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Abstract In this paper, a stability analysis is suggested for
adaptive fuzzy logic systems (FLSs) without the requirement
of statesmeasurement or estimation. Fuzzy logic is viewed as
a powerful tool in providing accurate approximation of sys-
tems with uncertainties. The proposed methodology exploits
the power of adaptive control theory tofindaLyapunov-based
adaptation law for FLSs. As such, both stability and tracking
problems are addressed for a class of nonlinear dynamic sys-
tems. The proposed method yields reduced complexity with
respect to many adaptive FLSs available in the literature. In
addition, the use of an observer to estimate immeasurable
states is not required as in other methods. First, a stabil-
ity analysis is presented for adaptive control. Then, results
are extended to adaptive FLSs with unknown dynamics. A
numeric illustrative example highlights the implementation
details and the performance of the suggested scheme.

Keywords Lyapunov · Stability analysis · Fuzzy logic ·
Adaptive control

1 Introduction

Stability is a crucial aspect in control systems. By definition,
the stability of a dynamic system usually evaluates whether
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a system reaches equilibrium state after being subjected to
a disturbance. Therefore, stability is defined so that when
a system starts from an initial condition close to the ori-
gin, its trajectory will stay within its vicinity. Contrarily, the
system is considered as unstable. But, since nonlinear sys-
tems are driven by complex dynamics,more detailed stability
concepts like asymptotic, exponential, and global asymptotic
stability are introduced. For instance, even though the system
is stable, the principal challenge in some applications is the
trajectory’s convergence speed. In other words, how fast the
trajectory gets to the origin which is captured by the concept
of exponential stability.

In the research literature, control system design method-
ologies can be separated into three classes. The first class uses
classical linear control techniques by linearizing nonlinear
systems dynamics at an operating point of the states (Pathak
et al. 2005). This methodology is known for its simplicity.
However, designing a controller for an approximated system
does not guarantee the performance and stability of the over-
all system. Hence, the second category consists of control
design based on nonlinear systems dynamics, which pre-
serves the characteristics of nonlinear systems (Chaoui and
Sicard 2012; Wai et al. 2008; Xu et al. 2014; Huang et al.
2015; Park and Chwa 2009; Santiesteban et al. 2007). But,
design complexity increases with the order of the nonlin-
ear systems since an accurate mathematical system model
is needed (Li and Luo 2009; Fukushima et al. 2013; Huang
et al. 2013; Kwon et al. 2015). These approaches mainly
consider parametric uncertainties and tend to show good per-
formance in theory. However, their capability gets affected
in the face of unstructured uncertainties like friction and dis-
turbance. In real-world applications, formulating suchmodel
for complicated industrial systems may be a difficult under-
taking because of varying operating conditions (Chaoui and
Gueaieb 2008; Chaoui et al. 2013). Additionally, various
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elements may also be uncertain such as, temperature and
noise. Thus, the system’s dynamics cannot be efficiently
based on presumptively precise mathematical models. The
third class deals with nonlinear control design based on soft-
computing tools such as, artificial neural networks (ANNs)
and fuzzy logic systems (FLSs) (Chaoui et al. 2009, 2010;
Ali et al. 2008; Chang et al. 2009). These intelligent tech-
niques have been considered in numerous applications as
powerful tools for robust approximation of systems suf-
fering from structured and unstructured uncertainties (de
Silva 1995). Several models are available for the control
of nonlinear systems, leading to a suitable performance
and hence providing an alternative to conventional con-
trol methods (Ali et al. 2008; Huang et al. 2011; Orozco
et al. 2015; Wai et al. 2008; Jung and Kim 2008; Chen
et al. 2009; Li and Yang 2012; Tao et al. 2008; Yang et al.
2014). However, FLSs are unsuited for incorporating any
learning and neural networks are also inadequate for aggre-
gating any human-like expertise previously captured about
the system dynamics. Additionally, these methodologies are
based on heuristic, which makes tuning difficult especially
for complex systems. Furthermore, many controllers based
on these methods lack stability proofs in various applica-
tions.

Stability of FLSs has received an increasing interest
in control applications, i.e., fuzzy logic controllers and
observers (Sharma et al. 2010; Zhang et al. 2008; Biglar-
begian et al. 2010; Barkat et al. 2011; Aliev and Pedrycz
2009; Pan et al. 2011). However, they suffer from too restric-
tive assumptions made for the control design and stability
analysis (Boulkroune et al. 2011). Without these assump-
tions, their stability analysis is not trivial since nonlinear
controller/observer design is difficult in general. Since most
real-life systems are nonlinear, an advanced controller is
often required to compensate for these nonlinearities. In some
cases, the nonlinear system can be reasonably approximated
by its linearized counterpart when the range of operation
of a given nonlinear system is small. Then, the application
of a variety of powerful linear control methods can be pos-
sible. But, nonlinearities can be discontinuous, called hard
nonlinearities, and cannot be handled by linear systems.
This paper aims to propose a stability analysis for adap-
tive FLSs without states measurement or estimation. The
proposed scheme makes use of adaptive control theory to
propose a Lyapunov-based adaptation law. Hence, the pro-
posed approach stability is guaranteed by Lyapunov direct
method. Several adaptive FLSswith stability proofs are avail-
able in the literature (Tong et al. 2013; Liu et al. 2013;
Pan and Er 2013; Boulkroune et al. 2011). Backstepping is
a popular technique used to design stable adaptive FLSs.
However, this method is known for issues of “explosion
of complexity” when dealing with nonlinear systems with
unmodeled dynamics (Tong et al. 2013). To reduce complex-

ity, a decentralized adaptive fuzzy output feedback approach
is proposed in Liu et al. (2013) for a class of large-scale non-
linear systems using a reduced-order observer. Despite of
complexity reduction, states estimation remains as a require-
ment. In an effort to relax constraint conditions of existing
methods, an enhanced adaptive fuzzy controller, presented
in Pan and Er (2013), achieves partial asymptotic tracking
providing a more flexible solution. However, fuzzy approx-
imation requires high-gain adaptation which is not practical
due to measurement noise. Thus, fast adaptation and robust-
ness is yet an issue not solved in Pan and Er (2013). On
the other hand, adaptive fuzzy sliding mode controllers have
also been proposed for various nonlinear systems (Saghafinia
et al. 2015; Ho and Ahn 2012). However, robustness to dis-
turbance and other uncertainties can be obtained only when
sliding mode truly occurs. Moreover, discontinuous control
action combinedwith limited switching frequency in real-life
applications leads to the well-known chattering problem. To
overcome this issue, the boundary solution approximates the
sign function in a boundary layer of sliding mode manifold.
This solution preserves partially the invariance property of
sliding mode where states are confined to a small vicinity
of the manifold, and convergence to zero cannot be guaran-
teed. InNekoukar andErfanian (2011), a continuous terminal
sliding mode controller is presented for a class of nonlin-
ear uncertain systems. Again, large gains are required to
increase the stability boundary which lead to sensitivity to
noise depleting the robustness properties associated with
FLSs.

Unlike the aforementioned designmethodologies, the pro-
posed approach yields reduced complexity and does not
require states measurement or estimation to reconstruct
the regression vector. In this paper, stability and track-
ing problems of a class of nonlinear dynamic systems is
addressed in the presence of both structured and unstruc-
tured uncertainties without states measurement or estimation
unlike several adaptive FLSs available in the literature.
First, stability is derived for an adaptive controller and
then extended to adaptive FLSs. Thus, robustness to struc-
tured/unstructured uncertainties is obtained as opposed to
adaptive control. Henceforth, the proposed Lyapunov-based
adaptive FLS can be used as an alternative approach for a
class of uncertain affine nonlinear systems operating in vary-
ing conditions. Implementation details are provided through
a numeric illustrative example and results illustrate the per-
formance and effectiveness of the proposed strategy. This
paper is organized as follows: the developed adaptive con-
trol strategy is detailed in Sect. 2 and Sect. 3 outlines its
extension to adaptive FLSs. A numeric example is pre-
sented and discussed in Sect. 4. Results are also reported
and analyzed with some remarks pertaining to this prob-
lem.
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2 Adaptive Control

In here, an adaptive control strategy is designed for a gen-
eral nonaffine nonlinear system whose dynamics can be
expressed in the following form,

ẋi (t) = xi+1(t) i = 1, . . . , n − 1

ẋn(t) = f (xn(t), u(t)) (1)

where x(t) ∈ R
n � [x1(t), . . . , xn(t)]T denotes the state

vector of the system, f is a continuous nonlinear function
such that, f (xn(t), u(t)) = an fn(xn(t))+· · ·+a1 f1(x1(t))+
b u(t), where f1, . . ., and fn are nonaffine nonlinear func-
tions, a1, . . ., an and b are unknown constant parameters, and
u is the control input. For clarity, the argument (t) is dropped
when no ambiguity arises. The system’s dynamics can also
be expressed in a linear parametric regression form as,

u = 1

b
ẋn − an fn(xn) − · · · − a1 f1(x1) = Ψ TΘ (2)

where Ψ ∈ R
n+1 is a vector of known nonlinear functions

(regressor), and Θ ∈ R
n+1 is a vector of unknown constant

parameters. Define e ∈ R
n � [e1, . . . , en]T as the tracking

error vector,

⎡
⎢⎣

e1
...

en

⎤
⎥⎦ =

⎡
⎢⎣

x1 − x∗
1

...

xn − x∗
n

⎤
⎥⎦

where x∗ ∈ R
n � [x∗

1 , . . . , x∗
n ]T is the desired time-

dependent vector. Therefore, the control law can be defined
as,

u = 1

b̂
˙̄xn − ân fn(xn) − · · · − â1 f1(x1) (3)

where, ˙̄xn = ẋn −k′
nen −· · ·−k′

1e1. The symbol •̂ denotes the
parameter estimate. Substituting for ˙̄xn in the control law (3)
yields,

u = 1

b̂
(ẋn−k′

nen−· · ·−k′
1e1)−ân fn(xn)−· · ·−â1 f1(x1) (4)

Substituting u from (2) and add and subtract (1/b̂)ẋ∗
n leads

to,

ėn + knen + · · · + k1e1 = b̂Ψ TΘ̃ (5)

where, Θ̃ = Θ − Θ̂ is the parameter vector estimation error
and k = k′b̂. This way, the control law (3) leads to the fol-
lowing closed-loop dynamics,

ėn + knen + · · · + k1e1 = 0

Formulation (5) can be written in a state-space form as,

Ė = A E + B U (6)

where E ∈ R
n = [e1, . . . , en]T is the state vector and

U ∈ R = Ψ TΘ̃ is the state-space input. A ∈ R
n×n is

a stable matrix, and B ∈ R
n , are given by:

A =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
...

0 0 0 . . . 1
−kn −kn−1 −kn−2 . . . −k1

⎤
⎥⎥⎥⎦

B =
⎡
⎢⎣
0
...

b̂

⎤
⎥⎦

Henceforth, the gain vector k ∈ R
n can be chosen to place

the closed-loop poles at their desired locations by using a
pole placement technique or by solving the algebraic Riccati
equation.

Theorem 1 Consider a nonlinear system in the form of (1)
with the control law (3). The closed-loop system’s asymptotic
stability and error convergence to zero are guaranteed with
the following adaptation law:

˙̂
Θ = −�Ψ E1 (7)

where E1 = BTP E and � = diag(γ1, . . . , γn) with γi is a
positive constant. P is a symmetric positive definite matrix
chosen to satisfy the following Lyapunov equation:

ATP + P A = −Q (8)

with Q is a positive definite matrix.

Proof Choose the following Lyapunov candidate:

V = ETP E + Θ̃T�−1Θ̃

Taking the derivative of V yields:

V̇ = ĖTP E + ETP Ė + 2Θ̃T�−1 ˙̂
Θ (9)

Since the parameter vector Θ is considered to be constant,

therefore, ˙̃
Θ = ˙̂

Θ . Substituting Ė from (6) yields,

V̇ = [AE + BU ]TP E + ETP[AE + BU ] + 2Θ̃T�−1 ˙̂
Θ

Therefore, setting U = Ψ TΘ̃ implies that,

V̇ = ET[ATP + P A]E + 2Θ̃TΨ E1 + 2Θ̃T�−1 ˙̂
Θ
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Setting ATP + P A = −Q as in (8) leads to,

V̇ = −ETQE + 2Θ̃T[Ψ TE1 + �−1 ˙̂
Θ]

Setting the adaptation law as defined in (7) implies that,

V̇ = −ETQE < 0 ��

Since Q is positive definite, so V̇ < 0 ∀E �= 0 such
that E = 0 is considered as a globally asymptotically stable
equilibrium point. Since the positive Lyapunov function V is
decreasing (V̇ < 0), then it must converge to a finite limit.
Hence, E and so, e and Θ̃ are also bounded and converge to
finite values. Since Ψ is bounded, it implies from (6) that Ė
is also bounded. Henceforth, V̈ is also bounded.

Lemma 1 (Barbalat) If the differentiable function V (t) has
a finite limit as t → ∞, and if V̇ (t) is uniformly continuous,
then V̇ (t) → 0 as t → ∞.

FromLemma1,V has afinite limit as t → ∞ and V̇ is uni-
formly continuous. Henceforth, the system is asymptotically
stable in the sense of Lyapunov. Therefore, limt→∞ V̇ = 0,
and hence, limt→∞ E = 0. It shows that limt→∞ e = 0 and
limt→∞ ė = 0. Therefore, limt→∞ x = x∗.

Remark 1 The goal in adaptive control is to achieve track-
ing error convergence to zero. However, it gives a false
impression that parameter convergence is attained. Persis-
tent excitation condition ensures parameter convergence if
the following condition:

α0 In ≤
∫ t0+δ

t0
Ψ Ψ Tdt ≤ α1 In

is met for all t0, where α0, α1 and δ are all positive. Note that
the integral of Ψ Ψ T must be positive definite and bounded
over all intervals of length δ. In other word, Ψ must vary
sufficiently over the interval δ so that the entire dimensional
space is spanned.

3 Adaptive Fuzzy Logic Systems

Several classical methodologies fail to provide good per-
formance since they are heavily dependent on accurate
mathematical models. In real-life, the derivation of a precise
model is not trivial because of the presence of uncertain-
ties and high nonlinearities. Opportunely, these limitations
are nonexistent in soft-computing methods due to their inde-
pendence from a mathematical model and therefore, higher
performance can be achieved. In the reality, these tools are
mainly used in a large number of applications where accu-
rate mathematical models cannot be guaranteed due to large

signals noise magnitudes, and dynamically changing param-
eters (Karray and Silva 2004; Lin and Lee 1996; Chaoui and
Gueaieb 2008). The computational intelligence tool of inter-
est in this work is FLSs. This section proposes an extension
of the developed adaptive control theory to FLSs.

FLSs have the ability to uniformly approximate, to any
degree of accuracy, any well-defined nonlinear function over
a compact set U .

Theorem 2 (universal approximation theorem) For any
given real continuous function g on the compact set U ⊂ R

n

and arbitrary ξ > 0, there exists a function f (ζ ) in the form
of (10) such that

sup
ζ∈U

‖ g(ζ ) − f (ζ ) ‖< ξ

The above theorem (Wang 1994) reveals the power of FLSs
in achieving a high approximation of continuous nonlinear
functions providing a rational substitute to dealing with com-
plex ill-defined dynamic systems. A FLS maps crisp inputs
into crisp outputs using generally three stages: fuzzification,
inference fuzzy rule engine, and defuzzification.

Fuzzy sets can be defined by a membership function μA

in which each element α of the universe of discourse X is
associated with a membership grade μA(α) in the interval
[0,1]. As such, the fuzzification stage consists of mapping a
crisp input α ∈ X into a fuzzified value A ∈ U (Universe).
Singleton fuzzification: fuzzy set A with support αi , where
μA(αi ) = 1, for α = αi and μA(αi ) = 0, for α �= αi .
Non-singleton fuzzification: μA(αi ) = 1, for α = αi and
gradually dropped from 1 to 0 when moving away from α =
αi .

The inference engine is instrumental for any FLS as it
gathers the knowledge base IF–THEN rules with the fuzzy
sets provided by the fuzzification stage to produce an over-
all output fuzzy set. In other words, it generates a mapping
from the input fuzzy sets to the output ones. The t-norm and
t-conorm operators are then used, respectively, for the inter-
section of multiple rule antecedents and their union. Each
rule l in the knowledge base is taken as a fuzzy implication,
which when combined with the fuzzified inputs, it leads to a
fuzzy set Bl such that:

μBl (β) = �α∈X [μAα (α) � μRl (α, β)]. (10)

where� and� are the t-norm and t-conorm operators, respec-
tively.

The fuzzy rule base is formed of numerous IF–THEN
rules. The lth rule has the following form:

Rl : IF α1 is Fl
1 and α2 is Fl

2 and . . . and αp is Fl
p

THEN β1 is Gl
1 and β2 is Gl

2 and . . . and βm is Gl
q
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Fig. 1 Adaptive fuzzy logic control structure

where α1 ∈ X1, . . . , αp ∈ X p, and β1 ∈ Y1, . . . , βm ∈ Ym ,
are the input/output fuzzy linguistic variables, respectively.
Fl

i and Gl
j , i = 1, . . . , p, j = 1, . . . , q, are the input/output

fuzzy labels, respectively. Rl is a fuzzy relation mapping
fuzzy input sets X to fuzzy output sets Y , p and q are the
number of the inputs and outputs of the FLS, respectively.

To calculate the final output crisp value, a defuzzifica-
tion step is needed. Various defuzzification techniques are
available for FLSs, such as the centroid, centre-of-sets, and
centre-of-sums defuzzifiers. By using a commonly used
defuzzification such as centroid, the output at instant k can
be expressed as:

y j (k) =
∑r

l=1 θl μBl (β)∑r
l=1 μBl (β)

(11)

where, l = 1, . . . , r and r is the number of the fuzzy rules.
The adaptive FLS scheme is shown in Fig. 1. It is com-

posed of four layers: layers 1 and 2 form the antecedent part
of the fuzzy rules and consist of the input and the fuzzification
nodes, respectively; layers 3 and 4 represent the consequent
part of the fuzzy rules constructed with the fuzzy rule and
the output nodes, respectively. These layers are linked by the
parameter matrix Θ .

The FLS’s output in (11) is described as,

Y = Ψ TΘ + ε = Ψ̂ TΘ̂ (12)

where, ε = Ψ̂ TΘ̂−Ψ TΘ is the fuzzy logic output error, Θ̂ ∈
R

r×q is the fuzzy logic consequent part parameter matrix,
i.e., singleton outputmembership functions,which is adapted
online using a Lyapunov-based adaptation law, and Ψ̂ ∈ R

r

is the r -dimensional fuzzy logic antecedent part vector of
known functions (regressor) defined as:

Ψ̂ = μBl (β)∑r
l=1 μBl (β)

(13)

In this work, the FLS consists of a single output system,
i.e., (q = 1), the matrix Θ̂ ∈ R

r×q is reduced to a vector
Θ̂ ∈ R

r×1 = [θ1, θ2, . . . , θr ], where θl is the fuzzy logic
consequent part of the lth rule as shown in (11), l = 1, . . . , r .
Setting r = n makes the dimension of vectors Ψ̂ and Θ̂ equal
to dimension of vectors Ψ and Θ in (2). Therefore, define
the fuzzy logic control law as,

u = Ψ̂ TΘ̂ (14)

Since the regression vector Ψ is assumed to unknown and
only an approximation Ψ̂ is possible with the adaptive fuzzy
logic controller, the error dynamics Eq. (5) can be written as,

ėn + knen + · · · + k1e1 = b̂ε (15)

Therefore, the adaptive fuzzy logic closed-loop dynamics
can also be written in a state-space form as in (6), where
U ∈ R = ε is the state-space input and ε = ̂TΘ̂ −Ψ TΘ .

Theorem 3 Consider a nonlinear system in the form (1)with
the control law (14). The closed-loop system’s stability is
achieved with the following adaptation law:

˙̂
Θ = −�Ψ̂ E1 (16)

where E1 = BTP E and � = diag(γ1, . . . , γn) with γi is a
positive constant. P is a symmetric positive definite matrix
chosen to satisfy the Riccati equation (8).

Proof Choose the following Lyapunov candidate:

V = 1

2
ETP E + 1

2
Θ̃T�−1Θ̃ (17)

Taking the derivative of V:

V̇ = 1

2
ĖTP E + 1

2
ETP Ė + Θ̃T�−1 ˙̂

Θ (18)

Substitute Ė :

V̇ = −1

2
ETQE + εTE1 + Θ̃T�−1 ˙̂

Θ (19)
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where E1 = BTP E . Add and subtract ̂TΘ from ε =
̂TΘ̂ − Ψ TΘ ,

ε = ̂TΘ − ̂TΘ̂ + Ψ TΘ − Ψ̂ TΘ (20)

Therefore, ε = Ψ̂ TΘ̃ + Ψ̃ TΘ . Substitute ε in (19):

V̇ = −1

2
ETQE + Ψ̃ TΘ E1 + Θ̃T

[
Ψ̂ E1 + �−1 ˙̂

Θ
]

(21)

Setting the adaptation law as ˙̂
Θ = −�Ψ̂ E1 implies that,

V̇ = −1

2
ETQE + Ψ̃ TΘ E1 (22)

Therefore,

V̇ ≤ −1

2
ETQE + |Ψ̃ TΘ E1| (23)

Henceforth, it is possible to choose the gain vector k so
that V̇ ≤ 0, ∀E �= 0. Then, the system is stable in the sense
of Lyapunov. The neighborhood of E = 0 is a region defined
by the fuzzy logic approximation error Ψ̃ and gets smaller
as Ψ̃ → 0.

The adaptive fuzzy logic algorithm is shown in Algo-
rithm 1.

Algorithm 1: Adaptive fuzzy logic

begin
repeat

Step 1: Define/refine the input membership functions and
the fuzzy rules.

Step 2: Initialize the vector of parameters Θ̂ to small
random values.
repeat

Step 3: Calculate the error e.
Step 4: Evaluate the control law u in (14).
Step 5: Compute the parameter vector update, i.e.,

�Θ̂ = ˙̂
Θ from (16).

Step 6: Update the vector of parameters using,
Θ̂(t + 1) = Θ̂(t) + �Θ̂ .

until stop request is received.
until satisfactory performance is achieved.

4 Numeric Example and Discussion

Inverted pendulums have been abundantly utilized to vali-
date various kinds of control systems. They are viewed as a
well-established point of comparison for several control sys-
tems (El-Hawwary et al. 2006; Uyanik et al. 2015; Phan and
Gale 2007;Muralidharan andMahindrakar 2014;Hsueh et al.

x1

Fig. 2 Inverted pendulum system

2010; Yang et al. 2013). The hard nonlinearities combined
with external disturbances and varying operating conditions
makes the control of such complex nonlinear unstable sys-
tems extremely challenging. These systems are single-input
multiple-output (SIMO) and therefore, are underactuated
since only a single control input is available to control
both the pendulum’s angle and the cart’s motion. Moreover,
inverted pendulums are driven by highly nonlinear dynamics
and are unstable non-minimum phase systems. The inverted
pendulum system, shown in Fig. 2, is used as an illustra-
tive example to validate the proposed control scheme. The
pendulum is mounted on a cart that uses a dc servomotor
in order to move along a track (Phan and Gale 2007; Hsueh
et al. 2010). Based on Euler–Lagrange equation, the sys-
tem’s dynamics can be written in a general form of (1) as
described in (24) (Pan et al. 2011), where x1 and x2 are the
angular position and velocity of the pendulum, respectively,
mc is the mass of the cart, mp is the mass of the pole, L is the
length of the pole, g = 9.8 m/s2 is the gravitational constant
acceleration, u is the force applied to the cart, and d is the
disturbance. The control aim is to design a control law u to
make the inverted pendulum position x1 and velocity x2 track
their pre-defined time-dependent trajectories in the presence
of external disturbances. The inverted pendulum parameters,
mc, mp, L , and g are assumed to be unknown.

ẋ1 = x2

ẋ2 =
(

gsin(x1) − mpLx2cos(x1)sin(x1)

mc + mp

)

×
/ (

4L

3
− mpLcos2(x1)

mc + mp

)

+ cos(x1)

mc + mp

/ (
4L

3
− mpLcos2(x1)

mc + mp

)
u + d (24)

Assumption 1 The system’s body is considered symmetric
along the y axis.
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Fig. 4 Adaptive fuzzy logic control scheme

Coulomb, viscous, and static friction elements are con-
sidered in the following nonlinear a priori unknown friction
model to increase the complexity of system (24) (Armstrong
and de Wit 1996),

F = Fc sign(σ̇ ) + Fv σ̇ + Fs sign(σ̇ ) e−(σ̇ /ηs)
2

(25)

where Fc, Fv and Fs are the Coulomb, viscous and static
frictionparameters, respectively,σ is a displacement,ηs is the
rate of decay of the static friction term. This friction model is
used to represent friction at the hinge and the wheels (Fig. 3).

Let us define the tracking errors as e1 = x1 − x∗
1 and

e2 = x2 − x∗
2 . The resultant control scheme is depicted in

Fig. 4. Given the tracking error e1 and its derivative e2, the
FLS produces a control force u. The rules are defined such as
the control action is large when both errors move away from
their respective nominal zero-valued surfaces. This control
output is gradually decreased for a smoother approach as
input signals approach the surfaces. Then, it is set to zero
once the error signals are on their nominal surfaces. Thisway,
the FLS defines an equilibrium on the nominal zero-valued
surfaces of the input signals and forces the system’s errors
e1 and e2 to approach zero. In this demonstration, triangular
membership functions are used for their low computational
requirements (Fig. 5). The fuzzy rules are described in
Table 1, which can be adjusted to get the best control per-
formance. As such, an offline empirical study is performed
to determine the optimal input membership function parame-
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1

e1

 NL  NS  Z  PS  PL

−1 −0.5 0 0.5 1

0

0.5

1

e2

 NL  NS  Z  PS  PL

Fig. 5 Fuzzy logic input membership functions

Table 1 Fuzzy logic rules e1

e2 NL NS Z PS PL

PL Z PL PL PL PL

PS NL Z PS PL PL

Z NL NS Z PS PL

NS NL NL NS Z PL

NL NL NL NL NL Z

e1 and e2 are represented by 5
fuzzy sets: positive large (PL),
positive small (PS), zero (Z), neg-
ative small (NS), and negative
large (NL)

Table 2 Systems’s parameters Parameter Value

Cart mass (kg) mc = 1

Pole mass (kg) mp = 0.1

Pole length (m) L = 0.5

ters and the fuzzy inference engine rules. The control scheme
aims the stabilization of the inverted pendulum. However, if
the system’s initial condition is irrecoverable, e.g., rest posi-
tion of the inverted pendulum, a swing-up strategy is needed
to drive the pendulum to the upright region.

To demonstrate the capabilities of the proposed con-
trol method, the inverted pendulum dynamics in (24) and
Algorithm 1 are implemented in MATLAB/Simulink. The
reference trajectory is taken as π/6 sin(t). A simulation is
performed to study the proposed controller’s response tak-
ing into account the angular position and velocity, tracking
errors, and the control signal u. Table 2 outlines the sys-

123



734 J Control Autom Electr Syst (2017) 28:727–736

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

A
n

g
u

la
r 

p
o

si
ti

o
n

 (
ra

d
) Desired

Actual

(a)

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

A
n

g
u

la
r 

ve
lo

ci
ty

 (
ra

d
/s

) Desired
Actual

(b)

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

T
ra

ck
in

g
 e

rr
o

rs e1  (rad)
e2  (rad/s)

(c)

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

-10

-5

0

5

10

C
o

n
tr

o
l i

n
p

u
t 

u

(d)

Fig. 6 System response: a angular position;b angular velocity; c track-
ing errors; and d control input u

tem’s parameters along with their respective values that are
used for the simulation of the system’s dynamics. The ini-
tial state x(0) is set to [π/12, 0] to evaluate the controller’s
convergence properties from a nonzero initial position. The
vector of parameters estimate Θ̂ is set to small random val-
ues. The benefit of the use of the adaptive fuzzy logic control

scheme can be clearly observed in (Fig. 6) by the tracking
performance. The system starts with a nonzero initial con-
dition, which causes an initial tracking error. The proposed
controller achieves fast and precise convergence while pro-
viding a smooth control signal. It is important to note how
easily the friction nonlinearities were compensated by the
adaptive fuzzy logic controller.

5 Conclusion

In this paper, stability analysis is investigated for adaptive
FLSs. The proposed scheme makes use of adaptive control
theory to propose aLyapunov-based adaptation law for FLSs.
For clarity, stability analysis is presented first for an adap-
tive controller. Then, these findings are extended to adaptive
FLSs.Moreover, a numeric illustrative example shows imple-
mentation details on an inverted pendulum system with
nonlinear friction. The proposed adaptive fuzzy control
strategy is capable of coping with structured/unstructured
uncertainties. Henceforth, it can be considered as a long-
lasting alternative for systems subjected to uncertainties and
external disturbances. Unlike other adaptive FLSs, no a priori
offline training or parameter initialization is required. Results
show good performance in tracking convergence and preci-
sion. Furthermore, the adaptive FLS capabilities are a key in
obtaining the control accuracy needed for high-performance
applications.
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