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Abstract This paper deals with H∞ filtering problem
of linear discrete-time uncertain systems with finite fre-
quency input signals. The uncertain parameters are sup-
posed to reside in a polytope. By applying the gener-
alized Kalman–Yakubovich–Popov lemma, polynomially
parameter-dependentLyapunov function and somekeymatri-
ces to eliminate the product terms between the filter param-
eters and the Lyapunov matrices, an improved condition is
obtained for analyzing the H∞ performance of the filter-
ing error system. Then sufficient condition in terms of linear
matrix inequality is established for designing filters with a
guaranteed H∞ filtering performance level. Finally, a numer-
ical examples are used to demonstrate the effectiveness of the
proposed method.
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1 Introduction

Over the past decades, the filtering problem has been widely
studied and has found many practical applications in signal
processing and communication, particularly for the study of
practical electrical circuits systems. The H∞ filtering was
introduced for the first time inElsayed andGrimble (1989), in
which external noise signal is assumed to be energy bounded,
and the main objective is to minimize the H∞ norm from the
process noise to the estimation error. A great number of H∞
filtering results have been reported (Li and Fu 1977; Oliveira
et al. 1999; Benzaouia et al. 2016; Boukili et al. 2013),
and various approaches, such as the linear matrix inequal-
ities (LMIs) and parameter-dependent Lyapunov function,
were adopted in order to reduce the conservatism of the
problem. For instance, the polynomial equation approach
(Gao and Li 2014; Grimble and El Sayed 1990; El-Kasri
et al. 2013; De Souza et al. 2010; Boukili et al. 2016a; Gao
et al. 2008; Lacerda et al. 2011), the algebraic Riccati equa-
tion approach (Nagpal and Khargonekar 1991; Takaba and
Katayama 1996), the reduced order H∞ filtering problem
(Geromel and Levin 2006; Boukili et al. 2016b), the mixed
H∞/H2 filtering design problem (Li et al. 2016; Rotstein
et al. 1996; Qiu et al. 2008; Palhares and Peres 2001), the
robust H∞ filtering problem, and the H∞ filtering problem
for uncertain discrete-time systems (Duan et al. 2006; Chang
et al. 2015; Dong and Yang 2013) are among the results on
this topic.

The aforementioned techniques deal with the full fre-
quency domain, however, if the frequency ranges of noises
are known beforehand, for these case, designing a filter in
the full frequency domain may introduce some unneces-
sary conservatism. In this view, the generalized Kalman–
Yakobovich–Popov (gKYP) lemma (Iwasaki andHara 2005)
may be used to cast a certain frequency domain inequality in a
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finite frequency range in terms of an LMIs condition, which
involves the matrices that composes the system’s transfer
function. The results of the literature dealing this problem
are given in Gao and Li (2011), Iwasaki et al. (2005, 2011),
Wang et al. (2013), Lee (2013), Li and Yang (2014), Romao
et al. (2016), Ding and Yang (2009), Li and Gao (2012), Li
and Gao (2013), Chen et al. (2010), El-amrani et al. (2016)
and reference therein.

The aim of this paper is to cope with the H∞ filtering
problem for a class of discrete time systems with finite fre-
quency specifications. We use the gKYP lemma, and the
homogeneous polynomially parameter-dependent matrices
of arbitrary degree approach. In the case in which a priori
information about the noise is known (i.e, their frequency
spectrum), the filters designed by the proposed condition
have better performance in terms of the H∞ norm than
those obtained with full frequency specifications. The the-
oretical results are given in the form of LMIs, which can
be solved by standard numerical software, thus providing a
simplemethodology. By comparingwith the existing full fre-
quency methods (Gao and Li 2014; Lacerda et al. 2011; Lee
2013) and FF approach in Lee (2013), the FF method pro-
posed in this paper receives better results for the cases when
frequency ranges of noises are known. Numerical examples
are also given to illustrate the effectiveness of the proposed
approach.

This paper is organized as follows. In Sect. 2, the sys-
tem description and the design objectives are presented. In
Sect. 3, a sufficient condition guaranteeing robust asymptotic
stability with finite frequency and entire frequency H∞ per-
formance for such discrete time systems is derived by means
of LMI technique. Using this result, the filter design prob-
lem is solved in Sect. 4. Examples are given in Sect. 5, and
conclusions are drawn in Sect. 6.

Notations : The superscript “T ′′ stands for matrix transposi-
tion. In symmetric blockmatrices or longmatrix expressions,
we use an asterisk “∗′′ to represent a term that is induced
by symmetry. The notation P > 0 means that matrix P
is positive semi definite. The symbol I denotes an iden-
tity matrix with appropriate dimension. Generally, sym{A}
denotes A + AT , diag{..} stands for block diagonal matrix.
σ̄ (G) denotes the maximum singular value of the transfer
matric G.

2 Problem Formulation and Preliminaries

Consider the following robust asymptotically stable linear
time-invariant discrete-time system:

x(k + 1) = Aαx(k) + Bαw(k)

y(k) = Cαx(k) + Dαw(k) (1)

z(k) = Lαx(k) + Eαw(k)

where x(k) ∈ R
nx is the state vector, y(k) ∈ R

ny is the
measured output, z(k) ∈ R

nz is the signal to be estimated,
w(k) ∈ R

nw is the noise series satisfying w = w(k) ∈
�2[0,∞), whose energy is known to reside in one of the
following sets frequency ofw(k) resides in a known but finite
frequency setΘ is assumed to be the general LF/MF/HF form
defined as

� =
⎧
⎨

⎩

θ ∈ R||θ | ≤ θl , θl ≥ 0, (LF)

θ ∈ R|θ1 ≤ θ ≤ θ2, 0 ≤ θ2 − θ1 ≤ 2π, (MF)

θ ∈ R||θ | ≥ θh, θh ≥ 0, (HF)

(2)

where LF, MF and HF stand for low-, middle-, and high-
frequency ranges, respectively. The system matrices

Ωα = {Aα, Bα, Cα, Dα, Lα, Eα} (3)

belong to a convex bounded polyhedral domain, described
by


 =
{

Ωα|Ωα =
s∑

i=1

αiΩi ;
s∑

i=1

αi = 1, αi ≥ 0

}

(4)

where

Ωi := (Ai , Bi , Ci , Di , Li , Ei ) (5)

denotes the i th vertex of the polytope. The dynamic matrix
Aα is said to be Hurwitz (Schur) stable if the eigenvalues lie
in the open left-half plane (inside the unit disk) for all α ∈ 
.

In this paper, we consider the following H∞ filter to esti-
mate z(k)

x̂(k + 1) = A f x̂(k) + B f w(k)

ẑ(k) = C f x̂(k) + D f w(k) (6)

where x̂(k) ∈ R
nx is the filter state vector, ẑ(k) ∈ R

nz is the
output of the filter. The matrices A f , B f , C f and D f are the
filter matrices to be determined.

Defining ξ(k) = [
x(k)T x̂(k)T

]T
and e(k) = z(k) −

ẑ(k), the filtering error system is given by

ξ(k + 1) = Āαξ(k) + B̄αw(k)

e(k) = C̄αξ(k) + D̄αw(k) (7)

where

Āα =
[
Aα 0
B f Cα A f

]

; B̄α =
[

Bα

B f Dα

]

;
C̄α = [

Lα − D f Cα −C f
] ; D̄α = Eα − D f Dα . (8)
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The transfer function of the filtering error system (7) is then

G
(
e jθ

)
= C̄α[I e jθ − Āα]−1 B̄α + D̄α ∀α ∈ (4). (9)

Thus, the robust H∞ filtering error problem can be stated as
follows:
Problem description: The robust H∞ filtering problem for
uncertain discrete time systems with finite frequency speci-
fications is formulated as: find an admissible filter in (6) for
the system in (1) such that two conditions are satisfied:

– Thefiltering error system in (7) is robustly asymptotically
stable.

– Under zero-initial conditions, the following finite fre-
quency index holds:

σ̄ (G(e jθ )) < γ∀θ ∈ (2),∀α ∈ (4). (10)

Lemma 2.1 (Lacerda et al. 2011) Let Δ ∈ R
n, � ∈ R

n×n

and Λ ∈ R
m×n with rank (Λ) = r < n and Λ⊥ ∈ R

n×(n−r)

be full-column-rank matrix satisfying ΛΛ⊥ = 0. Then, the
following conditions are equivalent:

(i) ΔT�Δ < 0,∀Δ 
= 0 : ΛΔ = 0
(ii) Λ⊥T�Λ⊥ < 0
(iii) ∃μ ∈ R : � − μΛTΛ < 0
(vi) ∃Z ∈ R

n×m : � + ZΛ + ΛT ZT < 0

Lemma 2.2 (Iwasaki and Hara 2005) Consider the filtering
error system (7), for a given symmetric matrix

� =
[
I 0
0 −γ 2 I

]

the following statements are equivalent

1. The FF inequality

[
G(e jθ ) I

]
Π

[
G(e jθ )T

I

]

< γ∀θ ∈ (2),∀α ∈ (4).

(11)

2. There exist Hermitian matrix functions Pα , Qα satisfying
Qα > 0 such that

[
Āα B̄α

I 0

]T

Ξ

[
Āα B̄α

I 0

]

+
[
C̄α D̄α

0 I

]T

Π

[
C̄α D̄α

0 I

]

< 0 (12)

where

– For the low-frequency range |θ | ≤ θl

Ξα =
[
Pα Qα

Qα −Pα − 2cosθl Qα

]

(13)

– For the middle-frequency range θ1 ≤ θ ≤ θ2

Ξα =
[
Pα e jθc Qα

e− jθc Qα −Pα − 2cosθwQα

]

(14)

θc = θ2 + θ1

2
, θw = θ2 − θ1

2
.

– For the high-frequency range |θ | ≥ θh

Ξα =
[
Pα −Qα

−Qα −Pα + 2cosθhQα

]

(15)

Remark 2.3 Condition (12) is the extension of the gKYP
lemma for polytopic systems.Note that Pα andQα are chosen
to be parameter-dependent to relax the condition, decreasing
the conservatism when compared to the case in which P and
Q are parameter-independent.

3 H∞ Filtering Analysis

In this section, stable filters with finite frequency perfor-
mance are designed.

Theorem 3.1 Consider the system in (1). For given γ > 0,
a filter of from (6) exists such that the filtering error system in
(7) is asymptotically stable with an H∞ performance bound
γ . If there exist Hermitianmatrices Pα , Qα > 0 andmatrices
Gα , Fα , F̄α , Ḡα and Hα and symmetric matrix P̄α > 0, for
all α ∈ (4) satisfying

Φα =

⎡

⎢
⎢
⎣

Φ1α Φ2α Gα B̄α − HT
α 0

∗ Φ3α Fα B̄α + ĀT
α H

T
α C̄T

α

∗ ∗ −γ 2 I + Hα B̄α + B̄T
α HT

α D̄T
α

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦< 0

(16)

where

– For the low-frequency (LF) range |θ | ≤ θl

Φ1α = Pα − Gα − GT
α ;

Φ2α = Qα − FT
α + Gα Āα;

Φ3α = −Pα − 2cosθl Qα + Fα Āα + ĀT
α F

T
α .
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– For the middle-frequency range (MF) range θ1 ≤ θ ≤ θ2

Φ1α = Pα − Gα − GT
α ;

Φ2α = e jθc Qα − FT
α + Gα Āα;

Φ3α = −Pα − 2cosθwQα + Fα Āα + ĀT
α F

T
α ;

θc = (θ1 + θ2)

2
; θw = (θ2 − θ1)

2
.

– For the high-frequency (HF) range |θ | ≥ θh

Φ1α = Pα − Gα − GT
α ;

Φ2α = −Qα − FT
α + Gα Āα;

Φ3α = −Pα + 2cosθhQα + Fα Āα + ĀT
α F

T
α .

and

Ψα =
[
P̄α − F̄α − F̄T

α F̄α Āα − ḠT
α

∗ −P̄α + Ḡα Āα + ĀT
α Ḡ

T
α

]

< 0

(17)

Proof 3.2 First, we consider the LF case, we prove that (12–
13) is equivalent to (16). Suppose that (16) hold, denote

Σ =
⎡

⎣
Pα Qα 0
Qα −Pα − 2cosθl Qα + C̄T

α C̄α C̄T
α D̄α

0 D̄T
α C̄α −γ 2 I + D̄T

α D̄α

⎤

⎦ ;

Z =
⎡

⎣
Gα

Fα

Hα

⎤

⎦ ; Λ = [−I Āα B̄α

]
. (18)

By Shur complement, (16) is equivalent to

Σ + ZΛ + ΛT ZT < 0 (19)

under condition (iv) of Lemma 2.1, with

Λ⊥ =
⎡

⎣
Āα B̄α

I 0
0 I

⎤

⎦

which, using condition (i i) of Lemma 2.1, given (12–13).
In addition, let us construct a Lyapunov function inequal-

ity, Āα is stable if and only if there exists P̄α = P̄T
α > 0 such

that

P̄α − ĀT
α P̄α Āα > 0 (20)

which is rewritten in the form

[
Āα

I

]T [
P̄α 0
0 −P̄α

] [
Āα

I

]

< 0 (21)

Define

Λ =
[
P̄α 0
0 −P̄α

]

; Z =
[
F̄α

Ḡα

]

;

Λ = [−I Āα

] ; Λ⊥ =
[
Āα

I

]

. (22)

By Lemma 2.1, (21) and (22) are equivalent to

[
P̄α 0
0 −P̄α

]

+
[
F̄α

Ḡα

]
[−I Āα

] +
[−I Āα

]T
[
F̄α

Ḡα

]T

< 0 (23)

which is nothing but (17).
Similar to the LF case, the proof for MF and HF cases can

be completed. It is omitted for brevity. �
For finite frequency H∞ filtering performance analysis, The-
orem3.1 provides a newconditionwith the property ofmatrix
decouple. In the sequel, the existence conditions of finite
frequency H∞ filters will be investigated based on this devel-
oped analysis condition.

4 H∞ Filtering Design

In this section, amethodology is established for designing the
finite frequency H∞ filter (6), that is, to determine the filter
matrices such that the filtering error system (7) is asymptot-
ically stable with an H∞-norm bounded by γ .

4.1 Finite Frequency Case

Based on Theorem 3.1, we select for variables Pα , Qα and
P̄α the following structures

Pα =
[
P1α P2α
∗ P3α

]

; Qα =
[
Q1α Q2α

∗ Q3α

]

;

P̄α =
[
P̄1α P̄2α
∗ P̄3α

]

(24)

Then, let the slack variables Gα , Fα , Hα , F̄α and Ḡα take
the following structure

Gα =
[
G1α V
G2α V

]

; Fα =
[
F1α λ1V
F2α λ2V

]

;

F̄α =
[
F̄1α V
F̄2α V

]

; Ḡα =
[
Ḡ1α 0
Ḡ2α 0

]

;
Hα = [

H1α λ3V
]
. (25)

V is fixed for the entire uncertainty domain and, without loss
of generality, invertible; the scalar parameters λ1, λ2 and λ3
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will be used as optimization parameters. With a structure of
variable matrices, we obtain the following results:

Theorem 4.1 Consider the system (1). For given a constants
γ > 0, λ1, λ2, λ3, a filter of from (6) exists such that the fil-
tering error system in (7) is asymptotically stable with an
H∞ performance bound γ . If there exist Hermitian matrices

Pα=
[
P1α P2α
∗ P3α

]

, Qα =
[
Q1α Q2α

∗ Q3α

]

> 0 and symmet-

ric matrix P̄α =
[
P̄1α P̄2α
∗ P̄3α

]

> 0 and matrices Â f , B̂ f ,

Ĉ f , D̂ f , G1α , G2α , Ḡ1α , Ḡ2α , F1α , F2α , F̄1α , F̄2α , V and
H1α , for all α ∈ (4) such that

Ω̄α + Φ̄α < 0 (26)

Ψ̄α < 0 (27)

with

Φ̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̄11α −V − GT
2α Φ̄13α Φ̄14α Φ̄15α 0

∗ −V − V T Φ̄23α Φ̄24α Φ̄25α 0
∗ ∗ Φ̄33α Φ̄34α Φ̄35α LT

α − CT
α D̂T

f

∗ ∗ ∗ Φ̄44α Φ̄45α −ĈT
f

∗ ∗ ∗ ∗ Φ̄55α ET
α − DT

α D̂T
f

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ψ̄α =

⎡

⎢
⎢
⎣

Ψ̄11α P̄2α − V − F̄T
2α Ψ̄13α Â f − ḠT

2α
∗ P̄3α − V − V T Ψ̄23α Â f

∗ ∗ Ψ̄33α −P̄2α + AT
α Ḡ

T
2α

∗ ∗ ∗ −P̄3α

⎤

⎥
⎥
⎦

Φ̄11α = −G1α − GT
1α;

Φ̄13α = −FT
1α + G1αAα + B̂ f Cα;

Φ̄14α = −FT
2α + Â f ;

Φ̄15α = −HT
1α + G1αBα + B̂ f Dα;

Φ̄23α = −λ1V
T + G2αAα + B̂ f C(α);

Φ̄24α = −λ2V
T + Â f ;

Φ̄25α = G2αBα + B̂ f Dα − λ3V
T ;

Φ̄33α = sym(F1αAα + λ1 B̂ f Cα);
Φ̄34α = λ1 Â f + AT

α F
T
2α + λ2C

T
α B̂ f ;

Φ̄35α = AT
α H

T
1α + λ3C

T
α B̂T

f + F1αBα + λ1 B̂ f Dα;
Φ̄44α = λ2(A f + AT

f );
Φ̄45α = λ3 Â

T
f + F2αBα + λ2 B̂ f Dα;

Φ̄55α = −γ 2 I + sym(H1αBα + λ3 B̂ f Dα);
Ψ̄11α = P̄1α − F̄1α − F̄T

1α;
Ψ̄13α = F̄1αAα + B̂ f Cα − ḠT

1α;

Ψ̄23α = F̄2αAα + B̂ f Cα;
Ψ̄33α = −P̄3α + sym(Ḡ1αAα);

Matrix Ω̄α is defined as follows:

– For the low-frequency (LF) range |θ | ≤ θl

Ω̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1α P2α Q1α Q2α 0 0
∗ P3α QT

2α Q3α 0 0
∗ ∗ Ω̄1α −P2α − 2cosθl Q2α 0 0
∗ ∗ ∗ −P3α − 2cosθl Q3α 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1α = −P1α − 2cosθl Q1α.

– For the middle-frequency (MF) range θ1 ≤ θ ≤ θ2

Ω̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1α P2α e jθc Q1α e jθc Q2α 0 0
∗ P3α e− jθc QT

2α e jθc Q3α 0 0
∗ ∗ Ω̄1α −P2α − 2cosθwQ2α 0 0
∗ ∗ ∗ −P3α − 2cosθwQ3α 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1α = −P1α − 2cosθwQ1α;
θc = (θ1 + θ2)

2
; θw = (θ2 − θ1)

2
.

– For the high-frequency (HF) range |θ | ≥ θh

Ω̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1α P2α −Q1α −Q2α 0 0
∗ P3α −QT

2α −Q3α 0 0
∗ ∗ Ω̄1α −P2α + 2cosθh Q2α 0 0
∗ ∗ ∗ −P3α + 2cosθh Q3α 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1α = −P1α + 2cosθhQ1α.

Moreover, if the previous conditions are satisfied, an state-
space realization of the H∞ filter is given by

A f = V−1 Â f , B f = V−1 B̂ f , C f = Ĉ f , D f = D̂ f (28)

4.2 Entire Frequency Case

In this subsection, we discuss the entire frequency (EF) case
of Theorem 4.1. For the EF case, Qkα is set as Qkα = 0,

k = 1, 2, 3 while Pα is set to satisfy

[
P1α P2α
∗ P3α

]

> 0 such

that stability is also impliedby inequality in (26). In summary,
Theorem (4.1) is reduced to the following result for EF H∞
filtering.
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Corollary 1 Consider the system in (1) . For Given γ > 0,
and scalars λ1, λ2, λ3, a filter of from (5) exists such that the
filtering error system in (6) is asymptotically stable with an
H∞ performance bound γ . If there exist symmetric matrix

P̄α =
[
P̄1α P̄2α
∗ P̄3α

]

> 0 and matrices Â f , B̂ f , Ĉ f , D̂ f , G1α ,

G2α , F1α , F2α , V and H1α , for all α ∈ (4) satisfying

Ξ̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̄11α Ξ̄12α Ξ̄13α Ξ̄14α Ξ̄15α 0
∗ Ξ̄22α Ξ̄23α Ξ̄24α Ξ̄25α 0
∗ ∗ Ξ̄33α Ξ̄34α Ξ̄35α LT

α − CT
α D̂T

f

∗ ∗ ∗ Ξ̄44α Ξ̄45α −ĈT
f

∗ ∗ ∗ ∗ Ξ̄55α ET
α − DT

α D̂T
f

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (29)

Ξ̄11α = P1α − G1α − GT
1α,

Ξ̄12α = P2α − V − GT
2α;

Ξ̄13α = −FT
1α + G1αAα + B̂ f Cα;

Ξ̄14α = −FT
2α + Â f ;

Ξ̄15α = −HT
1α + G1αBα + B̂ f Dα;

Ξ̄22α = P3(α) − V − V T ;
Ξ̄23α = −λ1V

T + G2αAα + B̂ f Cα;
Ξ̄24α = −λ2V

T + Â f ;
Ξ̄25α = G2αBα + B̂ f Dα − λ3V

T ;
Ξ̄33α = −P1α + sym(F1αAα + λ1 B̂ f Cα);
Ξ̄34α = −P2α + λ1 Â f + AT

α F
T
2α + λ2C

T
α B̂ f ;

Ξ̄35α = AT
α H

T
1α + λ3C

T
α B̂T

f + F1αBα + λ1 B̂ f Dα;
Ξ̄44α = −P3α + λ2(A f + AT

f );
Ξ̄45α = λ3 Â

T
f + F2αBα + λ2 B̂ f Dα;

Ξ̄55α = −γ 2 I + sym(H1αBα) + λ3 B̂ f Dα).

Moreover, if (29) are feasible, then a suitable filter can be
obtained by (28).

4.3 Solution Using Parameter-Dependent Polynomails

Before presenting the formulation of Theorem 4.1 and
Corollary 2 using homogeneous polynomially parameter-
dependent matrices, some definitions and preliminaries from
Gao et al. (2008) are needed to represent and handle products
and sums of homogeneous polynomials. First, we define the
homogeneous polynomially parameter-dependent matrices
of degree g by

P̄1α =
J (g)∑

j=1

α
k1
1 α

k2
2 . . . αkN

s P̄1k j (g), [k1, k2, . . . , kN ] = K j (g)

(30)

Similarly, matrices P̄2α , P̄3α , Pvα , Qvα , v = 1, 2, 3, Ftα ,
F̄tα , Gtα , Ḡtα , t = 1, 2 and H1α take the same form.

The notations in the above are explained as follows.Define
K (g) as the set of N-tuples obtained as all possible combina-
tion of [k1, k2, . . . , kN ], with ki being nonnegative integers,
such that k1 + k2 + · · · + kN = g. K j (g) is the jth N-tuples
of K (g) which is lexically ordered, j = 1, . . . , J (g). Since
the number of vertices in the polytope 
 is equal to s, the
number of elements in K (g) as given by J (g) = (N+g−1)!

g!(N−1)! .
These elements define the subscripts k1, k2, . . . , kN of the
constant matrices

P̄vk1,k2,...kN � P̄vk j (g); Pvk1,k2,...kN � Pvk j (g);
Qvk1,k2,...kN � Qvk j (g); Ftk1,k2,...kN � Ftk j (g);
F̄tk1,k2,...kN � F̄tk j (g); Gtk1,k2,...kN � Gtk j (g);
Ḡtk1,k2,...kN � Ḡtk j (g); H1k1,k2,...kN � H1k j (g).

(wherev = 1, 2, 3 and t = 1, 2.),which are used to construct
the homogeneous polynomial dependent matrices P̄vα , Pvα ,
Qvα , Ftα , F̄tα , Gtα , Ḡtα (where v = 1, 2, 3 and t = 1, 2)
and H1α in (29).

For each set K (g), define also the set I (g) with elements
I j (g) given by subsets of i, i ∈ {1, 2, . . . , N }, associated to
s-tuples K j (g)whose ki ’s are nonzero. For each i, i = 1,…,N,
define the s-tuples Ki

j (g) as being equal to K j (g) but with

ki > 0 replaced by ki − 1. Note that the s-tuples Ki
j (g) are

defined only in the cases where the corresponding ki is posi-
tive. Note also that, when applied to the elements of K (g+1),
the s-tuples Ki

j (g + 1) define subscripts k1, k2, . . . , kN of

matrices P̄vk1,k2,...kN , Pvk1,k2,...kN , Qvk1,k2,...kN , Ftk1,k2,...kN ,
Gtk1,k2,...kN , F̄tk1,k2,...kN , Ḡtk1,k2,...kN , (where v = 1, 2, 3 and
t = 1, 2) and H1k1,k2,...kN , associated with homogeneous
polynomial parameter-dependent matrices of degree g.

Finally, define the scalar constant coefficients β i
j (g+1) =

g!
(k1!k2!...kN !) , with [k1, k2, . . . , kN ] ∈ Ki

j (g + 1).
The main result in this section is given by the following

Theorem 4.2 and Corollary 2 respectively.

Theorem 4.2 Given a stable system (1). For given a con-
stants γ > 0, λ1, λ2, λ3, a filter of from (5) exists such
that the filtering error system in (6) is asymptotically stable
with an H∞ performance bound γ . If there exist Hermi-

tian matrices P(k j (g)) =
[
P1k j (g) P2k j (g)

∗ P3k j (g)

]

, Q(k j (g)) =
[
Q1k j (g) Q2k j (g)

∗ Q3k j (g)

]

> 0 and symmetric matrix P̄(k j (g)) =
[
P̄1k j (g) P̄2k j (g)

∗ P̄3k j (g)

]

> 0, matrices Â f , B̂ f , Ĉ f , D̂ f , Gtk j (g),

Ftk j (g) (where t = 1, 2), H1k j (g), V and the real scalars
λ1, λ2 and λ3 such that the following LMIs hold for all
Kl(g + 1) ∈ K (g + 1) , l = 1, . . . , J (g + 1):
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∑

i∈Il (g+1)

[
Ω̄k + Φ̄k

]
< 0 (31)

∑

i∈Il (g+1)

Ψ̄k < 0 (32)

with

Φ̄k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̄11k Φ̄12k Φ̄13k Φ̄14k Φ̄15k 0
∗ Φ̄22k Φ̄23k Φ̄24k Φ̄25k 0
∗ ∗ Φ̄33k Φ̄34k Φ̄35k Φ̄36k
∗ ∗ ∗ Φ̄44k Φ̄45k −βi

j (g + 1)ĈT
f

∗ ∗ ∗ ∗ Φ̄55k Φ̄56k
∗ ∗ ∗ ∗ ∗ −βi

j (g + 1)I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ψ̄k =

⎡

⎢
⎢
⎢
⎣

Ψ̄11k Ψ̄12k Ψ̄13k β i
j (g + 1) Â f − ḠT

2k j (g)

∗ Ψ̄22k Ψ̄3k β i
j (g + 1) Â f

∗ ∗ Ψ̄4k −P̄2k j (g) + AT
i Ḡ

T
2k j (g)

∗ ∗ ∗ −P̄3k j (g)

⎤

⎥
⎥
⎥
⎦

Φ̄11k = −G1k j (g) − GT
1k j (g);

Φ̄12k = −β i
j (g + 1)V − GT

2k j (g);
Φ̄13k = −FT

1k j (g) + G1k j (g)Ai + β i
j (g + 1)B̂ f Ci ;

Φ̄14k = −FT
2k j (g) + β i

j (g + 1) Â f ;
Φ̄15k = −HT

1k j (g) + G1k j (g)Bi + β i
j (g + 1)B̂ f Di ;

Φ̄23k = −λ1β
i
j (g + 1)V T + G2k j (g)Ai + β i

j (g + 1)B̂ f Ci ;
Φ̄24k = −λ2β

i
j (g + 1)V T + β i

j (g + 1) Â f ;
Φ̄25k = G2k j (g)Bi + β i

j (g + 1)B̂ f Di − λ3β
i
j (g + 1)V T ;

Φ̄33k = sym(F1k j (g)Ai + λ1β
i
j (g + 1)B̂ f Ci );

Φ̄34k = λ1β
i
j (g + 1) Â f + AT

i F
T
2k j (g) + λ2β

i
j (g + 1)CT

i B̂ f ;
Φ̄35k = AT

i H
T
1k j (g) + λ3β

i
j (g + 1)CT

i B̂T
f

+ F1k j (g)Bi + λ1β
i
j (g + 1)B̂ f Di ;

Φ̄36k = β i
j (g + 1)LT

i − β i
j (g + 1)CT

i D̂T
f ;

Φ̄44k = λ2β
i
j (g + 1)(A f + AT

f );
Φ̄45k = λ3β

i
j (g + 1) ÂT

f + F2k j (g)Bi + λ2β
i
j (g + 1)B̂ f Di ;

Φ̄55k = −β i
j (g + 1)γ 2 I + sym(H1k j (g)Bi

+ λ3β
i
j (g + 1)B̂ f Di );

Φ̄56k = β i
j (g + 1)ET

i − β i
j (g + 1)DT

i D̂T
f ;

Ψ̄11k = P̄1k j (g) − F̄1k j (g) − F̄T
1k j (g);

Ψ̄12k = P̄2k j (g) − β i
j (g + 1)V − F̄T

2k j (g);
Ψ̄13k = F̄1k j (g)Ai + β i

j (g + 1)B̂ f Ci − ḠT
1k j (g);

Ψ̄22k = P̄3k j (g) − β i
j (g + 1)V − β i

j (g + 1)V T ;
Ψ̄3k = F̄2k j (g)Ai + β i

j (g + 1)B̂ f Ci ;
Ψ̄4k = −P̄3k j (g) + sym(Ḡ1k j (g)Ai ).

Matrix Ω̄k is defined as follows:

– For the low-frequency (LF) range |θ | ≤ θl

Ω̄k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1k j (g) P2k j (g) Q1k j (g) Q2k j (g) 0 0
∗ P3k j (g) QT

2k j (g)
Q3k j (g) 0 0

∗ ∗ Ω̄1k Ω̄2k 0 0
∗ ∗ ∗ Ω̄3k 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1k = −P1k j (g) − 2cosθl Q1k j (g);
Ω̄2k = −P2k j (g) − 2cosθl Q2k j (g);
Ω̄3k = −P3k j (g) − 2cosθl Q3k j (g).

– For the middle-frequency (MF) range θ1 ≤ θ ≤ θ2

Ω̄k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1k j (g) P2k j (g) e jθc Q1k j (g) Q2k j (g) 0 0

∗ P3k j (g) e− jθc QT
2k j (g)

e jθc Q3k j (g) 0 0

∗ ∗ Ω̄1k Ω̄2k 0 0
∗ ∗ ∗ Ω̄3k 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1k = −P1k j (g) − 2cosθwQ1k j (g);
Ω̄2k = −P2k j (g) − 2cosθwQ2k j (g);
Ω̄3k = −P3k j (g) − 2cosθwQ3k j (g);

θc = (θ1 + θ2)

2
, θw = (θ2 − θ1)

2
.

– For the high-frequency (HF) range |θ | ≥ θh

Ω̄α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1k j (g) P2k j (g) −Q1k j (g) Q2k j (g) 0 0
∗ P3k j (g) −QT

2k j (g)
−Q3k j (g) 0 0

∗ ∗ Ω̄1k Ω̄2k 0 0
∗ ∗ ∗ Ω̄3k 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ω̄1k = −P1k j (g) + 2cosθhQ1k j (g);
Ω̄2k = −P2k j (g) + 2cosθhQ2k j (g);
Ω̄3k = −P3k j (g) + 2cosθhQ3k j (g).

Then the homogeneous polynomially parameter-dependent
matrices given by (30) ensure (26) and (27) for all α ∈ 
.
Moreover, if the LMIs of (31) and (32) are fulfilled for a given
degree ḡ, then the LMIs corresponding to any degree g > ḡ
are also satisfied.
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Proof 4.3 The proof is similar to that of Theorem 3 in Gao
et al. (2008) and is thus omitted. �

Corollary 2 Given a stable system (1). For given a constants
γ > 0, λ1, λ2, λ3, a filter of from (5) exists such that the
filtering error system in (6) is asymptotically stable with an
H∞ performance bound γ . If there exist symmetric matrix

P(k j (g)) =
[
P1k j (g) P2k j (g)

∗ P3k j (g)

]

> 0, matrices Â f , B̂ f , Ĉ f ,

D̂ f , Ḡtk j (g), F̄tk j (g) (where t = 1, 2), H1k j (g), V and the real
scalars λ1, λ2 and λ3 such that the following LMIs hold for
all Kl(g + 1) ∈ K (g + 1) , l = 1, . . . , J (g + 1):

Ξ̄k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̄11k Ξ̄12k Ξ̄13k Ξ̄14k Ξ̄15k 0
∗ Ξ̄22k Ξ̄23k Ξ̄24k Ξ̄25k 0
∗ ∗ Ξ̄33k Ξ̄34k Ξ̄35k Ξ̄36k

∗ ∗ ∗ Ξ̄44k Ξ̄45k −β i
j (g + 1)ĈT

f
∗ ∗ ∗ ∗ Ξ̄55k Ξ̄46k

∗ ∗ ∗ ∗ ∗ −β i
j (g + 1)I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (33)

with

Ξ̄11k = P1k j (g) − G1k j (g) − GT
1k j (g),

Ξ̄12k = P2k j (g) − β i
j (g + 1)V − GT

2k j (g);
Ξ̄13k = −FT

1k j (g) + G1k j (g)Ai + β i
j (g + 1)B̂ f Ci ;

Ξ̄14k = −FT
2k j (g) + β i

j (g + 1) Â f ;
Ξ̄15k = −HT

1k j (g) + G1k j (g)Bi + β i
j (g + 1)B̂ f Di ;

Ξ̄22k = P3k j (g) − β i
j (g + 1)V − β i

j (g + 1)V T ;
Ξ̄23k = −β i

j (g + 1)λ1V
T + G2k j (g)Ai + β i

j (g + 1)B̂ f Ci ;
Ξ̄24k = −β i

j (g + 1)λ2V
T + β i

j (g + 1) Â f ;
Ξ̄25k = G2k j (g)Bi + β i

j (g + 1)B̂ f Di − β i
j (g + 1)λ3V

T ;
Ξ̄33k = −P1k j (g) + sym(F1k j (g)Ai + β i

j (g + 1)λ1 B̂ f Ci );
Ξ̄34k = −P2k j (g) + β i

j (g + 1)λ1 Â f + AT
i F

T
2k j (g)

+β i
j (g + 1)λ2C

T
i B̂ f ;

Ξ̄35k = AT
i H

T
1α + β i

j (g + 1)λ3C
T
i B̂T

f + F1k j (g)Bi

+β i
j (g + 1)λ1 B̂ f Di ;

Ξ̄36k = β i
j (g + 1)LT

i − β i
j (g + 1)CT

i D̂T
f ;

Ξ̄44k = −P3k j (g) + β i
j (g + 1)λ2(A f + AT

f );
Ξ̄45k = β i

j (g + 1)λ3 Â
T
f + F2k j (g)Bi + β i

j (g + 1)λ2 B̂ f Di ;
Ξ̄45k = β i

j (g + 1)ET
i − β i

j (g + 1)DT
i D̂T

f ;
Ξ̄55k = −β i

j (g + 1)γ 2 I + sym(H1k j (g)Bi )

+β i
j (g + 1)λ3 B̂ f Di ).

Then the homogeneous polynomially parameter-dependent
matrices given by (30) ensure (29) for all α ∈ 
. Moreover,
if the LMIs of (33)is fulfilled for a given degree ḡ, then the
LMIs corresponding to any degree g > ḡ are also satisfied.

Proof 4.4 The proof is parallel to that of Theorem 3 in Gao
et al. (2008), using the result in Corollary 2, so it is omitted.

�
Remark 4.5 Theorem 4.2 provide sufficient conditions for
the FF H∞ filtering for uncertain discrete-time linear systems
in different frequency ranges. Numerical examples show that
the proposed FF approach has better performances than the
existing full frequency ones when the frequency ranges of
the noises are known.

Remark 4.6 When the scalars λ1, λ2 and λ3 of Theorems 4.1,
4.2 and Corollaries 1, 2 are fixed to be constants, then (26),
(27), (29), (31), (32) and (33) are LMIs which are effectively
linear in the variables. To select values for these scalars, opti-
mization can be used to optimize some performancemeasure
(for example γ , the disturbance attenuation level).

Remark 4.7 As the degree g of the polynomial increases, the
conditions become less conservative since new free variables
are added to the LMIs. Although the number of LMIs is also
increased, each LMIs becomes easier to be fulfilled due to the
extra degrees of freedom provided by the new free variables
and smaller values of H∞ guaranteed costs can be obtained.

5 Numerical Examples

In this section, simulation examples are provided to illustrate
the effectiveness of the proposed filtering design approach.
We compare our work with some elegant results from the
literature.

5.1 Numerical Example 1:

Consider a system of from (1) is described by Gao and Li
(2014):

x(k + 1) =
[

δ −0.5
1 1

]

x(k) +
[−6 0

2 0

]

w(k)

y(k) = [−100 10
]
x(k) + [

0 1
]
w(k) (34)

z(k) = [
1 0

]
x(k) + [

0 0
]
w(k)

The uncertain parameters δ is now assumed to be −0.25 ≤
δ ≤ 0.25, so the above system is represented by a two-vertex
polytope. Our aim is to design a finite frequency H∞ filter
in the form of (6) such that the resulting filtering error sys-
tem in (7) is asymptotically stable with a guaranteed H∞
disturbance attenuation level.
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Table 1 Comparison of filtering performance obtained by different methods for example 1

Degree EF FF

Alg8 (Gao and Li 2014) Cor2 |θ | ≤ π
8

π
8 ≤ |θ | ≤ π

5 |θ | ≥ π
6

g = 0 – 1.0494 0.4579 0.7626 0.2000

λ1 = −0.4859 λ1 = 4.4769 λ1 = 7.9212 λ1 = 2.7229

λ2 = −0.4999 λ2 = 0.6600 λ2 = 0.6948 λ2 = −0.9996

λ3 = −0.0393 λ3 = 6.4018 λ3 = −1.4692 λ3 = 6.2135

g = 1 1.24920 0.2815 0.1862 0.2389 0.1453

λ1 = 5.1468 λ1 = 3.6661 λ1 = −0.5685 λ1 = 2.8207

λ2 = −0.8016 λ2 = −0.7709 λ2 = −0.5539 λ2 = −0.8827

λ3 = 4.1215 λ3 = 5.3333 λ3 = −0.0136 λ3 = 5.6638

g = 2 – 0.2558 0.1688 0.2268 0.1453

λ1 = −0.4138 λ1 = 3.3936 λ1 = −0.5337 λ1 = 3.3539

λ2 = −0.4121 λ2 = −0.8342 λ2 = −0.5149 λ2 = −0.8539

λ3 = −0.1113 λ3 = 3.8570 λ3 = 0.0000 λ3 = 5.6793

Values of H∞ performance are highlighted in bold

LMIs (31), (32) and (33) were solved using Yalmip (Lof-
berg 2004) and SeDuMi (Sturm et al. 1999) in MATLAB
7.6, for increasing values of the degree g. The comparison
result with the technique proposed in Algorithm 8 (Gao and
Li 2014) in shown in Table 1, which shows the smaller con-
servativeness of the approach proposed in this paper.

In addition, the H∞ performance improved when the
parameters λ1, λ2, λ3 and λ4 of Theorem 4.2 and Corollary
2 are searched using simplex algorithm. The role of these
scalar parameters in the LMIs conditions is to provide extra
degrees and to reduce the conservativeness of the LMIs tests.

The filter parameters are given as follows:

5.1.1 Entire Frequency Case:(Corollary 1)

For degree g = 0, the obtained disturbance attenuation level
is γ = 1.0494 and the corresponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
−0.2093 −0.7442
0.5058 1.1290

0.0044
0.0045

−0.0430 −0.0956 −0.0096

⎤

⎦ (35)

On the other hand, when degree g = 1, γ = 0.2815 and the
corresponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.8046 0.0069
0.8335 0.8632

0.0542
−0.0151

−0.0134 −0.0012 −0.0096

⎤

⎦ (36)

Finally, when degree g = 2, γ = 0.2558 and the correspond-
ing filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
−0.7178 −0.5175
0.5500 1.0740

0.0114
0.0035

−0.0329 −0.0967 −0.0097

⎤

⎦ (37)

5.1.2 Finite Frequency: (Theorem 4.2)

Low-Frequency (LF) Range |θ | ≤ π
8 : For degree g = 0,

γ = 0.4579 and the corresponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.6520 −0.0023
0.9481 0.8836

0.0447
−0.0201

−0.0161 −0.0050 −0.0097

⎤

⎦ (38)

In addition, when degree g = 1, γ = 0.1862 and the corre-
sponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.7468 −0.0034
0.8791 0.9213

0.0356
−0.0085

−0.0202 −0.0035 −0.0097

⎤

⎦ (39)

Finally, when g = 2, γ = 0.1688 and the corresponding
filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.8393 0.0010
0.7943 0.8951

0.0377
−0.0080

−0.0183 −0.0014 −0.0097

⎤

⎦ (40)

Middle-Frequency (MF) Range π
8 ≤ |θ | ≤ π

5 :
For degree g = 0, the obtained disturbance attenuation

level is γ = 0.7626 and the corresponding filter matrices
are:

[
A f B f

C f D f

]

=
⎡

⎣
−0.6308 0.0781
1.2732 0.7919

0.0855
−0.0316

−0.0155 −0.0160 −0.0095

⎤

⎦ (41)
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On the other hand, when degree g = 1, γ = 0.2389 and the
corresponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
−0.7392 −0.2984
0.5224 0.9946

0.0138
0.0028

−0.0302 −0.0978 −0.0097

⎤

⎦ (42)

In addition, when degree g = 2, γ = 0.2268 and the corre-
sponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
−0.7566 −0.2896
0.5070 0.9901

0.0145
0.0027

−0.0310 −0.0984 −0.0097

⎤

⎦ (43)

High-Frequency (HF) Range |θ | ≥ π
6 : For degree g = 0,

γ = 0.2000 and the corresponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.9482 0.0222
0.4485 0.4018

0.0297
−0.0255

−0.0262 −0.0010 −0.0098

⎤

⎦ (44)

In addition, when degree g = 1, γ = 0.1453 and the corre-
sponding filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.8348 −0.0011
0.8859 0.8745

0.0305
−0.0082

−0.0235 −0.0015 −0.0097

⎤

⎦ (45)

Finally, when g = 2, γ = 0.1453 and the corresponding
filter matrices are:

[
A f B f

C f D f

]

=
⎡

⎣
0.8166 −0.0089
0.9459 0.9833

0.0352
−0.0028

−0.0200 −0.0013 −0.0096

⎤

⎦ (46)

To illustrate the effectiveness of these designed filters, we
consider polytopic case (degree g = 1), by, respectively,
connecting (36), (39), (42) and (45) to the systems in (34),
the frequency responses of the filtering error systems are
depicted in Figs. 1, 2, 3, 4. All the singular values in these
figures are lower than the achieved H∞ filtering perfor-
mance disturbance attenuation level γ , which demonstrates
the effectiveness of our proposed method.

Assume that the uncertain parameter δ = −0.25 and
degree g = 1, applying the obtained low-frequency |θ | ≤ π

8 ,
the disturbance input

w(k) = sin(k)
[

1
k2+1

1
k3+1

]T
(47)

the initial conditions are chosen as x(0) = [−0.1 0.1]T and
x̂(0) = [0 0]T , the simulation result of the filtering error
e(k) = z(k)− ˆz(k)with the filtering matrices (35) and (38) is
shown in Fig. 5. It is shown that the filtering error e(k) tends
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Fig. 1 Frequency response of the filtering error system with filter (36)
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Fig. 2 Frequency response of the filtering error system with filter (39)
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Fig. 3 Frequency response of the filtering error system with filter (42)
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Fig. 4 Frequency response of the filtering error system with filter (45)
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Fig. 5 Estimation error e(k) subject to sinusoidal disturbance

to zero, which means that the estimated ˆz(k) follows z(k)

well. The ratio of
√∑∞

k=0 e
T (k)e(k)/

∑∞
k=0 wT (k)w(k) can

show the influence of the disturbance w(k) on the filter error
e(k) , and the plot of the ratio is shown in Fig. 6. It can be
seen that the ratio tends to a constant value 0.1552, which
is less than the prescribed value 0.1862. It can be seen from
Fig. 6 that the proposedmethod has a better noise-attenuation
performance over the existing method.

5.2 Numerical Example 2:

Based on the example given in Lee (2013), Lacerda et al.
(2011) described by:

x(k + 1) =
[
0 −0.5
1 1 + β

]

x(k) +
[−6 0

1 0

]

w(k)
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Fig. 6 Value of(
√∑∞

k=0 e
T (k)e(k)/

∑∞
k=0 wT (k)w(k)) for the sys-

tem (34) connected with filter (36)

y(k) = [−100 10
]
x(k) + [

0 1
]
w(k) (48)

z(k) = [
1 0

]
x(k) + [

0 0
]
w(k)

where δ is uncertain real parameter satisfying |β| ≤ 0.45.
By using Theorem 4.2 and Corollary 2, in different fre-

quency ranges. Let g = 1 (linearly parameter-dependent
polynomial), we get the following robust filter’s parameters:

[
A f B f

C f D f

]

=
⎡

⎣
−0.2488 −1.4571
0.2415 −0.0248

0.0070
0.0100

−0.0073 −0.0675 −0.0079

⎤

⎦ (49)

for EF range, with an H∞ performance index γ = 1.6398.

[
A f B f

C f D f

]

=
⎡

⎣
−2.0883 −0.5473
9.8404 2.4640

0.0035
−0.0119

−1.9145 −0.3663 −0.0063

⎤

⎦ (50)

for LF |θ | ≤ π
6 , with an H∞ performance index γ = 1.1401.

[
A f B f

C f D f

]

=
⎡

⎣
−0.7519 −0.1214
1.8593 0.9560

0.0255
−0.0202

−0.0552 −0.0305 −0.0089

⎤

⎦ (51)

for MF π
6 ≤ |θ | ≤ π

4 , with an H∞ performance index γ =
0.7173.

[
A f B f

C f D f

]

=
⎡

⎣
−1.0556 −0.0807
0.0394 −0.9452

0.6321
0.4902

−0.0879 −0.1235 −0.0093

⎤

⎦ (52)

forHF |θ | ≥ 5π
6 with an H∞ performance index γ = 0.1023.

In order to demonstrate the value of our proposed
approach, we provide in Table 2 the robust H∞ filtering per-
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Table 2 Comparison of filtering performance obtained in different finite frequency ranges for example 2

Degree LF(|θ | ≤ π
6 ) MF ( π

6 ≤ |θ | ≤ π
4 ) HF (|θ | ≤ 5π

6 ))

Th2 in Lee (2013) Th 42 Th 2 in Lee (2013) Th 42 Th 2 in Lee (2013) Th 42

g = 1 1.1775 1.1401 0.7487 0.7173 1.0069 0.1023

λ1 = 2.2964 λ1 = 1.4778 λ1 = 1.2679

λ2 = 14.7079 λ2 = 0.3222 λ2 = 2.0427

λ3 = −3.6695 λ3 = 0.1194 λ3 = 1.0079

g = 2 – 1.1398 - 0.6881 - 0.0827

λ1 = 1.6140 λ1 = 0.5514 λ1 = −1.2717

λ2 = 63.2721 λ2 = 0.7101 λ2 = 0.4402

λ3 = 0.0356 λ3 = 0.6217 λ3 = −0.8744

Values of H∞ performance are highlighted in bold

Table 3 Comparison of filtering performance obtained in different full
frequency ranges for example 2

Degree Th 2 in Lee
(2013)

Th 4 in Lacerda
et al. (2011)

Th 42

g = 1 1.8199 1.6577 1.6368

λ1 = 1.43 λ1 = −1.3593

λ2 = 0.08 λ2 = −0.2099

λ3 = −4.5841

g = 2 – – 1.6338

λ1 = −1.3552

λ2 = −0.2133

λ3 = −4.6346

Values of H∞ performance are highlighted in bold

formance levels obtained by the finite frequency approaches
proposed in this work and in Lee (2013).

In addition, Table 3 shows that even in the EF range, our
proposed approach outperform some recent results in the lit-
erature, which study the full frequency robust H∞ filtering
problem.

It is clearly shown that Theorem 4.2 yields less con-
servative results than the FF method proposed in Lee
(2013), as well as the EF methods in Corollary 2, and
Lacerda et al. (2011). We consider polytopic case (degree
g = 1), by, respectively, connecting (49), (50), and (52)
to the systems in (48), the frequency responses of the fil-
tering error systems are depicted in Figs. 7, 8, 9. From
the results, it is clear that the singular values evaluated
in a certain frequency domain are always lower than the
robust H∞ performance estimated using Corollary 2 and
Theorem 4.2. This shows the efficiency of the proposed
method.

We assume that π
6 ≤ |θ | ≤ π

4 , and degree g = 1, the
initial conditions are chosen as x(0) = [0 0]T and x̂(0) =
[0 0]T . The ratio of

√∑∞
k=0 e

T (k)e(k)/
∑∞

k=0 wT (k)w(k)
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Fig. 7 Frequency response of the filtering error system with filter (49)
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Fig. 8 Frequency response of the filtering error system with filter (50)

can show the influence of the disturbance w(k) in (47) on
the filter error e(k) , and the plot of the ratio is shown
in Fig. 6. It can be seen that the ratio tends to a con-
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Fig. 9 Frequency response of the filtering error system with filter (52)
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Fig. 10 Value of (
√∑∞

k=0 e
T (k)e(k)/

∑∞
k=0 wT (k)w(k)) for the sys-

tem (48) connected with filters (51)

stant value 0.4896, which is less than the prescribed value
0.7173. It can be seen from Fig. 10 that the proposed method
has a better noise-attenuation performance over the existing
method.

6 Conclusions

This paper has investigated the problem of filtering design
a finite frequency for the linear time-invariant discrete-time
with polytopic uncertainties. The contribution of the paper
is to assume that the disturbance has energy limited on
LF/MF/HF ranges, and to use the gKYP in order to develop
new filter design conditions. Numerical experiments show
the advantage of the developed approach in comparison with
the existing results.
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