power
system industry has undergone a strong infrastructure change
with the addition of new generation facilities such as wind
farms and solar photovoltaic (PV) plantswith complex power
electronic controls, growing system loads or the retirement of
large generating stations. These new components may also
introduce uncertainties in the system operating conditions
due to such factors as random fluctuations of the wind and
PV power generation. As a result, the operating point of the
whole power system changes more often through generation
random variations. These can create adverse effects on the
system’s dynamic stability and make the damping control
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design more difficult (Galvan and Overholt 2014; Bian et al.
2016).

On the other hand, the power electronics interface in
use for some types of generation and storage technologies,
such as battery or flywheel (Ortega and Milano 2016) and
wind turbines (Wilches-Bernal et al. 2016), together with
advancemonitoring, such aswide areameasurement systems
(WAMS), can improve the power system’s observability and
controllability. In this context, the development of methods
for the coordinated design of robust damping controllers is
necessary to ensure optimal and reliable operation of mod-
ern power systems (Annaswamy and Amin 2013). That is
why (Canizares 2017) were motivated to create benchmark
models for evaluating decentralized control design meth-
ods.

The literature proposes a great number of approaches
for the design of coordinated, robust damping controllers
for power systems. These approaches can be divided into
two basic types: evolution-based search (Do Bomfim et al.
2000; Castoldi et al. 2014; Lu et al. 2013; Shahgholian and
Movahedi 2016) and optimization/search analytical meth-
ods (Deng and Zhang 2014; Elkington and Ghandhari 2013;
Ramos et al. 2004).

Evolution-based search methods are able to construct new
control laws andnonintuitive solutions. Themajor drawbacks
for applying evolutionary-based methods such as genetic
algorithms and particle swarm optimization for the power
system are their computational burden and the lack of a
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formal performance guarantee based on quadratic stabil-
ity.

The analytical methods can be further subdivided into
two categories: linear matrix inequalities (LMIs) and Ric-
cati equation or linear quadratic regulator (LQR) problems.
The LMIs became popular in the 1990s, because they can
guarantee when the problem would become convex, global
optimal solution considering uncertainties that belong to a
polytopic domain. However, the major drawbacks of con-
vexity are as follows: (i) the conservatism derived from the
LMI conditions; (ii) the high dimensionality of the designed
controllers; (iii) the presence of Lyapunov variables, which
grow quadratically with the system size when the robust
stabilization of the uncertain system is based on quadratic
stability. The practical result of these limitations is that the
current LMI solvers quickly break down when plants get
sizeable.

On the other hand, the Riccati equation methods have the
major advantage in their capacity to treat a large-scale sys-
tem, such as presented in the work of Costa et al. (1997). The
main issues related to this method are the capacity of consid-
ering uncertainties and the numerical convergence success
(Apkarian et al. 2007).

The main contribution of this paper is its application of
the method based on the solution of the Riccati equation
considering system’s operating uncertainties, as originally
proposed in Trinh and Aldeen (1993), for the challenging
problem of designing coordinated and robust decentralized
power system stabilizers (PSSs). The resulting decentral-
ized controllers present a fixed and low-order structure that
allows for practical implementation. Quadratic stability over
the required range of uncertainties is also guaranteed for the
power system with the designed controllers.

To ensure that controller performance is properly com-
pared, the analysis includes two test systems presented
in IEEE standard benchmark models (Canizares 2017).
Small-signal stability analysis and nonlinear time-domain
simulations are used to validate the design and assess its
performance in the multimachine Southern/Southeastern
Brazilian equivalent and a 39 New England power sys-
tems.

The paper is organized as follows. Section 2 presents
the power system modeling and control structure. The
design method is presented in Sect. 3. Section 4 describes
the application of this method for power system control
design. In Sect. 5, the performance evaluation for the
damping controllers designed by the proposed technique is
performed via small-signal stability analysis, time-domain
nonlinear simulations and a comparative analysis with the
stabilizers originally designed for the two adopted test
systems. Section 6 includes the conclusion and final com-
ments.

2 The Power System and Decentralized
Controller Models

2.1 The Power SystemModel

Most of the damping control design methods for power sys-
tems are based on the following state-space system (Kundur
1994):

ẋ = (A + �A)x + Bu (1)

y = Cx (2)

where x ∈ �n , u ∈ �p and y ∈ �p are the state, input and
output vectors, respectively.MatricesA and�A are of proper
dimensions,whereA comes from the linearization process on
the power system nonlinear model with respect to a selected
operating point, while�A represents the prescribed range of
uncertainties. No uncertainty is associated with the control
input matrixB; furthermore, p is the number of decentralized
controllers to be designed.

Matrices A and �A are presented

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1 j · · · a1n
...

. . .
...

. . .
...

ai1 · · · ai j · · · ain
...

. . .
...

. . .
...

an1 · · · anj · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

�A =

⎡
⎢⎢⎢⎢⎢⎢⎣

�a11 · · · �a1 j · · · �a1n
...

. . .
...

. . .
...

�ai1 · · · �ai j · · · �ain
...

. . .
...

. . .
...

�an1 · · · �anj · · · �ann

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

2.2 The Decentralized Controller

In order to design a set of p decentralized controllers for the
system represented by (1) and (2), the structure adopted for
each controller is based on dynamic output feedback control.
It is possible to describe the set of p controllers in the compact
form in state space as follows:

ẋc = Acxc + Bcy (5)

u = Ccxc + Dcy (6)

where xc is the vector with the states of the controllers and
u and y come from (1) and (2). A decentralized structure of
the controllers is guaranteed by adoption of a block-diagonal
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structure to the transfer functionmatrixDC(s) obtained from
(5) and (6), which is given by the following:

DC(s) = Cc(sI − Ac)
−1Bc + Dc (7)

=

⎡
⎢⎢⎢⎣

dc1(s) 0 · · · 0
0 dc2(s) · · · 0
...

...
. . .

...

0 0 · · · dcp(s)

⎤
⎥⎥⎥⎦ (8)

In this paper, eachdecentralized controllerdci (s) is described
by a second-order transfer function

dci (s) = ni2s
2 + ni1s + ni0

s2 + ai1s + ai0
= bi1s + bi0

s2 + ai1s + ai0
+ di (9)

where di = ni2, b
i
0 = ni0 − ni2a

i
0 and b

i
1 = ni1 − ni2a

i
1. Notice

that the chosen structure for the damping controller is similar
in format to the ones adopted in industrial implementations.

From (9), the observable canonical form of the matrices
Ac, Bc, Cc and Dc can be described by

Ac =
⎡
⎢⎣
Ac1 · · · 0
...

. . .
...

0 · · · Acp

⎤
⎥⎦ , Bc =

⎡
⎢⎣
Bc1 · · · 0
...

. . .
...

0 · · · Bcp

⎤
⎥⎦ , (10)

Cc =
⎡
⎢⎣
Cci · · · 0
...

. . .
...

0 · · · Ccp

⎤
⎥⎦ , Dc =

⎡
⎢⎣
d1 · · · 0
...

. . .
...

0 · · · d p

⎤
⎥⎦ (11)

where Aci , Bci and Cci , i = 1, . . . , p, are given by

Aci =
[
1 − ai0
0 − ai1

]
, Bci =

[
bi0
bi1

]
, Cci = [

0 1
]

(12)

The next subsection discusses the closed-loop system
obtained from power system model (1) and (2) and decen-
tralized controllers (5) and (6).

2.3 The Closed-Loop System

Let the closed-loop system formed by the interconnection of
system Eqs. (1) and (2) with the controllers in state-space
form (5) and (6), be described as

˙̄x = Āx̄ (13)

where x̄ = [
xT xcT

]T
and

Ā =
[
A + BDcC BCc

BcC Ac

]
(14)

Then, by defining the matrices

Aa =
[
A BCc

0 Ac

]
, Ba =

[
B 0
0 I

]
, (15)

Ca = [
C 0

]
, Ga = [−Dc −Bc

]T
(16)

and the augmented state vector xa = [
xT xcT

]T
, an aug-

mented system can be obtained by

ẋa = Aaxa + Baua (17)

ya = Caxa (18)

where the closed-loop system given by (13) is equivalent to
the augmented system given by (17) and (18) with the output
feedback control law given by

ua = −GaCaxa = −Gaya (19)

If the observable canonical form is used to represent the
controller in (5) and (6) and if the poles of the controllers are
fixed, matrices Aa, Ba and Ca are known. Matrices Dc and
Bc, corresponding to the gain and zeros of the decentralized
controllers, must be determined from the static output gains
given by matrixGa. Therefore, the output dynamic feedback
control problem is reduced to a constant output feedback
problem (Costa et al. 1997) given by the computation of
control law (19) (that is, the matrixGa). This fact is explored
by the control design methodology, which is discussed in the
next section.

3 Control DesignMethod Incorporating
SystemUncertainties

The proposed methodology is based on the linear quadratic
regulator (LQR) and aims to determine a time-invariant
feedback gain matrix. The resulting decentralized output
feedback controller is robust and satisfies power system
damping requirements. The unconstrained linear quadratic
problem, represented by closed-loop system (17), has an
unique optimal solution for the state feedback control law
given by

ua = −Kxa (20)

where K is the state feedback gain and must satisfy

K = R−1BTP (21)
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andP is a symmetric positive definite solution of well-known
Riccati equation (Geromel and Peres 1985). So, from the
computation of matrixK, by (21), determines state feedback
control law (20). In the next subsection, the LQR method is
extended to solve the output feedback control problem given
by (17)–(19)with the imposition of block-diagonal structures
for the controller matrices.

3.1 Decentralization and Output Feedback

The decentralization constraint is satisfied with a block-
diagonal structure for the matrices K, Dc and Bc (Geromel
and Peres 1985). The inclusion of the output feedback con-
straint is more demanding than decentralization, as described
in Geromel and Peres (1985). In order to fulfill the output
feedback constraint as imposed by (19), Geromel and Peres
(1985) showed that every K can be written as

K = KCT
a (CaCT

a )−1Ca = GaCa (22)

where

Ga = KCT
a (CaCT

a )−1 (23)

Notice that the calculation of Ga from (23) determines the
output control law in (19) and, consequently, the matricesDc

and Bc of the controllers.

3.2 DesignMethod Considering Uncertainties

Trinh and Aldeen (1993) showed that, for a given linear sys-
tem described by (17) and (18) with system uncertainties
that can be written to satisfy the following matching condi-
tion �Aa = BaS, there is an arbitrary matrix L and a matrix
K, given by (22), which satisfy the following relationship

K + L = R−1BT
a P (24)

where P is the solution of the generalized Riccati equation,
as follows:

Aa
TP + PAa − PBaR−1Ba

TP + Q + LTRL = 0 (25)

If the matrices (R > 0 and Q > 0) are chosen to satisfy
the following conditions

R = 1

1 + η
I (26)

where η > 0 and

Q � rSTS + ρI + 1

η
LTL (27)

where r > 0 and ρ > 0, then the closed-loop system
will be quadratically stable under the structural uncertain-
ties described as �Aa = BaS. Notice that conditions (26)
and (27) are only valid when there are no uncertainties asso-
ciated with the control input matrix (Ba). Also, conditions
r > 0 and ρ > 0 are imposed to guarantee that the matrixQ
is positive definite and not positive semidefinite, as shown by
Jabbari and Schmitendorf (1990). The solution of the gen-
eralized Riccati equation can be solved using the procedure
proposed by Geromel and Peres (1985) if the state weighting
matrix satisfies (26) and (27).

3.3 Proposed Procedure Based on the Riccati
Equation

The application of the proposed design procedure can be
summarized as follows:
Step 1: Define the order and the poles of the controller and
build the matrices Ac and Cc in the canonical form;
Step 2: Define the matrices A, B and C for all N operating
points and define ε > 0;
Step 3: Define the value of η > 0 and R as (26);
Step 4: Determine �A from the set of N operating points;
Step 5: Calculate S = (Ba

TBa)
−1Ba

T�Aa;
Step 6:Define r > 0, ρ > 0 and calculateQ0 = rSTS+ρI;
Step 7: Define k = 0 and L0 = 0 and solve the Riccati
equationAa

TP0 +P0Aa −P0BaR−1Ba
TP0 +Q0 = 0 in P0;

Step 8: Set k = k + 1 and calculate

Lk =R−1BaPk−1(I − Ca
T(CaCa

T)−1Ca) (28)

Ql = LT
kLk

η
(29)

Qk =Q0 + Ql (30)

Step 9: Solve the Riccati equation in Pk

Aa
TPk + PkAa − PkBaR−1Ba

TPk + Qk = 0 (31)

Step 10: If ||Lk − Lk−1|| < ε, go to Step 11. Otherwise go
to Step 8;
Step 11: Calculate K = R−1Ba

TPk−1 − Lk and Ga =
KCa

T(CaCa
T)−1;

Step 12: Determine Bc and Dc through

Ga = [−Dc −Bc
]T

(32)
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4 Application of the Proposed Procedure to
Design of Damping Controllers for Power
Systems

In this section the selection of the poles of controllers, range
of uncertainties and weighting matrices are discussed. First,
the selection of the poles of the controller, performed in
Step 1, affects the algorithm convergence for specific design
requirements. There is no formal procedure for selecting the
poles. Usually, the poles of damping controllers are located
on the real axis of the left-hand side of the complex plane.
In this paper, the poles were chosen to lie in the range of −1
to −100. If the algorithm fails to converge with the poles in
this initial range, then the range may be extended to include a
larger region of the complex plane, including complex poles
with negative real parts. It is important to emphasize, how-
ever, that there is no particular constraint requiring that a
controller pole has a multiplicity higher than one. Addition-
ally, the methodology can be applied to re-tune the existing
stabilizers in the system for the purpose of improving of the
oscillation damping factor under several different operating
conditions. In this case, the poles of the existing system sta-
bilizers can be selected for use as controllers.

In Step 4, the system uncertainties must be defined. The
strong requirement is that uncertainties must satisfy the fol-
lowing matching condition �Aa = BaS (Trinh and Aldeen
1993). In this work, themain assumption is to cover the range
of uncertainties at selected operating points. This procedure
guarantees that the closed-loop system will be quadratically
stable. On the other hand, this is clearly a conservative design
assumption, because the entire range of uncertainties will not
be reached during the regular power system operation. Since
only load variation cases were considered, all the elements
from the set of linear systems considered are between the
extreme load variation cases (maximum–minimum load vari-
ation). In practice, we set A to be equal to the one extreme
case (maximum load) and �A to be the absolute difference
between the elements of the other extreme case (minimum
load).

Regarding the definition of the weighting matrices in Step
6, the method performance relied on weighting the matrices
Q andR; the performance considering uncertainties relies on
setting the parameters η, r and ρ. This is unlike the method
outlined in Costa et al. (1997), in which performance relied
on weighting the matrices Q and R . The parameter η must
be a positive real number to guarantee that matricesQ andR
are both positive definite. Its influence in the control weight-
ing matrix R ensures the uniformity for all control devices.
To avoid numerical problems, Trinh and Aldeen (1993) also
recommend to increase the value of η in order to reduce the
rate of change of Ql during the convergence process. In the
current work, the typical value of this parameter is greater
than 100. Parameter r ,meanwhile, is relative to themaximum

bound for the uncertainties. Parameter ρ is used to weightQ0

so that it has more influence than Ql . When parameter ρ is
larger than η, the influence ofQ0 inQ increases. The typical
parameters used for this control design are η = 200, r = 7
and ρ = 0.01.

5 Tests and Results

The applicability of the proposed design procedure is illus-
trated in two different test systems, with different size and
control design challenges: the Brazilian equivalent system
and the New England test system. Both systems are included
in the set of IEEE benchmark test systems proposed in
Canizares (2017). The design method chosen by Canizares
(2017) is the gain and phase compensation approachwhich is
widely used by utilities (Larsen and Swann 1981). Addition-
ally, decentralized controllers were designed by the standard
Riccati approach proposed by Costa et al. (1997) for a com-
parison analysis. In order to clarify the terminology that is
adopted in this section, the standard Riccati method will be
referred to as the LQR method, while the design procedure
proposed in this paper will be referred to as the R-LQR
method.

5.1 The Brazilian Equivalent System

The first test system is the Brazilian equivalent system, as
shown in Fig. 1. It is a 7-bus, 5-machine equivalent model
of the South/Southeastern Brazilian system configuration,
in which the generator in Bus 7 is an equivalent of the
Southeastern area (Canizares 2017). This system presents
two inter-area modes: (a) the Southeastern equivalent system
oscillating against the Itaipu power plant and (b) Southern
system, which is composed by Salto Santiago, Salto Segredo
and Foz do Areia power plants oscillating against the South-
eastern equivalent system and the Itaipu power plant. This
system requires damping controllers to operate in a stable
way and with good performance.

Using the control schemes and settings described in
Canizares (2017), the loads were varied by ± 5 and ± 10%,
which created five operating conditions. (The base case and
four additional cases with the loads increased and decreased
by 5 and 10% from the base case.) Additionally, using
the same control scheme and controller poles described in
Canizares (2017), a decentralized controller was designed
following the LQR method, which is the design procedure
proposed by Costa et al. (1997).

The modal analysis of these five operating conditions was
performed with PacDyn (CEPEL 2015) for the controllers
tuned as presented inCanizares (2017) and for those designed
according to the LQRmethod. The results for themost poorly
damped oscillation mode are presented in Table 1. For the
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Fig. 1 IEEE Brazilian equivalent system

Table 1 Poorly damped oscillatory modes

Case Benchmark LQR

ζ(%) f (Hz) ζ(%) f (Hz)

Base 6.39 0.83 7.09 1.66

Load + 5% 8.25 0.83 2.23 1.18

Load − 5% 4.39 0.82 2.49 0.99

Load + 10% 9.99 0.84 0.35 1.20

Load − 10% 2.25 0.81 − 1.8 0.97

controller proposed by Canizares (2017), the poorly damped
mode is the inter-area mode (a), as defined previously, and
the power system is stable for all five operating conditions.
Themodal performance is degradedwhen the load is reduced
(−5 and−10%) because this increases the power transfer to
the Southeastern system. In these cases, the oscillation mode
crosses the minimum damping ratio of 5%. For the controller
designed by the LQR method, the poorly damped mode is
a local or an inter-area mode, depending on the operating
condition. However, the power system is not stable for all
five operating conditions. The modal performance became
unstable when the load is decreased by − 10%.

5.1.1 Robust Design Via the Proposed R-LQRMethod and
Small-Signal Analysis

The same load conditions were considered for the control
design proposed in this paper. The modal analysis of these
five power system operating conditions was performed with
PacDyn (CEPEL 2015). The results are presented in Table 2
for the most poorly damped oscillation mode. The analysis
revealed that all oscillation modes present a damping ratio
higher than 8% for the five selected operating conditions.
Additionally, the eigenvalue locus for the modes correspond-
ing to a set of 1900 operating conditions obtained from the
convex combination of three closed-loop operating condi-
tions (base case and the cases with the loads increased and

Table 2 Poorly damped
oscillation mode—damping
controllers designed via the
proposed R-LQR method

Case ζ (%) f (Hz)

Base 9.37 1.67

Load + 5% 9.25 1.67

Load − 5% 9.37 1.76

Load + 10% 9.15 1.68

Load − 10% 8.02 0.91

−1.5 −1 −0.5 0
−10

−5

0

5

10

Im
Re

Eigenvalues

5%10%

Fig. 2 Eigenvalue locus for the modes corresponding to a set of 1900
operating conditions obtained from the convex combination of three
closed-loop operating conditions

Table 3 Parameters of the proposed decentralized controllers for the
IEEE 7 bus system

n2 n1 n0 a1 a0

dc1 − 14.16 170.7 1296 26.67 177.78

dc2 46.38 752.4 1775 26.67 177.78

dc3 32.73 1232 1519 26.67 177.78

dc4 353.9 4477 − 2201 30.77 236.68

decreased by 10%) is shown in Fig. 2. The main result of this
exhaustive search is the finding that the oscillatory modes
are not impaired under any operating condition presenting a
damping ratio far higher than 5%.Table 3 presents the param-
eters of the decentralized controller designed according to the
R-LQR method described in the previous sections.

5.2 The New England Test System

The New England test system (NETS), shown in Fig. 3, has
been extensively employed in the oscillation damping con-
trol literature (Canizares 2017; de Menezes et al. 2016). It
comprises 39 buses and 10 generators. Generator 1 is an area-
equivalent that represents the New York system to which
the New England system is interconnected. Almost all elec-
tromechanical modes in this system are of a local or regional
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Fig. 3 New England test system (NETS)

Table 4 Relevant oscillatory modes—damping controllers tuned as
presented in Canizares (2017)

Case Mode 1 Mode 2 Mode 3

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 13.4 0.58 18.14 1.59 18.15 1.13

+ 10 11.18 0.58 18.13 1.59 20.21 0.96

− 10 12.70 0.58 18.12 1.59 0.05 0.94

Case Mode 4 Mode 5 Mode 6

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 18.19 1.36 23.42 1.0 23.47 1.68

+ 10 17.42 1.35 20.24 1.05 23.54 1.68

− 10 20.37 1.32 23.8 1.0 23.44 1.68

nature, except for one, which is observed as the oscillation
of generators 2 to 10 against generator 1.

Considering the control schemes (PSSs placed at every
power plant) and settings described in Canizares (2017) to
form the base case, the other two operating points were
obtained by increasing and decreasing the loads by 10% from
the base case. The modal analysis of these three operating
conditions was performed with PacDyn (CEPEL 2015). The
results are presented in Table 4, which shows six relevant
oscillatorymodes. All the other modes present damping ratio
higher than ± 15% for all the considered designed methods.
Mode 1 is the inter-area mode, which involves all generators
against the area-equivalent given by the New York system.
The other ones are multiple local modes that may be criti-
cal under certain operating conditions. Mode 3 is very well
damped for the base case and for the operating condition
given by an increase of 10% in the loads. However, this same
mode became critical when the loads were reduced by 10%.

Table 5 Relevant oscillatorymodes—damping controllers designed by
the LQR methods

Case Mode 1 Mode 2 Mode 3

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 31.90 0.59 11.59 1.58 6.25 0.86

+ 10 31.09 0.59 11.59 1.58 6.25 0.86

− 10 34.83 0.58 11.52 1.58 −1.91 0.88

Case Mode 4 Mode 5 Mode 6

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 8.21 1.42 12.35 1.38 12.34 1.36

+ 10 11.42 1.42 12.35 1.38 7.78 1.36

− 10 9.74 1.42 14.10 1.34 5.09 1.37

Using the samepoles and structure of controllers described
in Canizares (2017), a decentralized controller for each gen-
erator was designed via the LQR method, which was the
design procedure proposed in Costa et al. (1997). The results
are presented inTable 5 for the sameoscillatorymodes shown
inTable 4.Mode 3 is poorly damped for all cases and unstable
when the loads are reduced by 10% from the base case.

5.2.1 Robust Design Via the Proposed R-LQRMethod and
Small-Signal Analysis

This subsection presents the results obtained from the appli-
cation of the proposed design procedure. The modal analysis
of the same three operating conditions considered in the last
subsection was performed with PacDyn (CEPEL 2015). The
results are presented in Table 6, which shows that the power
system is stable for all three operating points. The modal
performance is not impaired under any operating conditions,
and all the modes present a damping ratio superior to 5%.
The frequency of the inter-area mode varied from 0.58 to
0.40 Hz, and its damping is higher than 20% for all operat-
ing points. The critical oscillatory mode, Mode 3, presents
damping ratio superior to 7% for all the cases. The transfer
function parameters of the designed controllers are presented
in Table 7.

5.2.2 Nonlinear Simulation

Nonlinear, time-domain simulations were carried out using
ANATEM software (CEPEL 2014) in the New England test
system in order to validate the results of the linear analy-
sis and to ensure performance robustness for the designed
damping controllers. The proposed damping controllerswere
compared to the available controllers inCanizares (2017) and
the controllers designed by the traditional LQR method pre-
sented in Costa et al. (1997). A temporary, three-phase short
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Table 6 Relevant oscillatory modes—damping controllers designed
via the proposed R-LQR method

Case Mode 1 Mode 2 Mode 3

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 26.46 0.40 8.53 1.97 9.66 1.09

+ 10 31.14 0.40 8.60 1.96 7.88 0.80

− 10 26.12 0.40 8.51 1.96 7.66 0.96

Case Mode 4 Mode 5 Mode 6

ζ(%) f (Hz) ζ(%) f (Hz) ζ(%) f (Hz)

Base 11.45 1.84 8.53 1.56 14.03 1.63

+ 10 11.54 1.82 8.47 1.57 14.11 1.64

− 10 11.55 1.82 8.72 1.55 8.74 1.73

Table 7 Parameters of the proposed decentralized controllers for the
IEEE 39 bus system

n2 n1 n0 a1 a0

dc1 0.3612 4.196 3.399 3.67 3.33

dc2 21.39 −194.3 −31.64 12.5 25.0

dc3 194.2 873.2 48.34 10.0 25.0

dc4 123.7 917.3 39.56 13.33 33.33

dc5 135.8 2023 −56.64 15.0 50.0

dc6 1.358 334.2 400 30.0 200.0

dc7 35.35 11930 846.3 60.0 500.0

dc8 72.77 626.5 26.91 15.0 50.0

dc9 134.2 1001 35.72 12.0 20.0

dc10 −74.97 −33 24.88 22.0 40.0
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Fig. 4 Angle of generator 2, Bus 31

circuit of 10 ms was applied at Bus 31 and cleared without
any switching. The angle and field voltage of generator 2
at Bus 31, for the base case, are presented in Figs. 4 and 5,
respectively. Additionally, the angle and field voltage of gen-
erator 2 at Bus 31, for the load −10% case, are presented in
Figs. 6 and 7, respectively.
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Fig. 5 Field voltage of generator 2, Bus 31
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Fig. 7 Field voltage of generator 2, Bus 31
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Fig. 9 Field voltage of generator 2, Bus 31

Another nonlinear simulation included the contingency
given by a permanent disconnection of the transmission line
6–11 in t = 1 s. The rotor angle and field voltage of generator
2 at Bus 31 for the worst case are presented in Figs. 8 and
9, respectively. The angular and field voltage responses for
the power system equipped with the proposed decentralized
controllers were better damped than the responses for the
system with the controllers tuned as presented in Canizares
(2017) and Costa et al. (1997). Hence, the robust controllers
presented a coordinated control action and a satisfactory per-
formance.

6 Conclusions

This paper presents a robust coordination approach for
designing decentralized controllers to stabilize multiple low
damping oscillation modes. The resulting controller guar-
antees quadratic stability for the specified range of uncer-
tainties. The conventional decentralized control scheme was
chosen because it is a challenging problem, making it a good
choice formethod evaluation.However, the design procedure
could be regarded as the guideline for other power system
control design problems (Dotta et al. 2009). Test results in
the two IEEE benchmarks show that the method is effective.
Themodal analysis indicates the control robustness for differ-
ent operating points at a range of uncertainties. Furthermore,
a nonlinear simulation is performed verifying the presented
method concept and the designed decentralized controller
under various operating conditions.All of the research results
indicate that the proposed robust coordination approach may
contribute to effective damping in low damping oscillations
and present robustness under various operating conditions.
No model reduction methods were applied in the system
and resulting controller. Future work will include methods to
relax the matching condition specified in the original algo-
rithm.
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