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Abstract Operational research has made meaningful con-
tributions to practical forecasting in organizations. An area of
substantial activity has been in nonlinear modeling. Based on
Particle SwarmOptimization, we discuss a nonlinear method
where a self-adaptive approach, named as Particle Swarm
Optimization with aging and weakening factors, was applied
to training a Focused Time Delay Neural Network. Three
freely available benchmark datasets were used to demon-
strate the features of the proposed approach compared to
the Backpropagation algorithm, Differential Evolution and
the Particle Swarm Optimization method when applied for
training the artificial neural network. Even acknowledging
that the effort in comparing methods across multiple empir-
ical datasets is certainly substantial, the proposed algorithm
was used to produce 30 min, 1, 3 and 6 h ahead predictions
of wind speed at one site in Brazil. The use of the proposed
algorithm goes further than only training the artificial neu-
ral network, but also searching the best number of hidden
neurons and number of lags. The results have shown that the
modified Particle Swarm Optimization algorithm obtained
better results in all predictions horizons, and the use of it has
remarkably reduced the training time.
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1 Introduction

Energy markets demand higher levels of quality and ser-
vice continuity from the energy suppliers, in such a way
that decision tools became a major instrument to meet those
demands. Applications in operation areas have proved partic-
ularly important, including the management of intermittent
renewable sources and demand, supply chain planning, long-
term scenario planning. Forecasting to support operations
is the application area where operational research first con-
tributed, and it remains important.

Wind energy continues to gain support throughout the
world.Many countries have devotedmuch attention to the use
of renewable energy sources to meet the growing of energy
demand and ensure sustainable development (GWEC 2017).
Wind generation is characterized by the variability in produc-
tion and restricted control. Managing the variability of wind
power generation is a key factor associated with the optimum
integration of wind plants with the electrical grid network
(MaoandShaoshuai 2016; Ssekulima et al. 2016).As a result,
the reliable and economical operation of power systems with
high wind penetration requires wind power forecasts.

A review of the state of the art in short-term wind power
forecasting is available in Giebel et al. (2011). Of particular
relevance to this work is the conclusion that for forecast hori-
zons of less than approximately six hours, statistical methods
using local information are superior to physical models.

Statistical methods used for wind speed and power predic-
tion usually are based on linear models despite the nonlinear
nature of the wind. For this reason, we investigate a class of
machine learning algorithms called artificial neural networks
(ANN) which allow the processing of nonlinear features
(Liu et al. 2015). ANN are models inspired by biological
neural networks and generally are presented as systems of
interconnected ‘neurons’ which exchangemessages between
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each other. The connections have numeric weights (synap-
tic weights) that can be tuned based on experience, making
neural nets adaptive to inputs and capable of learning.

Optimal selection of ANN parameters is an important
open problem in the learning machine literature. Usually the
selection is done through trial and error (TE) method, where
the user manipulate variables in an attempt to sort through
possibilities that may result in success. The method is costly
and does not follow a standard process, making it strongly
influenced by the user choices. To tackle this problem, we
can use Particle Swarm Optimization (PSO) (Kennedy and
Eberhart 1995), which does not differentiate between the
variables that it optimizes. Therefore, it is possible to apply
PSO to optimize all parameters of an ANN such as the num-
ber of layers, number of neurons in the input, hidden and
output layer, synaptic weights, among others. However, as
the number of parameter increases, PSO demands greater
computational cost and has some drawbacks such as the local
optimum and inactive particles.

The purpose of this article is to reach better or similar
estimations to those obtained by models that use PSO, but
with a significant reduction in the required computational
cost. Therefore, we focus on the effect of Life Expectancy
(LE) on the cultural diversity of a social animal colony. The
LE is a statistical measure of how long an organism may
live, and at a given age, life is expected to cease. LE is
based on many features, e.g., the year of birth, current age
and other demographic factors. Here we propose a simpli-
fied version of this concept, based on two constants called
aging factor (AF) and weakening factor (WF). In nature,
colony leaders are constantly challenged by new individu-
als. In this way, the community is always led by a strong
leader. This paper transplants the above idea from nature
to PSO and proposes the PSO with aging and weakening
factors (PSO-AWF) algorithm. The proposed approach is
compared to the Backpropagation (BP), Differential Evo-
lution (DE) and the PSO method when applied for training
the ANN.

The contributions of this paper are to: (1) propose a new
lifespan controller that mimics a simplified version of the
LE theory; (2) propose a newmodified PSO algorithm called
PSO-AWF that uses this new lifespan controller; (3) evaluate
the effect of the lifespan controller applied to the PSO; (4)
study of the search behavior of the proposed algorithm, PSO-
AWF, as a learning method for an ANN solving regression
problems.

The remainder of this paper is organized as follows. In
Sect. 2, the problem is described in detail followed by a back-
ground review. The modeling of the proposed technique is
presented in Sect. 3. Case studies are examined in Sect. 4 to
validate the proposed model. In particular, the datasets are
introduced in Sect. 4.1. In Sect. 4.2, for the sake of repro-
ducibility of this paper, the parameter values are listed. The

results and analysis of the PSO-AWF are shown in Sect. 4.3.
Finally, the conclusions are given in Sect. 5.

2 Problem Formulation and Background Review

The prediction problem is outlined as follows, whereby the
purpose of a potentially nonlinear function f (·) is to look Δ

samples ahead in time, estimating ŷΔ|t ∈ �n (or �n) from
the input vector xt ∈ �m (or �m) containing time data com-
prising measurements yt−Δ, yt−Δ−1, . . .. The predictor is
written ŷΔ|t = f (xt ). The aim in the context of a prediction
problem is to find an estimate f̂ (·) of f (·), which minimizes
the estimation error in the mean squared sense, i.e.,

MSEΔ = 1

T

T∑

i=1

(
ŷΔ|t − yt

)2
. (1)

The linear approximation of this problem is given by
f̂ (xt ) = Axt , where A ∈ �n×m (or �n×m) is a coefficient
matrix whose entries are to be determined. Many estimation
schemes based on this approximation have been studied.

Alternatively, we can state the approximation in terms of a
matrix of synaptic weights of a neural network that are com-
puted by learning algorithms. One example of those learning
algorithms is the BP. Williams and Hinton (1986) described
several cases where BP works faster than earlier learning
approaches, making it possible to use ANN to solve prob-
lems which had previously been insoluble. Today, the BP
algorithm is considered a reference.

In this paper, we present an algorithm for short-term
forecasting based on a Multilayer Perceptron (MLP) net-
work with unit delays, named Focused Time Delay Neural
Network (FTDNN). The FTDNN is a multilayer network
without feedback, whose synaptic weights are adjusted in
accordance with the conventional BP algorithm. As a typical
feed-forward neural network, the signal travels through the
FTDNN in only one direction, from the input to the output,
whereby the neurons of the same layer are not connected.
However, Time Delay Neural Networks (TDNN) are tempo-
ral networks that, along with the actual input x(t), have a line
of unit delays (LAG) inserted in the input layer that repre-
sent the network memory, x(t − 1), x(t − 2),…,x(t −LAG)

(Engelbrecht 2007).
Although the BP is a consolidated learning technique

(Chang et al. 2012; Mao et al. 2016), it has been verified
that the application of DE and PSO as a learning algorithm is
very efficient (Arce et al. 2016; Raza et al. 2016). Because of
this, there has been interest in investigating the application
of these tools in dynamic environments.

Proposed by Storn and Price (1997), DE is a stochastic,
population-based search strategy for solving a wide variety
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of optimization problems. The optimization performance of
theDEalgorithmnot only depends on the choice of three con-
trol parameters (i.e., mutation control parameter F, crossover
control parameter CR and population size NP), but also on
the choice of trial vector generation strategies (i.e., mutation
and crossover strategies). A survey of the state of the art can
be found in Das and Suganthan (2011).

PSO is an optimization technique inspired by the social
cooperative and competitive behavior of bird flocking and
fish schooling. PSO can be used to resolve nonlinear and
multimodal problems, thereby being able to make different
searches simultaneously. The PSO maintains a cloud of par-
ticles, in which each one represents a possible solution. The
particles flow through a multidimensional space, where the
position of each particle is adjusted in accordance with its
own experience and those of its neighborhood.

Usually the initial speed v of each particle is zero or a ran-
domvalue.Wedescribe the new speed vi (t+1) that drives the
optimization process, and is used as a tool of communication
between all particles, as follows.

vi (t + 1) = vi (t) + C1R1(Pbesti (t) − xi (t))

+C2R2(Gbest (t) − xi (t)), (2)

where C1 and C2 are, respectively, the social and cognitive
constants, the best position of each particle is Pbesti , the
best position between all particles isGbest (t), R1 and R2 are
random numbers between [0,1]. The new position xi (t + 1)
is computed as

xi (t + 1) = xi (t) + vi (t + 1). (3)

All particles would displace themselves up to an optimal
point. During the search, if the best solution found (Gbest)
is not the optimum solution, one of the particles could find a
better solution and become the new Gbest . This cycle con-
tinues until the global optimum solution is found or a user
restriction is encountered.

Innumerous PSO variants have attempted to eliminate
some characteristics of the classical algorithm, such as inac-
tive particles, rapid convergence and the risk of local optima
clustering (Zhang et al. 2015). The existing PSO variants
can be mainly classified into the following four categories.
The first category of PSO variants achieves improvements by
adjusting parameter configurations. Shi and Eberhart (1998)
first introduced a new parameter, namely the inertia weight
(ω), to influence convergence. The velocity update rule is
thus changed to

vi (t + 1) = ωvi (t) + C1R1(Pbesti (t) − xi (t))

+C2R2(Gbest (t) − xi (t)). (4)

Linear decrease of ω was proposed by Shi and Eberhart
(1999). In addition, the settings for other parameters have
been tested. Further, by merely tuning parameters, particles
are still attracted by Gbest . If Gbest is trapped in a local
optimum, the problem of premature convergence remains.

The second category aims to increase diversity by defin-
ing neighborhood topologies. Kennedy and Mendes (2002)
introduces the local version of PSO. The velocity update rule
in Eq. 4 replaces Gbest for Lbest , which is the best position
found by a particle in its neighborhood defined by a pre-given
topology. To improve the robustness of PSO, structures have
also been proposed by Beheshti et al. (2014) and Lim and
Isa (2014). Chen et al. (2013) proposed an adaptive lifes-
pan control of the leader of the swarm. It is characterized
by assigning the leader with a growing age and a lifespan,
and allowing the other individuals to challenge leadership
when the leader becomes aged. In general, by introducing
neighborhood structures, the PSO variants have an enhanced
ability to prevent premature convergence. However, because
the attraction of Gbest is weakened and other particles can
also influence the adjustments of velocities and positions,
this kind of PSO variant converges at a much lower speed.

The third category introduces multiswarm techniques to
improve performance of PSO. The original PSOworks better
in simple and low-dimensional search space. Van den Bergh
andEngelbrecht (2004) decomposed the search space anduti-
lized multiple swarms to optimize different components of a
solution vector cooperatively. In the Parallel Comprehensive
Learning Particle Swarm Optimizer (PCLPSO) proposed by
Åaban Glc and Kodaz (2015), multiple swarms based on the
master–slave paradigm works cooperatively or concurrently.
Liu et al. (2017) proposed a new Coevolutionary technique-
based Multiswarm Particle Swarm Optimizer for Dynamic
Multiobjective Optimization Problems (CMPSODMO) for
the rapidly changing environments. The number of the
swarms is determined by the number of the objective func-
tions, which means that each function corresponds to a
swarm. Usually, in PSO variants with multiple subpopula-
tions, the subpopulations can be treated as a special type of
neighborhood structure. In this sense, this category of PSO
variants also faces the problem of slower convergence.

The fourth category is PSO hybridized with auxiliary
search techniques to enhance performance. Various types of
evolutionary computation paradigms have been used for this,
includingGeneticAlgorithms (Garg 2016), Differential Evo-
lution (Mao et al. 2017), Ant Colony Optimization (Elloumi
et al. 2014), and others. Overall, integrating PSO with other
optimization techniques is effective to improve performance,
but the disadvantage is that the hybrid algorithms are usually
much more complicated than the original PSO.

From the above discussions, it can be seen that preventing
premature convergence while retaining the fast-converging
feature of PSO is still a challenging task in PSO research.
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Most variants achieve the preservation of population diver-
sity at the cost of slow convergence or complicated algo-
rithmic structures. PSO-AWFavoids premature convergence,
reducing the speed of convergence and maintaining the sim-
plicity of the structure of PSO. PSO-AWF has the ability
to jump out of local optima. Different from the local ver-
sionPSOvariants, however, PSO-AWFpreserves the leader’s
information. Only when the leader fails to lead, do the parti-
cles diverge from the current leader’s attraction. In this way,
PSO-AWF can keep the fast-converging feature of PSO.

3 Particle Swarm Optimization with Aging and
Weakening Factors

In social animal colonies, aging facilitates a leader to be
replaced by a younger individual and hence likely creates
more opportunities for diversity and improvements. Inspired
by this phenomenon, this paper proposes a PSO whereby
other bio-inspired characteristics are adopted, the aging and
weakening process.

The phenomenon of aging has attracted the attention of
biologists for approximately 150 years. As early as the 1880s,
Weismann (1882) first argued that aging is necessary for
evolution as it provides a mechanism to make room for
the development of the next generation. Goldsmith (2006)
advocated that aging is able to increase genetic diversity and
therefore is helpful for the evolution of a species. An optimal
lifespan plays an important role in improving the effective-
ness of evolution. With recent development of the aging
theories (Goldsmith 2004, 2006; Gavrilov and Gavrilova
2002), it would be interesting and worthwhile studying fur-
ther the effect of aging on more evolutionary computation
techniques.

In conventional PSO, the suitability of individuals is deter-
mined by their objective functional value only. In natural
systems, age of an individual also plays a key role to deter-
mine its suitability. The essence of PSO-AWF is to provide a
mechanism for promoting a suitable leader to lead the swarm
through aging. Since all particles are attracted byGbest in the
original PSO, we can viewGbest as the leader of the swarm.
The misleading effect of a leader positioned at a local opti-
mum point is the main cause of premature convergence in the
original PSO. To weaken such an effect, PSO-AWF assigns
the entire swarmwith a lifespan. Similar to the original PSO,
particles still learn from the leader to update velocities and
positions.However, if the lifespanof the particle is exhausted,
new particles emerge to challenge and claim the leadership.
In this way, the aging mechanism provides opportunities for
other particles to lead the swarm and thus brings in diversity.

Aging is not the only feature that composes the LE of
an individual. Here WF represents the other features from
LE. WF plays a role whenever the particle (xi ) is not able

to find a new result (Pbesti (t)) better than the previous one
(Pbesti (t − 1)). This way, even particles with the same age
will have different LE and will cease to exist in different
moments. The entirety of this section is summarized by the
steps given as follows.

1. Initialization The initial positions (xi (t)) of all particles
are generated randomly within the n-dimensional search
space, with velocities (vi (t)) initialized to 0. The best par-
ticle among the swarm is selected as the leader (Gbest).
The Particle Age (PA) of each particle is initialized to PA
= 0;

2. Velocity andPositionUpdatingEvery particle follows the
velocity update rule in Eq. 2 and the position update rule
in Eq. 3 to adjust its velocity and position;

3. Updating Pbest and Gbest For all particles, if the newly
generated position xi (t) is better than Pbesti , then xi (t)
becomes the new Pbesti . In addition, if the best position
is better than the Gbest , then the Gbest is updated to
be the best position. In this sense, this step is similar to
that of the conventional PSO, but it represents the best
solutions generated by particles during their lifetime;

4. Lifespan Control After the positions of all particles are
updated, the lifespans are adjusted by a lifespan con-
troller. The PAi of the Gbest is set to zero. The rest of
the swarm will follow the rule
if Fitnessi is worse than Pbesti then
PAi (t) = PAi (t − 1) + AF + WF else
PAi (t) = PAi (t − 1) + AF
end if

where AF and WF are integers defined by the user. If the
lifespan is exhausted, i.e., PAi >= LE, then delete the
respective particle;

5. Generating Challengers When Generation == Genera-
tion.max, a new swarm will be generated as defined in
Step 1, and it is used to challenge Gbest ;

6. Terminal Condition Check If the number of iterations
is larger than the predefined maximum number, the algo-
rithm terminates. Otherwise, go to Step 2 for a new round
of iteration.

Note that PAi is incremented each iteration by the AF
that reflects the particle time span, whereas theWF relates to
the fitness of the particle. Therefore, the problem of inactive
particles or those that may not be contributing to the search
can be minimized. This way the number of particles varies
during the search, reducing the computational cost.

4 Case Study

In this section, the search behavior of PSO-AWF in solv-
ing regression problems is studied using experiments. The
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effects of the lifespan controller will be analyzed. In partic-
ular, answers to the following two questions will be sought:
(1) how PSO-AWF works on regression problems, and (2)
how the parameters of the FTDNN model are best set.

4.1 The Datasets

This section introduces the dataset used in the experiments:
three benchmark datasets, named Box–Jenkins Gas Furnace
(BJ), Mackey–Glass Chaotic Time Series (MG) and Data
set A: Laser Generated Data (LGD), and the Wind dataset
(WS). Theywere used to test the performance of the proposed
PSO-AWF. The benchmark time series are widely used as
benchmark datasets in testing the performance of ANN.

The BJ dataset was recorded from the combustion process
of a methane air mixture (Box and Jenkins 1970; Hyn-
dman 2017). The original data included 296 samples of
the CO2 concentration output y(t) and gas flow rate input
u(t). The amount of data used during the FTDNN learning
process (training data) was 140 samples, and another 150
were defined as a testing set used to verify the training effi-
ciency. The MG dataset is generated from the MackeyGlass
time delay ordinary differential equation (Mackey and Glass
1977). The training data consist of 450 samples, and 500
were used as a test set. A detailed description of the LGD
dataset can be found in Huebner et al. (1989). The training
data consist of 400 samples, and another 400 as a test set.
The number of samples used for the learning and test phases
was chosen based on Yeh (2013) as well as other parameters
that will be presented in the next section.

The WS features were measured at a 100 m height. The
tower was located in the state of Pernambuco, Brazil. The
available data are the averages of wind speed (v), wind direc-
tion (D), pressure (p), and temperature (T ), recorded every
10 min from 17/08/2009 to 24/03/2013. Different from the
benchmark datasets that are freely available and well known,
the WS dataset is provided by a private company. There are
no inconsistent data such as negative values or outliers, and
independent of the year, its minimum and maximum values
are close, as well as their distribution. Wind turbines usu-
ally start generating at wind speeds in the range of 3.0 to 4.0
m/s. In the evaluated site, approximately 95% of the time is
favorable for wind power generation.

4.2 Parameter Settings

All benchmark datasets were used as input of a FTDNN to
forecast the next step, with an input composed by: bias, x(t),
x(t − 1), x(t − 2), and x(t − 3). The WS dataset was used
as input of a FTDNN to forecast 30 min, 1, 3 and 6 h ahead,
with an input composed by: bias, x(t),…, x(t − L AG). The
number of LAG was defined as 1, 3, 5 or 7 for the TE and
LAG ∈ Z|1 ≤LAG≤ 7 when PSO-AWF was used to define

this parameter. All the datasets were normalized between 0.1
and 0.9 by cause of the adopted activation function, a sigmoid
logistic.

For the BJ, MG and LGD datasets, the same set of values
was used for the parameters: Number of generations (250,
500, 750 and 1000) and the Number of Neurons in the Hid-
den Layer (NNHL) (1, 2, 3, 4, and 5). Each combination
between the number of generations and NNHL was repeated
50 times, generating a total of 12000 FTDNN, 4000 FTDNN
for each training method. The PSO and PSO-AWF used the
same number of particles (120). For the PSO-AWF parame-
ters: LE was 150, AF was 1, and WF was 5. A new swarm
with 120 particles was generated every 150 iterations.

As for the WS dataset, the number of generations was
defined as 25. TheNNHLwas set as 3, 5, 7 and 11when using
TE and NNHL ∈ Z|3 ≤NNHL≤ 11 using PSO-AWF. Each
combination between the number of generations and NNHL
was repeated twenty times with BP and twice using DE, PSO
and PSO-AWF, generating a total of 39936 FTDNN, from
which there were 30720 (BP), 3072 (DE), 3072 (PSO) and
3072 (PSO-AWF). The number of particles was the same
(110) for the PSO and PSO-AWF. For the PSO-AWF param-
eters, the LEwas 10, AF was 1, andWFwas 2. A new swarm
with 60 particles was generated every 10 iterations.

For all the datasets, the BP learning rate was 0.7 and the
initial synaptic weights were random values between −10
and 10. The PSO and PSO-AWF inertia weight was linearly
decreased from 0.9 to 0.5, C1 = C2 = 1, and the initial
velocities were zero. DE/rand/1/bin with F = 0.5 ∗ (1 +
rand()), CR linear increased between 0.5 and 1.0, and the
NP was the same used by the PSO and PSO-AWF.

The normalization range, the number of generations, the
BP learning rate, and the initial velocities were chosen based
on Yeh (2013), while the other parameters were randomly
chosen under the assumption that the user has no expertise
to set these parameters and as such they will be given in the
search for better results.

4.3 Tests Results

Three test cases, assigned as TC1, TC2 and TC3, were per-
formed with the time series as follows.

TC1 Test all learning methods on the three benchmark
datasets based on the FTDNN by trying different num-
bers of generations (250, 500, 750 or 1000) andNNHL
(1, 2, 3, 4 or 5) chosen by TE;

TC2 Test all learning methods on the WS dataset based on
the FTDNN by trying different numbers of NNHL (3,
5, 7 or 11) and LAG (1, 3, 5 or 7) chosen by TE;

TC3 Test the PSO-AWF algorithm on theWS dataset based
on the FTDNN by trying different numbers of NNHL
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Fig. 1 Taylor diagram displaying a statistical comparison with obser-
vations of three model’s estimates of the next step of the LGD time
series (Color figure online)

∈ Z|3 ≤NNHL≤ 11, and LAG ∈ Z|1 ≤LAG≤ 7
chosen by the PSO-AWF.

The results obtained fromTC1were used to verifywhether
the PSO-AWF produces results faster with the same behavior
as thePSO.On the other hand, the results fromTC2were used
to determine the best ANN structure using the WS dataset,
and finally, the results from TC3 were used to verify whether
there is computational cost reduction when the PSO-AWF
is used not only as a learning method but also to define the
NNHL and LAG when compared to the TE results.

All tests results were evaluated by different measures that
include the testing MSE (represented by MSE), RMSE, cor-
relation coefficient, run time (represented by t) in seconds,
and there were statistics in each category that included the
average and standard deviation of the estimations.

4.3.1 Test Case 1

As a matter of space, only the detailed evaluation for the
benchmark LGD dataset is presented next. A Taylor diagram
(Taylor 2000) provides amethod of graphically summarizing
how closely a predicted pattern matches the observed data,
quantified in terms of their correlation, centered Root Mean
Square Difference (RMSD) error and the amplitude of their
variations represented by their standard deviations.

Figure 1 shows a Taylor diagram which summarizes the
relative skill with which regression models estimate the next
step of the LGD time series. Statistics for four models were
computed, and a colored dot was assigned to each model

(BP, DE, PSO and PSO-AWF) considered. The position of
each dot appearing on the plot quantifies how closely that
model’s simulated pattern matches observations. Consider
BP model, for example. Its pattern correlation with obser-
vations is about 0.83 (blue lines). The RMSD between the
simulated and observed patterns is proportional to the dis-
tance to the point on the x-axis identified as measures. The
green contours indicate the RMSD values, and it can be seen
that in the case of BP model the centered RMS error is about
0.08. The standard deviation of the simulated pattern is pro-
portional to the radial distance from the origin. ForBPmodel,
the standard deviation of the simulated data is greater than
the observed standard deviation.

The relative merits of various models can be inferred from
Fig. 1. Simulated patterns that agree well with observations
will lay nearest the point marked measures on the x-axis.
These models will have relatively high correlation and low
RMSD error. Models laying on the same black dashed arc
of the measure point will have the correct standard deviation
(which indicates that the pattern variations are of the right
amplitude). In Fig. 1, it can be seen that PSO and PSO-AWF
models generally agree best with observations, each with
about the same RMSD error and correlation with observa-
tions. However, both models have a slightly higher standard
deviation than the observed.

BP model has a low pattern correlation, resulting in a rel-
atively large centered RMSD error. DE model has a slightly
better performance than BP but still with a low pattern cor-
relation when compared with PSO and PSO-AWF. Note that
although PSO and PSO-AWF models have about the same
correlation with observations, this results in a smaller RMS
error.

Now that we have a general view of each model, and the
next graphic indicates the error. The box plot (Tukey 1977) is
a standardized method of displaying the distribution of data
based on the following information: minimum, first quartile,
median, third quartile, and maximum. In the simplest box
plot, the central rectangle spans the first quartile to the third
quartile (the interquartile range or IQR).A segment inside the
rectangle shows the median, and whiskers above and below
the box show the locations of the minimum and maximum
values.

Figure 2 shows a box plot that summarizes some char-
acteristics of the distribution produced by each regression
model that estimates the next step of the LGD time series.
BP model has the largest minimum and maximum values,
respectively, presented as the lower and upper whiskers. The
outliers (blue dots) are spread in a wide range. The four sec-
tions of the box plot are uneven in size. This shows that the
model has similar estimations at certain parts of the scale,
but in other parts of it there is a high variability in the esti-
mations. DE model has the smallest range, but the quartiles
are the largest. PSO has a distribution that the estimations
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Fig. 2 Box plot displaying a comparison of estimation errors of the
three forecast models for the next step of the LGD time series (Color
figure online)

are varied along of the most negative quartile group. PSO-
AWF model has the distribution with close median to zero
and the smallest quartiles. Compared to the lower whisker,
has a longer upper whisker which means that the estimations
are varied along of the most positive quartile group, and very
similar in the least positive quartile group.

Figure 3 shows a diagram which summarizes the rela-
tionship between maximum generation value with the MSE
(bars) and run time (lines) withwhich regressionmodels esti-
mate the next step of the LGD time series. As expected, the
run time is directly proportional to the number of genera-
tions; as we increase the number of generations (250, 500,
750, 1000), the run time also increases. The same behavior
was found in the other two datasets. DE, PSO and PSO-
AWF did not present any kind of trend between theMSE and
the number of generations. However, BP decreased the MSE
value as the number of generations increased.

To avoid countless repetitions of Figs 1, 2, and 3, Table
1 summarizes the computational results of the four training
methods (BP, DE, PSO and PSO-AWF) using a FTDNN to
forecast data from the BJ, MG and LGD datasets. In gen-
eral, PSO-AWF outperforms PSO algorithms in CPU time,
with an approximate MSE value for all three datasets fore-
casting with the FTDNN. BP has a better CPU time in all
datasets; however, it is less efficient than the PSO and PSO-
AWF algorithms, as the forecast is concerned. DE has a cpu
time varying between the time ranges of PSO and PSO-AWF;
however, it is less efficient than the other algorithms.

4.3.2 Test Case 2

Figure 4 shows a diagramwhich summarizes the relationship
between training set size (10, 20 and 30%) with the MSE
(bars), and run time (lines) with which regression models

Fig. 3 Performance of the FTDNN under different maximum genera-
tion values

estimate the 30’, 1-, 3-, and 6-h step ahead of the WS time
series. As expected, the run time is directly proportional to
the training set size. DE, PSO and PSO-AWF did not present
any kind of trend between the MSE and training set size.
However, BP decreased the MSE value as training set size
increased. This figure shows only the results using the speed
(v) as input, but the same behavior was found with all the
possible combinations of the wind speed and the other three
features (D, p, T ).

Table 2 summarizes the relationship between the most
frequent training set size and the forecast horizon. The best
computational results of the training method (PSO-AWF)
using a FTDNN to forecast data from the WS dataset are
presented. As a matter of space, only the PSO-AWF results
are presented.

For 30’ ahead, the most frequent training set size was 10%
for BP and PSO and 30% for PSO-AWF. In sequence, for 1h
ahead, the most frequent training set was 20% for both BP
and PSO and 10% for PSO-AWF. Finally, for 3 and 6 h ahead,
the most frequent training set was 30% for BP and 10% for
both PSO and PSO-AWF. It can be observed that BP model
increased the size of the training set as the forecast horizon
was increased. On the other hand, the size of the training set
was the same (10%) in any forecasting horizon for PSO and
PSO-AWF, except at 1 h, and 30 min ahead, respectively.

Figure 5 shows a diagram which summarizes the relation-
ship between the input features of the WS dataset and the
MSE (bars). The red lines are simple regressions used to rep-
resent MSE trends. As a matter of space, only the graphic
results for 6 h ahead are presented. PSO and PSO-AWF pre-
sented roughly constant MSE results for forecast horizons of
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30’ and 1 h, regardless of the features used as inputs. The 3 h
ahead horizon presented a slight reduction in the MSE as the
number of features used as an input increased. Finally, for 6 h
the increase in the number of input features leads to the MSE
decreasing. As far as BP model is concerned, as the number
of input parameters increased, the MSE also increased for
the horizons of 30’ and 1 h. The 3 h ahead horizon showed
no consistent trends. Finally, for 6 h the increase in the num-
ber of input features led to the MSE decrease. In general, the
increase in the forecast horizon requires more information.

It was analyzed the influence of NNHL (3, 5, 7, 11) and
LAG (1, 3, 5, 7) on the MSE for the time horizon of 30’, for
each learning method (BP, PSO and PSO-AWF) with v as
input, and training set size of 10%. PSO-AWF presented the
same NNHL value for the three best results, and it was not
possible to identify any trends for BP and PSO.

4.3.3 Test Case 3

Taking into account the results obtained by trial and error in
Sect. 4.3.2, it is used v as the only input feature for 30’, 1 and
3 h forecast horizons, and combinations of v with the other
features are employed as inputs for 6 h ahead, with training
set size being always 10%.

It analyzed the influence of NNHL ∈ Z|3 ≤NNHL≤ 11
and LAG ∈ Z|1 ≤LAG≤ 7 on the MSE for each learning
method (BP,DE, PSOandPSO-AWF). PSO-AWFshows that
for 30’ and 1 h forecasts, LAG values tend to be small (often
one), and the opposite was found to 3 and 6 h horizons where
the most frequent value is 7. NNHL values for horizons of 1
and 6 h were high, and for 30’ and 3h it was not possible to
observe any trends.

For the best results of each set of features used as input,
the best result was using v, p and T . The behavior of the
results was similar to those obtained through TE in Fig. 5.
Regardless the sort of input set, the NNHL value was high
(often 8), and the most frequent LAG value was 7.

It was verified whether the use of PSO-AWF to define the
NNHL and LAG values produced better results than those
obtained through TE, for each kind of inputs available (v,
vp, vT , vD, vpT , vDp, vDT , vDpT ) and training methods
(BP, DE, PSO and PSO-AWF). PSO-AWF has obtained the
best result among all and was present in seven of the eight
best solutions, from which five of them have used the PSO-
AWF as learning method and to find the NNHL and LAG
values; the other 2, the PSO-AWF was used as a learning
method only.

For all forecast horizons, it was verified whether the use of
PSO-AWF to choose the NNHL and LAG values produced
better results than those obtained through TE. Even with the
search being wider (NNHL from 3, 5, 7 and 11 to NNHL
∈ Z|3 ≤NNHL≤ 11 and LAG from 1,3,5 and 7 to LAG
∈ Z|1 ≤LAG≤ 7); the restriction on the training set size
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Fig. 4 Relationship between the training set size with the MSE and run time

Table 2 Results of FTDNN among different training set sizes

Data Method 30’ 1 h 3 h 6 h

% t (s) MSE (10−5) % t (s) MSE (10−5) % t (s) MSE (10−5) % t (s) MSE (10−5)

v PSO-AWF 20 942 237 10 468 407 10 428 1066 10 443 1589

vp 10 474 235 10 477 405 10 475 1070 10 460 1619

vT 30 1421 238 10 478 389 10 460 929 10 459 1166

vD 20 964 242 20 974 409 10 460 1066 10 469 1614

vpT 30 1528 240 30 1544 408 20 972 982 30 1467 1202

vDp 30 1468 233 10 503 411 10 482 1077 10 485 1570

vDT 20 998 253 20 1024 406 20 980 1011 10 492 1180

vDpT 30 1592 256 10 526 403 20 1029 996 10 513 1139

Fig. 5 Relationship between the number of features used in the training set and the MSE

(always 10%); the reduction in rounds from 32 to 10; and for
the 30’, 1, and 3 h horizons the restriction of features used
as inputs (always only v), PSO-AWF obtained the best result
among all.

For a better understanding, the run time is no longer treated
as the average, but as the accumulated time by test cases 2
and 3. In TC2 where only v was considered as input and
the training set size 10%, we have for BP, DE, PSO and

PSO-AWF approximately 0.16, 8.04, 7.93 and 3.96 hours
by TE, respectively. Extrapolating this scenario to the same
conditions used by PSO-AWF, where NNHL = [3,11] and
LAG = [1,7], we have 0.64, 33.17, 31.24 and 15.6 hours. In
TC3, PSO-AWF spent about 12.85 hours to accomplish the
same task. A reduction of almost 58.9% when compared to
PSO, and 17.6% to PSO-AWFwhen using TE to find NNHL
and LAG.
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5 Conclusions

A new PSO variant called PSO-AWF has been developed.
PSO-AWF is characterized by assigning every particle in
the swarm with a growing age and a lifespan. The lifespan is
adaptively tuned according to the individual particles’ fitness.

On the benchmarks datasets BJ, MG and LGD, the pro-
posed PSO-AWF was found to outperform BP, DE and PSO
in terms of MSE and run time, respectively, for TE FTDNN.
The number of neurons of the TE FTDNN hidden layer
varied for each dataset. With theWS dataset, PSO-AWF pre-
sented a similar behavior as those foundwith the benchmarks
datasets. The effectiveness of PSO-AWFFTDNNwas always
superior to that of TE FTDNN (in the minimal MSE). The
computation time of PSO-AWF FTDNNwas also better than
that of TE FTDNN.

With regard to the benchmark datasets, it was observed
that in general it was easier for the particles to improve the
quality of the swarm. In this case, the particles had a long
lifespan and the search behavior of PSO-AWFwas very sim-
ilar to that of the original PSO. Therefore, the fast-converging
feature of the original PSO can be preserved. On the other
hand, as the WS dataset is concerned, when the particle
reaches a local optimum, it fails to improve the quality of
the swarm and ages quickly.

In both cases, new particles emerge to replace the old
ones and bring in diversity. Therefore, PSO-AWF has the
ability to escape from local optima and prevent premature
convergence. The difference between PSO and PSO-AWF
is how fast this happens, and this is directly related to the
dataset characteristics.

For future research, it is encouraged to investigate the
aging mechanism on other evolutionary computing tech-
niques. Also, the use of others datasets and functions
would provide more information about PSO-AWF behav-
ior. Investigation of the aging effects on ensemble machine
learning problems is also promising for future work. As these
problems require keeping multiple solutions concurrently,
incorporating the aging mechanismwith the multipopulation
or species-conserving techniques would be helpful.
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