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Abstract In this paper, an efficient output feedback predic-
tive control synthesis based on a prespecified observer for
networked control systems is presented. The process of ran-
dom packet loss between the controller and the actuator is
described as Markov chain, and a missing data compensa-
tion strategy is induced to cope with the poor performance
caused by fading links. The provided model predictive con-
trol algorithm optimizes an infinite-horizon objective and
parameterizes the infinite-horizon control moves into a free
control move followed by output feedback. Further, the
corresponding constraints about recursive feasibility and
stochastic stability are given by utilizing the linear matrix
inequality technique. A numerical example is given to illus-
trate the applicability of the proposed method.

Keywords Networked system · Missing data · Model
predictive control · State observer · Output feedback

1 Introduction

In recent decades, network has inevitably been introduced for
information transmission in control zone since its excellent
characteristics, i.e., low cost, simple installation and high
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reality (i.e., Franze et al. 2015; Franze and Tedesco 2014;
Bai et al. 2012; Pin and Parisini 2011), which gives rise to
the so-called networked control system. Here, it can be seen
as a real-time feedback control system with control loops
via networks. However, the insertion of network will bring a
problem of data loss because of a series of complex factors by
Zhang et al. (2012), which could be one of sources of poor
performance and system instability. Many research papers
have appeared. Tomention a few, considering packet loss dur-
ing wireless communication, two approaches are developed
as well based on the Bernoulli packet loss model in Zhang
(2015). For control signals transmitted by the controller to
the plant, paper (Keller et al. 2016) proposes to estimate
the switching disturbance from an augmented state version
of the intermittent unknown input Kalman filter; recently,
sufficient stochastic stability conditions are established. A
self-triggered sampling scheme is proposed for a networked
control systemwith consideration of data losses and commu-
nication delays in Chen and Qin (2015); the next sampling
instant does not depend on online estimation of an event-
triggered condition and the successive measurement of the
state, which can be dynamically determined with respect to
the transmitted packet. In paper Zhang et al. (2016), for ran-
dom packet losses, a Bernoulli-distributed white sequence is
used to describe packet dropouts among agents in a stochas-
tic way, for deterministic packet losses, a switched system
with stable and unstable subsystems is employed to model
packet dropouts. It is easy to see that the above researches
seldom are involved in the application of model predictive
control.

Model predictive control(MPC), one of the advanced
control technique, refers to a class of computer control algo-
rithms that use an explicit process model to predict the future
response of a plant in paper (Sun et al. 2009). It provides
online solutions to optimal feedback control problems, so
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this method can be seen as a circular operation that a mini-
mum problem is solved to calculated optional control inputs
for a time horizon. Although many control sequences are
calculated, only the first one is implemented, at next instant,
the optimization problem is reformulated and solved with
new measurements obtained from the system in paper (Zhao
et al. 2010). Therefore, several industrial process models
as well as many performance index of importance can be
handled by predictive control, and for some references, the
stable problem of MPC is studied in Hung et al. (2014), Roy
et al. (2005), Yue et al. (2004), Chen et al. (2012) and Li
et al. (2005); the MPC for stochastic system is investigated
in Killian et al. (2015), Warren and Marlin (2003), Flem-
ing (2015) and Zhang et al. (2014). Most above results show
the advantages of MPC when the system states are measur-
able.

In the real industrial process, considering the complexity
of physical plant, the assumption of available of system states
will be optimistic. Thus, the output feedback strategy [refers
to Ding and Pin (2014)] is widely practical than the state
feedback designment. For developing the efficiency of the
output feedback control, a series of research results will be
given. A state observer that estimates plant states from the
output when it is available via the communication network
is used to generate a control signal; when the plant output
is not available from the network, necessary and sufficient
conditions for the exponential stability of the closed-loop
system are derived in terms of the networked dwell time
and the system parameters in Dritsas and Tzes (2007). Paper
Mayne et al. (2006) proposes an efficient output feedback
predictive control algorithm based on the state observer for
uncertain discrete system. In Niu et al. (2009), an estimation
method is introduced to cope with the effect of data dropout,
and an output feedback control law is designed to guarantee
the closed-loop stability. Aiming at the problem of predictive
output feedback control for networked control systems with
random communication delays and the analysis of closed-
loop networked control systems, the predictive time-varying
output feedback controller can guarantee system stability in
Yang et al. (2014).

Considering the conservative of state feedback synthesis
and the uncertainty networked problem, an efficient out-
put feedback predictive control synthesis with (guaranteed
stability) is presented in this paper, which is based on a
prespecified estimator. The process of random packet loss
between the controller and the actuator ismodeled asMarkov
chain, and amissing data compensation strategy is induced to
copewith the effectiveness of fading links. The provided syn-
thesis research papers optimizes an infinite-horizon objective
function, and specifically, the infinite-horizon control moves
are parameterized as a free control move, while the use of
a free control move is well practiced in current research
papers. Further, the corresponding constraints about recur-

sive feasibility and stochastic stability are given by a set of
LMIs.

2 Problem Formulation

A nominal description plant sampled periodically with sam-
pling interval Ts > 0 and described in discrete-time via

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(1)

where x(k), u(k) and y(k) are plant states, actuator inputs
and measured outputs, respectively. A, B and C are constant
matrices with appropriate dimensions.

Here, due to the existence of links with missing data
between controller and actuator, the stochastic variable
θ(k)εR will be induced to describe the data status for instant
k and the process of data loss satisfies discrete-time Markov
chain with two states (1 for successful transmission, 0 for
failure transmission). A natural assumption on θ(k) can be
made as

Prob {θ(k + 1) = 0|θ(k) = 1} = α

Prob {θ(k + 1) = 1|θ(k) = 0} = β
(2)

To minimize the effects caused by fading channel, a com-
pensation technique is applied to cope with the imperfect
channel

u(k) = θ(k)v(k) + (1 − θ(k))τu(k − 1) (3)

where v(k) are controller outputs, τ ∈ [0, 1] is a forgetting
factor. From (2), for successful transmission, u(k) = v(k),
otherwise, u(k) = τu(k − 1). As for h successive data loss,
u(k) = τ hu(k−h). Then, by themodel (1) and compensation
strategy (2), the closed-loop model is rewritten as follows:

x(k + 1) = Ax(k) + θ(k)Bv(k) + (1 − θ(k))τ Bu(k − 1)
(4)

Definition 1 For any initial state x(0), if the following
inequality

E

{ ∞∑
k=0

x(k)T x(k)
∣∣x(0)

}
< ∞

is satisfied, the closed-loop system is stochastically stable.

As comparison, this paper firstly considers the case that
the states are available, a state feedback schemewill be given.
Then, it will extend the scheme to the case that the states are
unavailable.
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3 State Feedback Control Based on Available
States

Suppose the states are measured fully, control data will be
transmitted to the actuator via communication links, inwhich
the data packets may loss. Paper (Zou et al. 2015) has talked
about corresponding recursive feasibility and stability prob-
lem. Here it only gives the optimization conditions with one
free control move and generalized contractiveness briefly, a
state feedback control law v(k + i |k) = F(k)x(k + i |k) will
be obtained.

By (1), (3) and defining z(k) = [x(k)T u(k − 1)T ]T , the
closed-loop system can be described as

z(k + 1) =
[
A + θ(k)BF (1 − θ(k))τ B

θ(k)F (1 − θ(k))τ I

]
z(k) (5)

which is an uncertainty stochastic system depending on
the stochastic variable θ(k). The optimization problem con-
cerned in this work is

minu(k+i |k) J∞
0 (k) s.t (1), (3), (4), (5) (6)

where J∞
0 (k) = J 10 (k)+ J∞

1 (k), J 10 (k) = zT (k|k)Sz(k|k)+
uT (k|k)Ru(k|k), J∞

1 (k) = E{∑∞
i=1{zT (k + i |k)Sz(k +

i |k) + uT (k + i |k)Ru(k + i |k)}. S = diag{S1 0}}, S1 >

0, R > 0 are suitable weightingmatrices. To derive an upper
bound of objective J∞

0 (k), it chooses the quadratic Lyapunov
function as

V (x(k + i + 1|k), u(k + i |k)) = xT (k + i + 1|k)Mθ(k)

× x(k + i + 1|k) + uT (k + i |k)Nθ(k)u(k + i |k)
S.t Mθ(k) > 0, Nθ(k) > 0 (7)

and follows the contractiveness condition:

E {V (k + i + 1|k) − V (k + i |k)} ≤
− E[zT (k + i |k)Sz(k + i |k) + uT (k + i |k)Ru(k + i |k)]

(8)

For system stability, it has x(∞|k) = 0, so V (∞|k) = 0,
then, by summing (8) from i = 1 to ∞, it gets the following
inequality:

max J∞
1 ≤ E {V (k + 1|k)} (9)

let

zT (k|k)Sz(k|k) + uT (k|k)Ru(k|k) + zT (k + 1|k)
× diag{Mθ(k), Nθ(k)}z(k + 1|k) ≤ γ (k)

(10)

where γ (k) is a nonnegative variable to be minimized.

Theorem 1 For the augmented closed-loop system (5), it
assumes the control law can be transmitted successfully at
instant k, the matrix S, R and factor τ are given, and the
contractiveness condition (8) and the optimization problem
(10) are satisfied to find u(k) and feedback F(k) to min-
imize the upper bound γ (k). By γΓ −1 = Γ̄ , Γ taking
{M0,M1,N0,N1,W0,W1,T0,T1} and Y1 = F M̄1.

(i) Constraint (10) is guaranteed by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ ∗ ∗
Ξ(k) M̄1 ∗ ∗ ∗
u(k) 0 N̄1 ∗ ∗

S1/21 x(k) 0 0 γ I ∗
R1/2u(k) 0 0 0 γ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11)

where the state Ξ(k) = A(k)x(k) + θ(k)Bv(k) + (1 −
θ(k))Bu(k − 1).

(ii) Considering the data loss, constraint (9) is satisfied by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄1 ∗ ∗ ∗ ∗ ∗
0 N̄1 ∗ ∗ ∗ ∗

AM̄T
1 + BY1 0 W̄1 ∗ ∗ ∗
Y1 0 0 T̄1 ∗ ∗
M̄T

1 0 0 0 γ S−1
1 ∗

Y1 0 0 0 0 γ R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (12)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄0 ∗ ∗ ∗ ∗ ∗
0 N̄0 ∗ ∗ ∗ ∗

AM̄T
0 τ BN̄T

0 W̄0 ∗ ∗ ∗
0 τ N̄ T

0 0 T̄0 ∗ ∗
M̄T

0 0 0 0 γ S−1
1 ∗

0 τ N̄ T
0 0 0 0 γ R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (13)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄1 ∗ ∗ ∗ ∗ ∗
0 T̄1 ∗ ∗ ∗ ∗

α1/2W̄ T
1 0 M̄0 ∗ ∗ ∗

(1 − α)1/2W̄ T
1 0 0 M̄1 ∗ ∗

0 α1/2T̄ T
1 0 0 N̄0 ∗

0 (1 − α)1/2T̄ T
1 0 0 0 N̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄0 ∗ ∗ ∗ ∗ ∗
0 T̄0 ∗ ∗ ∗ ∗

(1 − β)1/2W̄ T
0 0 M̄0 ∗ ∗ ∗

β1/2W̄ T
0 0 0 M̄1 ∗ ∗

0 (1 − β)1/2T̄ T
0 0 0 T̄0 ∗

0 β1/2T̄ T
0 0 0 0 T̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (15)

where the proof of Theorem 1 is similar to paper (Zou et al.
2015) and it only needs to make small changes.
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Remark 1 In this section, it only gives some constraints
about optimization conditions and generalized contractive-
ness briefly, which are different from paper Zou et al. (2015).
And the other problem (i.e., recursive feasibility and stability)
is not discussed. The above synthesis is just to be extended
to the following output feedback.

4 Output Feedback Control Based on State
Observer

Considering the complexity of physical plant, the states are
not fully measured, but the output information of system is
available. A state observer in Ding and Pin (2014) will be
applied to the system:

{
x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k) − Cx̂(k))

v(k) = Fx̂(k)
(16)

where the observer gain L and feedback gain F are to be
designed. It defines the estimation error as e(k) = x(k) −
x̂(k), and then, based on the system (1) and state observer
(16), the error dynamics can be derived as

e(k + 1) = (A − LC)e(k) (17)

Moreover, the control signals will be transmitted to
the actuator via imperfect channel, and a compensation
strategy (3) will remain to be utilized. Defining η(k) =
[x̂ T (k) eT (k) uT (k − 1)]T , the augmented closed-loop sys-
tem based on (4), (16) and (17) can be derived as

η(k + 1) =
⎡
⎣A + θ(k)BF LC (1 − θ(k))τ B

0 A − LC 0
θ(k)F 0 (1 − θ(k))τ I

⎤
⎦ η(k)

(18)

In the following, this paper will design an output feedback
predictive control law such that (18) is stochastically stable,
which includes an offline design of the observer gain and an
online synthesis approach to find a real-time control law.

4.1 Offline Observer Design

In this section, an offline observer design will be developed,
and it defines a quadratic function

ε(e(k)) = eT (k)Pe(k)e(k) (19)

and imposing (19) subject to the following contractiveness
condition:

ε(e(k + 1)) − δε(e(k)) ≤ 0 (20)

where δ ∈ [0, 1] is the decay rate. Then, the observer gain
L(k) is provided by the following Theorem 2.

Theorem 2 For the decay rate δ, if there exist Pe(k) > 0
and Ye(k) = Pe(k)L(k) satisfying:

[
δPe(k) ∗

Pe(k)A − Ye(k)C Pe(k)

]
≥ 0 (21)

Then, the stability of error dynamics can be guaran-
teed. In addition, the observer gain is obtained by L(k) =
Pe(k)−1Ye(k) .

According to Theorem 2, it easily gets the observer gain
L(k) = Pe(k)−1Ye(k), which is time invariant. However,
matrix Pe(k) and Ye(k) are changes at each sampling time.
For this, it can stochastically get a fixed value (L , Pe0, Ye0)
and induce a time-varying scalar π(k) satisfying π(k) > 0.
Thus, it has Pe(k) = π(k)Pe0 and Ye(k) = π(k)Ye0, which
is inspired by Ding and Pin (2014), Dritsas and Tzes (2007),
Mayne et al. (2006) and Niu et al. (2009).

Remark 2 Given the unavailable properties of system states,
the state observer is to reconstruct the original system state.
Here, it gives a simple scheme for design of observer, but
it will be suitable to the system of unmeasured state. When
e(k) → 0 with k → ∞, it has x(k) ≈ x̂(k). To enhance the
contractive speed of e(k), the user can choose suitable decay
rate δ.

Before further research, considering the estimation error
is uncertain, and it gives the bound of e(k) at any time k by
the following assumption.

Assumption 1 e(1)T Pe0e(1) ≤ ξ(1), the initial ξ(1) is a
prespecified constant. Then, at time k > 0, the bound of
e(k + 1) is followed as:

e(k + 1)T Pe0e(k + 1) ≤ ξ(k + 1) (22)

And ξ(k + 1) = min{ξ̃ (k + 1)/π(k − 1), δξ(k)}.

ξ̃ (k + 1) = γ (k − 1)

− x̂ T (k − 1)S1 x̂(k − 1) − uT (k − 1)Ru(k − 1)

− uT (k|k − 1)(Nθ(k−1) + R)u(k|k − 1)

− x̂ T (k) × S1 x̂(k) − x̂ T (k + 1|k − 1)

Mθ(k−1) x̂(k + 1|k − 1)

where x̂(k+1|k−1) = (A+θ(k−1)BF)x̂(k)+ (1−θ(k−
1))u(k − 1) + L(y(k) − Cx̂(k)).

4.2 Output Feedback Predictive Control Problem

On the one hand, when the system states are available, Sect. 3
has proposed a scheme for uncertainty system. On the other
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hand, the system states are not fully available. So part 4.1
designs an observer to achieve the reconstruction of system
states. Here, it will develop an output feedback predictive
control lawwith recursive feasibility andguaranteed stability.
The objective function can be given as:

minu(k+i |k) J∞
0 (k) s.t {(3), (16), (17), (18), (21)} (23)

where J∞
0 (k) = J 10 (k)+ J∞

1 (k), J 10 (k) = ηT (k|k)Sη(k|k)+
uT (k|k)Ru(k|k), J∞

1 (k) = E{∑∞
i=1{ηT (k + i |k)Sη(k +

i |k) + uT (k + i |k)Ru(k + i |k)}}, S = diag{S1, 0, 0}, S1 >

0, R > 0 are suitable weighting matrices, To derive an upper
bound on the objective (23), it chooses the quadratic Lya-
punov function as

V (x̂(k + i + 1|k), e(k + 1 + i |k), u(k + i |k))
= x̂ T (k+i+1|k)Mθ(k) x̂(k+i+1|k) + eT (k + 1 + i |k)

× Pe(k)e(k + i + 1|k) + uT (k + i |k)Nθ(k)u(k + i |k)
S.t Mθ(k) > 0, Pe(k) > 0, Nθ(k) > 0 (24)

Suppose V (k + i + 1|k) satisfies the following stability
condition at each sampling time k:

E
{
V (x̂(k + i + 1|k), e(k + 1 + i |k), u(k + i |k))
−V (x̂(k + i |k), e(k + i |k), u(k + i − 1|k))}

≤ −E
{
ηT (k + i |k)Sη(k + i |k) + uT (k + i |k)

×Ru(k + i |k)} (25)

For stability, it has η(∞|k) = 0, hence V (∞|k) = 0, by
summing (25) from i = 1 to ∞, the following inequality
condition is:

max J∞
1 (k) ≤ E {V (k + 1|k)} (26)

let

ηT (k|k)Sη(k|k) + uT (k|k)Ru(k|k) + ηT (k + 1|k)
× diag

{
Mθ(k) Pe(k) Nθ(k)

}
η(k + 1|k) ≤ γ (k) (27)

where γ (k) is a nonnegative variable to be minimized. Then,
based on (27), the optimization problem can be developed as

minu(k+i |k) J∞
0 (k) s.t (3), (17), (18), (24), (27) (28)

Theorem 3 For the closed-loop system (18), it assumes the
control signals can be transmitted at time k. The constant
matrices {S, R} and factor {τ , δ} are given, the contractive-
ness condition (25) and the optimization problem (27) are
satisfied to find u(k) and feedback F(k) , which minimizes

the upper bound γ (k). Then by taking γ P−1
e = P̄e, γΓ −1 =

Γ̄ , where Γ taking {M0, M1, N0, N1,W0,W1, T0, T1} and
Y1 = F M̄1.

(i) Constraint (29) is guaranteed by

⎡
⎢⎢⎢⎢⎣
1 − μ(k) ∗ ∗ ∗

Ξ(k) M̄1 ∗ ∗
u(k) 0 N̄1 ∗ ∗

S1/21 x(k) 0 0 γ I ∗
R1/2u(k) 0 0 0 γ I

⎤
⎥⎥⎥⎥⎦ ≥ 0 (29)

with Ξ(k) = Ax̂(k) + Bu(k) + L(y(k) − Cx̂(k)).
(ii)Considering the data dropouts, the contractiveness (25)

is satisfied if⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 P̄e ∗ ∗ ∗ ∗ ∗ ∗
0 0 N̄1 ∗ ∗ ∗ ∗ ∗

AM̄T
1 + BY1 LC P̄T

e 0 W̄1 ∗ ∗ ∗ ∗
0 (A − LC)P̄T

e 0 0 Ū1 ∗ ∗ ∗
Y1 0 0 0 0 T̄1 ∗ ∗
M̄T
1 0 0 0 0 0 γ S−1

1 ∗
Y1 0 0 0 0 0 0 γ R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

(30)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄1 ∗ ∗
0 Ū1 ∗
0 0 T̄1

α1/2W̄ T
1 0 0

0 α1/2Ū T
1 0

0 0 α1/2T̄ T
1

(1 − α)1/2W̄ T
1 0 0

0 (1 − α)1/2Ū T
1 0

0 0 (1 − α)1/2T̄ T
1

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
M̄0 ∗ ∗ ∗ ∗ ∗
0 P̄e ∗ ∗ ∗ ∗
0 0 N̄0 ∗ ∗ ∗
0 0 0 M̄1 ∗ ∗
0 0 0 0 P̄e ∗
0 0 0 0 0 N̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (31)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 P̄e ∗ ∗ ∗ ∗ ∗ ∗
0 0 N̄0 ∗ ∗ ∗ ∗ ∗

AM̄T
0 LC P̄T

e τ BN̄T
0 W̄0 ∗ ∗ ∗ ∗

0 (A − LC)P̄T
e 0 0 Ū0 ∗ ∗ ∗

0 0 τ N̄ T
0 0 0 T̄0 ∗ ∗

M̄T
0 0 0 0 0 0 γ S−1

1 ∗
0 0 τ N̄ T

0 0 0 0 0 γ R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

(32)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄0 ∗ ∗
0 Ū0 ∗
0 0 T̄0

(1 − β)1/2W̄ T
0 0 0

0 (1 − β)1/2Ū T
0 0

0 0 (1 − β)1/2T̄ T
0

β1/2W̄ T
1 0 0

0 β1/2Ū T
1 0

0 0 β1/2T̄ T
1

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
M̄0 ∗ ∗ ∗ ∗ ∗
0 P̄e ∗ ∗ ∗ ∗
0 0 N̄0 ∗ ∗ ∗
0 0 0 M̄1 ∗ ∗
0 0 0 0 P̄e ∗
0 0 0 0 0 N̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (33)

(iii) If (29), (30), (31),(32) and (33) are satisfied, then
e(k + 1)T Pe0e(k + 1) ≤ ξ(k + 1) for future time k and
ξ(k + 1) is prespecified.

Proof See “Appendix” for details. 	


Based on the above results, the whole output feedback
predictive control problem can be described as:

minu(k), Γ γ (k) s, t (18), (29) − (33)

Γ taking {M0, M1, N0, N1, ,W0,W1,

U0,U1, T0, T1}
(34)

Theorem 4 By the paper (Takács and Rohal’-Ilkiv 2012;
Dughman and Rossiter 2015; James et al. 2013) and the
closed-loop NCSs (18) with data loss, a feasible solution
determined by the optimization problem (34) at initial time
k is feasible for future time.

Proof By the similar analysis with paper (Pin and Parisini
2011; Ding and Pin 2014; Zou et al. 2015), ηT diag{M1, Pe,
N1}η ≤ γ (k) is always satisfied. Also the control signal can
be transmitted successfully at initial instant by the assump-
tion, that is, θ(k) = 1. So the solution {Γ (k),γ (k)} can be
obtained from optional problem (34) at initial time k. At
time k + 1, it can construct a solution {Γ (k), γ (k)}. Thus,
to prove recursive feasibility, it only proves the inequality
(29) (or (27)) is feasible at time k + 1. Applying Pe(k) =

(Pe0μ(k)γ (k))/ξ(k + 1), it has

ξ(k + 2) ≤ (ξ(k + 1)/(μ(k)γ (k))) × {�(k + 1)

−x̂ T (k + 1)S1 x̂(k + 1) − uT (k + 1|k)(R + Nθ(k))

× u(k + 1|k) − x̂ T (k + 2|k)Mθ(k) x̂(k + 2|k)
}

	

Then at time k + 1, two cases will be considered.(i)1 −→

1, that is, θ(k) = 1, θ(k + 1) = 1. It takes u(k + 1) =
u(k + 1|k) = F(k)x̂(k + 1) and F(k + 1) = F(k), then
x̂(k+2|k) = x̂(k+2|k+1) = Ξ(k+1). Furthermore, taking
M̄θ(k+1) = M̄θ(k) and γ (k + 1) = γ (k), it has Mθ(k+1) ≤
Mθ(k). Thus

ξ(k + 2) ≤ (ξ(k + 1)/(μ(k)γ (k))) × {γ (k + 1)

− x̂ T (k + 1)S1 x̂(k + 1) − uT (k + 1)(R + Nθ(k))

× u(k + 1) − Ξ T (k + 1)Mθ(k+1)Ξ(k + 1)}

If it chooses μ(k + 1)ξ(k + 1) = μ(k)ξ(k + 2), then

x̂ T (k + 1)S1 x̂(k + 1) + uT (k + 1)(R + Nθ(k))u(k + 1)

+ Ξ(k + 1)T Mθ(k+1)Ξ(k + 1) ≤ γ (k + 1)

− μ(k + 1)γ (k)

since the optional rule, γ (k + 1) ≤ γ (k), so it gets

x̂ T (k + 1)S1 x̂(k + 1) + uT (k + 1)(R + Nθ(k))u(k + 1)

+ Ξ(k + 1)T Mθ(k+1)Ξ(k + 1) ≤ (1 − μ(k + 1))γ (k)

which satisfies the (29) with k replaced k + 1;
(ii) 1 −→ 0,that is, θ(k) = 1, θ(k + 1) = 0, according to

the compensation strategy, u(k+1) take τu(k) and F(k+1)
take F(k), so x̂(k + 2|k) take x̂(k + 2|k + 1) = x̂(k +
2|k) = Ξ(k). Furthermore, if it takes M̄θ(k+1) = M̄θ(k) and
γ (k + 1) = γ (k), then Mθ(k+1) ≤ Mθ(k). Thus

ξ(k + 2) ≤ (ξ(k + 1)/(μ(k)γ (k))) × {γ (k + 1)

− x̂ T (k + 1)S1 x̂(k + 1) − τuT (k)(R + Nθ(k))

× τu(k) − Ξ(k)T Mθ(k+1)Ξ(k)}

If it chooses μ(k + 1)ξ(k + 1) = μ(k)ξ(k + 2), then

x̂ T (k + 1)S1 x̂(k + 1) + τuT (k)(R + Nθ(k))τu(k)

+ Ξ(k)T Mθ(k+1)Ξ(k) ≤ γ (k + 1) − μ(k + 1)γ (k)

since the optional rule, γ (k + 1) ≤ γ (k), so it gets

x̂ T (k + 1)S1 x̂(k + 1) + uT (k)(R + Nθ(k))u(k)

+ Ξ(k)T Mθ(k+1)Ξ(k) ≤ (1 − μ(k + 1))γ (k)
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which also satisfy (27).Thus, the feasible solution {Γ (k),γ (k)}
at instant k is feasible at time k+1; As for time k+ i(i ≥ 2),
similar conclusion can be obtained.

Theorem 5 For the closed-loop NCSs (18) with data loss
with paper (Ravi et al. 2009), a feasible solution solved by
the optimization problem Theorem 3 also drive the system
stochastic stable.

Proof For closed-loop NCSs (18), according to Theorem 4,
if optimization problem is feasible at sampling instant k0,
then it is feasible for all future time k > k0. Thus, γ can be
seen as a Lyapunov function of system (18), the evolution of
γ follows

γ (k + 1) − γ (k) ≤ −ηT (k)Sη(k) − uT (k)u(k) (35)

whenever the system state η �= 0, γ will decrease with the
speed γ (k + 1) − γ (k) ≤ −ηT (k)Sη(k). Therefore, γ (k) ≤
γ (k0). According to the contractiveness (25), it has

Σ∞
i=0E{ηT (k0 + i |k0)Sη(k0 + i |k0)
+ uT (k0 + i |k0)Ru(k0 + i |k0)} ≤ γ (k0)

(36)

choosing k0 = 0, According to the above analysis, it gets
E{∑∞

k=0 ηT (k)Sη(k)} < ∞, Taking � = λmin{S}, which
follows

E

{ ∞∑
k=0

ηT (k)η(k)

}
≤ (1/�)E

{ ∞∑
k=0

ηT (k)Sη(k)

}
< ∞

(37)

According to Definition 1, the stochastic stability of
closed-loop system is obtained. Besides, the estimation error
e(k) evolves by (34) such that e(k) → 0 as k → ∞, end. 	


5 Simulation Results

In this part, a DC servo control system is considered, which
consists of a DC motor, load plate, speed and angle sensors.
The model can be described as:{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(38)

where

A =
⎡
⎣1.12 0.213 −0.335

1 0 0
0 1 0

⎤
⎦

and B = [1 0 0]T ,C = [−0.1 − 0.1 − 0.1]. Due to
the system states are not available, it gets an observer gain

10 20 30 40 50
−0.5

0

0.5

1

1.5

Time k

θ(
k)

Fig. 1 Data status

L = [5.0772 4.6475 3.0905]T using the offline state
observer Theorem 2, where decay rate δ = 0.6. For uncer-
tainty communication links, it assumes the upper bound of
data loss hmax = 3, and the data status description is shown
in Fig. 1.

To prove the effectiveness of the proposed design, it
gives the corresponding simulation results. First, taking S =
I3, R = 1, it chooses the sampling instant k = 4 as initial
time, at current time, no data loss happen. For initial value,
the estimation state Xc4 = [0.3 1 0.3]T , X4 = [0 1 0]T
and U (4) = 0. Based on Theorem 3 and a forgetting fac-
tor τ = 0.6, it designs the different data missing rate when
making simulations;

On the other hand, it takes the data missing rate α =
0.05, β = 0.92, from the compensation strategy u(k) =
θ(k)u(k) + (1 − θ(k))τu(k − 1), it may be different effects
when τ taking different values.

During the simulation, it firstly considers the different
data loss rate, where α ∈ {0.05, 0.10, 0.20} and β ∈
{0.92, 0.85, 0.8}. Figures 2, 3 and 4 show the changes sys-
tem state {x1, x2, x3} and observer state {xc1, xc2, xc3},
respectively. Figure 5 represents the control inputs u at dif-
ferent data missing rate. It easily sees the system trajectories
changes caused by data packet dropout, and for this, through
the proposed theorem, it can get the suitable feedback gain
K to drive the system stable; besides, the observer states can
reconstruct the original states. The proposed theorems can
be proved to cope with different data missing rate.

Furthermore, when data missing rate takes solid value
at some time (from large-scale statistical probability, links
could have constant rate at a period of time), it could get bet-
ter control law with different factor. Figures 6, 7 and 8 show
the system state trajectories {x1, x2, x3} and observer state
{xc1, xc2, xc3}, and Fig. 9 shows the changes of inputs u.
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0.3

Time k

xc1 with α = 0.05 β = 0.92

x1   with α = 0.05 β = 0.92

xc1 with α = 0.10 β = 0.85

x1   with α = 0.10 β = 0.85

xc1  with α = 0.20 β = 0.8

x1    with α = 0.20 β = 0.80

Fig. 2 Observer state xc1, system state x1
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Time k

xc2 with α = 0.05 β = 0.92

x2   with α = 0.05 β = 0.92

xc2 with α = 0.10 β = 0.85

x2   with α = 0.10 β = 0.85

xc3  with α = 0.20 β = 0.8

x3    with α = 0.20 β = 0.80

Fig. 3 Observer state xc2, system state x2

It easily sees the different contractive speed of system state,
so, a suitable forgetting factor will improve the efficiency of
controller.

From above analysis, the following conclusions can be
drawn:

1. A common state observer fromTheorem 2 can realize the
reconstruction of the original state, and estimation state
follows the system state with a small error;

2. The control law computed can cope with the networks
with data missing, where the missing rate varies;

3. For the compensation strategy, a smaller forgetting factor
would improve the performance of controller by influ-
ence the convergence speed of system states.

5 10 15 20 25 30 35 40
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0.4

0.6

0.8

Time k

xc3 with α = 0.05 β = 0.92

x3   with α = 0.05 β = 0.92

xc3 with α = 0.10 β = 0.85

x3   with α = 0.10 β = 0.85

xc3  with α = 0.20 β = 0.8

x3    with α = 0.20 β = 0.80

Fig. 4 Observer state xc3, system state x3
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u with α = 0.05 β = 0.92
u with α = 0.10 β = 0.85
u with α = 0.20 β = 0.80

Fig. 5 System inputs u
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xc1 with τ = 0.4
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xc1  with τ = 0.8

x1    with τ = 0.8

Fig. 6 Observer state xc1, system state x1
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x3    with τ = 0.8

Fig. 7 Observer state xc2, system state x2
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Fig. 8 Observer state xc3, system state x3
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Fig. 9 System inputs u

Therefore, the proposed design of controller is effective-
ness for NCSs.

6 Conclusion

Compared with state feedback synthesis, the problem of
output feedback predictive control with one free control
move for NCSs with data loss has been investigated in this
paper. The random process of data missing is assumed to
satisfy the Markov chain, and a compensation technique
is used to minimize the effect by packet loss. Considering
the unavailable states, a common observer is pre-design to
reconstruct the original state, and an output feedback con-
troller with one free control move satisfying the optional
performance and stochastic stability is obtained. The effec-
tiveness of the proposed method is proved by simulation
results.

Appendix. Proof of Theorem 3

(i) According to (29), x̂(k|k) = x̂(k), e(k|k) = e(k),
η(k|k) = η(k) and the successful transmission at initial time
k, then (27) can be described as

x̂ T (k)S1 x̂(k) + uT (k)Ru(k) + x̂ T (k + 1)M1 x̂(k + 1)

+ uT (k)N1u(k) + eT (k + 1)Pe(k)e(k + 1) ≤ γ (k)

the error e(k+1) = e(k+1|k) = (A0−LC)e(k|k), according
to the upper bound of e(k), eT (k + 1)Pe0e(k + 1) ≤ ξ(k +
1) and Pe(k) = (μ(k)γ (k)Pe0)/ξ(k + 1), then the above
inequality is equal to

x̂ T (k)S1 x̂(k) + uT (k)Ru(k) + x̂ T (k + 1)M1 x̂(k + 1)

+ uT (k)N1u(k) ≤ (1 − μ(k))γ (k) (39)

multiplying (39) by γ −1 and substituting γ M−1
1 = M̄1,

γ N1 = N̄−1
1 , using Schur complement, (29) is obtained.

(ii)Based on the quadratic Lyapunov function defined in
(24), the contractiveness conditions (25) can be written as

E
{
ηT (k + i |k)Ψ T diag

{
Mθ(k+i+1|θ(k+i+1), Pe(k),

Nθ(k+i+1|k)|θ(k+i |k)
}
Ψ η(k + i |k) − ηT (k + i |k)

×diag
{
Mθ(k+i |k), Pe(k), Mθ(k+i |k)

}
η(k + i |k)}

+ E
{
ηT (k + i |k)Sη(k + i |k) + uT (k + i |k)R

×u(k + i |k)} ≤ 0 (40)
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where

Ψ (k) =
⎡
⎣A + θ(k)BF LC (1 − θ(k))τ B

0 A − LC 0
θ(k)F 0 (1 − θ(k))τ I

⎤
⎦ (41)

If θ(k + i |k) = 1, Eθ(k+i |k)=1diag{Mθ(k+i+1), Pe(k),
Nθ(k+i+1)}αdiag{M0, Pe, N0} + (1− α)diag{M1, Pe, N1},
the contractiveness condition is satisfied if and only if the
following inequality holds

(a) Ψ (k)Tθ(k)=1diag {W1,U1, T1} Ψ (k)θ(k)=1 − diag{M1,

Pe, N1} + diag {S1, 0, 0} + [F 0 0]T R[F 0 0] ≤ 0

(b) αdiag {M0, Pe, N0} + (1 − α)diag {M1, Pe, N1}
≤ diag {W1,U1, T1}

Pre- and post-multiplying (a) by diag{γ 1/2M−1
1 ,γ 1/2P−1

e ,
γ 1/2N−1

1 }, also pre- and post-multiplying (b) by diag{W−1
1 ,

U−1
1 , T−1

1 }, substituting γΓ −1 = Γ̄ , where Γ takes {M1,
N1, Pe, M0, N0,W1, U1, T1, W0, U0, T0} and Y1 = F M̄1,
according to Schur complement, (30) and (31) are obtained.
If θ(k + i |k) = 0, using above similar procedure, (32) and
(33) can be derived.

(iii) if (25) and (27) hold at sampling time k, then

ηT (k + 2|k)diag {
Mθ(k), Pe(k), Nθ(k)

}
η(k + 2|k)

+ x̂ T (k + 1|k)S1 x̂(k + 1|k) + uT (k + 1|k)Ru(k + 1|k)
≤ x̂ T (k + 1|k)Mθ(k) x̂(k + 1|k) + eT (k + 1|k)Pe(k)
× e(k + 1|k) + uT (k|k)Nθ(k)u(k|k)

x̂ T (k + 1|k)Mθ(k) x̂(k + 1|k) + eT (k + 1|k)Pe(k)
× e(k + 1|k) + uT (k|k)Nθ(k)u(k|k) ≤ �(k + 1)

where�(k+1)=γ (k)−x̂ T (k|k)S1 x̂(k|k)−uT (k|k)Ru(k|k),
since e(k + 1|k) = e(k + 1) and x̂(k + 1|k) = x̂(k + 1).
By above two inequalities, the following inequality can be
obtained.

eT (k + 2|k)Pe(k)e(k + 2|k) ≤ �(k + 1) − x̂ T (k + 1)S1

× x̂(k + 1) − uT (k + 1|k)(R + Nθ(k))u(k + 1|k)
− x̂ T (k + 2|k)Mθ(k) x̂(k + 2|k)

By e(k + 2|k) = e(k + 2) = (A0 − LC)e(k + 1) and
x̃(k + 2) = x̂(k + 2|k) = (A + θ(k)BF)x̂(k + 1) + (1 −
θ(k))τu(k − 1) + LCe(k + 1). so it has

eT (k + 2)Pe(k)e(k + 2) ≤ ξ̃ (k + 2) = �(k + 1)

− x̂ T (k + 1)S1 x̂(k + 1) − uT (k + 1|k)(R + Nθ(k))

× u(k + 1|k) − x̂ T (k + 2|k)Mθ(k) x̂(k + 2|k)

where ξ̃ (k + 2) follows the above assumption 1, besides,
since Pe(k) = π(k)Pe0. Then

eT (k + 2)Pe0e(k + 2) ≤ ξ̃ (k + 2)/π(k)

from above results and Theorem 2, it gets the upper bound
of estimation error at time k + 2

eT (k + 2)Pe0e(k + 2) ≤ ξ(k + 2)

= min
{
ξ̃ (k + 2)/π(k); δη(k + 1)

}

For any k > 1, with similar analysis, we get eT (k +
1)Pe0e(k + 1) ≤ ξ(k + 1).
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