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Abstract This paper proposes the application of a Basic
Variable Neighborhood Search algorithm in the coordi-
nated and simultaneous tuning of the parameters of damping
controllers known as power system stabilizer and thyristor-
controlled series capacitor–power oscillation damping. The
controllers are inserted into the multi-machine power system
New England (10 generators, 39 buses and 46 transmission
lines) in order to guarantee its small-signal stability.A current
injectionmodel for the thyristor-controlled series capacitor is
presented and incorporated into the current sensitivitymodel,
which is used to represent the electric power system and its
components. The performance of themethod proposed in this
work is compared to three other methods found in the liter-
ature: local search, iterated local search and particle swarm
optimization. The results show that, of the techniques ana-
lyzed, the Basic Variable Neighborhood Search is the most
efficient for this type of problem, presenting high conver-
gence rates and the shortest processing times with robust
solutions considering different scenarios with load varia-
tions.
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1 Introduction

Thedevelopment of new technologies and their incorporation
into the users lives makes society extensively dependent on
the use of electric energy. In order for consumers to be able
to use their equipment, electrical quantities such as voltage
and frequency must meet certain standards, and disruptions
in power supply should be avoided, i.e., the electric power
system (EPS) must operate in a safe and reliable manner.

In view of this, interconnections of EPSs increase reli-
ability, meeting the energy demand using different sources
and improving energy use according to the needs of different
interconnected regions. However, often the EPS intercon-
nections are achieved by the installation of long transmission
lineswith high inductances. This factor linked to an operation
with high loads and automatic voltage regulators (AVRs)with
high gains and low time constants, favors the emergence of
low-frequency electromechanical oscillations thatmay result
in instability of the EPSs (Anderson and Fouad 2003).

Stability can be defined as the ability of an EPS that func-
tions stably under normal operating conditions, to recover its
state of equilibrium after being subjected to a perturbation
(Kundur et al. 2004). Small-signal stability, the subject of
this work, considers small load variations in the system and
includes the study of electromechanical oscillatory modes
that can be identified according to their natural undamped
frequencies (Milano 2010). The most common electrome-
chanical oscillatory modes are classified as local (0.7–2.0
Hz) or inter-area (0.1–0.8 Hz) (Klein et al. 1991).

In order to introduce additional damping to the oscillatory
modes inherent to the EPSs, power system stabilizers (PSSs)
are often coupled to the control loop of the excitation sys-
tem of the synchronous generators (Demello and Concordia
1969; Talaq 2012). With tuned parameters, the PSS is able to
introduce additional damping mainly to local modes. How-
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ever, in some cases, its influence on the damping of inter-area
modes may be insufficient (Cai and Erlich 2005).

The use of flexible AC transmission systems (FACTS)
can optimize the performance of the EPS by controlling and
directing power flow (Zhang et al. 2006). Studies show that
when a power oscillation damping (POD) controller is cou-
pled to a FACTS device, the FACTS–POD set is able to
efficiently provide additional damping to inter-area modes
(Cai and Erlich 2005; Simoes et al. 2009; Menezes et al.
2016).

In this work, the FACTS device used is a series com-
pensator comprising a fixed capacitance in parallel with a
controlled reactor by thyristor called a thyristor-controlled
series capacitor (TCSC) (Del Rosso et al. 2003).

The damping controllers must be correctly tuned in order
to provide desired damping to the oscillatory modes. Some
classical techniques described in the literature have disad-
vantages such as the residue method (Yang et al. 1998; Valle
and Araujo 2015), which does not provide coordinated tun-
ing thus inhibiting its application in complex systems and
the decentralized modal control (DMC) (Araujo and Zaneta
2001; Valle and Araujo 2015) which requires an auxiliary
method to provide a quality starting point to achieve conver-
gence.

Stochastic methods such as metaheuristics are of note
in the coordinated tuning of supplementary damping con-
trollers, as they are able to find feasible solutions without
previous knowledge of the problem and independent of the
number of controllers or the complexity of the system with
reasonable computational times. Among the metaheuristics
applied to this type of problem are the particle swarm opti-
mization algorithm (Shayeghi et al. 2010; Menezes et al.
2016; Hasanvand et al. 2016), Bacterial Foraging Opti-
mization Algorithm (BFOA) (Abd-Elazim and Ali 2012),
Simulated Annealing (Abido 2000), in addition to methods
based on Genetic Algorithms (GAs) (Hassan et al. 2014;
Fortes et al. 2016).

In this article, a method based on the metaheuristic Basic
Variable Neighborhood Search (BVNS) is proposed to per-
form the coordinated tuning of the PSS and TCSC–POD
controllers. Variable neighborhood search algorithms are
methods that systematically explore exchanges in neighbor-
hood structures linked to a local search (Mladenović and
Hansen 1997). The original BVNS is adapted to work with
continuous coding, neighborhood structures based on posi-
tion exchanges and a local search stage using the concept of
sensitivity.

In order to evaluate the quality of the proposed method,
comparisons are performedconsidering algorithmsdescribed
in the literature: local search (LS) (Glover and Kochen-
berger 2003) and iterated local search (ILS) (Lourenço et al.
2010) that are local search algorithms, in addition to the
PSO which is a populational and bio-inspired algorithm

extensively used in several types of problems (Kennedy and
Eberhart 1995).

In this work, simulations are performed using a test sys-
tem known as New England (Araujo and Zaneta 2001). The
EPS is represented by the Current Sensitivity Model (CSM)
(Pádua Júnior et al. 2013). Finally, a model by current injec-
tion is presented for the TCSC device, which is incorporated
into the representation of the EPS by the CSM.

Considering the above, the main contributions of this arti-
cle are: (1) The implementation and analysis of the efficiency
of the BVNS algorithm proposed in the coordinated and
simultaneous tuning of the parameters of PSS and POD con-
trollers, taking into account different damping levels and load
variations; (2)modeling of the TCSC device by current injec-
tion for its incorporation into the CSM.

2 Current Sensitivity Model

TheCSM is based onKirchhoff’s current lawwith the current
balance equations being the algebraic equations of themodel.
The balance expressed in Eqs. (1) and (2) must be met in all
system buses and at all times during any dynamic process.

In Eqs. (1)–(2),�Igk is the terminal current of the genera-
tor connected to bus k,�Iki is the current flowing through the
transmission line from bus k to bus i withΩk being the set of
buses connected directly to k by means of a transmission line
and �Ilk is the current drained by the load connected to bus
k. The currents are linearized, and the real (r ) and imaginary
(m) components are considered.

0 = �Igkr −
∑

i∈Ωk

�Ikir − �Ilkr (1)

0 = �Igkm −
∑

i∈Ωk

�Ikim − �Ilkm (2)

The representation in the time domain for amulti-machine
system modeled by the CSM, consisting of nb buses and ng
generators, is expressed in Eqs. (3)−(6) (Pádua Júnior et al.
2013; Fortes et al. 2016).
[

�ẋ
0

]
=

[
J1 J2
J3 J4

] [
�x
�z

]
+

[
B1
B2

] [
�u

]
(3)

�x =
[[

�ω1···ng
] [

�δ1···ng
] [

�E ′
q,1···ng

]

[
�E f d,1···ng

]]T (4)

�u = [[
�Pm,1···ng

] [
�Vref,1···ng

] [
�Pl,1···nb

]

[
�Ql,1···nb

]]T (5)

�z = [[�θ1···nb] [�V1···nb]]T (6)

In Eqs. (3)−(6),�x is the vector of state variables consist-
ing of�ω (variations in the angular velocity of the generator
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Fig. 1 EPS buses with the TCSC installed

rotor), �δ (variations in the internal angle of the generator
rotor), �E ′

q and �Efd (variations in the internal voltage of
the quadrature axis and in the field voltage). The variables
�θ and �V (variations in the angles and in the magnitudes
of the EPS buses voltages) form the algebraic variables �z.
The vector of the input variables is�u formed by�Pm (vari-
ations in the mechanical input power of the generator),�Vref
(variations in the reference voltage of the AVRs), �Pl and
�Ql (variations in the active and reactive power of the loads).

The representation in the space of states is obtained by
eliminating the vector of algebraic variables according to
Eq. (7). The ways of obtaining the states matrix A and the
matrix of inputs B are presented in Eqs. (8) and (9).

�ẋ = A�x + B�u (7)

A = J1 − J2J4−1 J3 (8)

B = B1 − J2J4−1B2 (9)

3 Thyristor-Controlled Series Capacitor

The FACTS TCSC device is a series compensator composed
of a capacitance (C) in parallel with a reactor (L) controlled
by thyristors associated in antiparallel as shown in Fig. 1.
With the TCSC installed, it is possible to achieve different
levels of compensation of the transmission line reactance
from the firing angle of the thyristors.

3.1 Current Injection Model for the TCSC

Among themodels used to study stability, those based on cur-
rent injection generally present higher convergence speeds
for the power flow, some of these models can be found in
Freitas andMorelato (2001). Furthermore, the TCSCmodel-
ing by current injection facilitates its inclusion in the CSM,
justifying the adoption of this method. The model used in
this work is based on the current injectionmodel presented in
Shayeghi et al. (2010). The diagram inFig. 2 is used to deduce
the model, and the TCSC is represented by a capacitive reac-
tance xtcsc installed between buses k and i connected by a
transmission line with impedance Z̄ki expressed in Eq. (10).

The circulation of the current Īki expressed in Eq. (11)
by the capacitive reactance causes a voltage drop that can
be represented by a voltage source V̄tcsc as presented in Eq.

Fig. 2 EPS buses with the TCSC represented by an equivalent reac-
tance

Fig. 3 Current injection by the TCSC

Fig. 4 Currents balance in the buses common to the TCSC installation

(12). The transformation of the voltage source into a current
source Ītcsc gives Eq. (13). Finally, the currents Ītcsck and
Ītcsci are injected into buses k and i as shown in Fig. 3 and
expressed in Eqs. (14) and (15).

Z̄ki = rki + j xki (10)

Īki = V̄k − V̄i
rki + j (xki − xtcsc)

(11)

V̄tcsc = − j xtcsc Īki (12)

Ītcsc = − j
xtcsc

rki + j xki

V̄k − V̄i
rki + j (xki − xtcsc)

(13)

Ītcsck = Ītcsc (14)

Ītcsci = − Ītcsc (15)

The current injections are linearized around an operating
point, and the TCSC is incorporated into the CSM consider-
ing these injections in the currents balance for buses k and i
(Fig. 4) that are connected by a transmission line with the
TCSC installed, that is, in the algebraic equations of the
model.

From Fig. 4, it is possible to deduce Eqs. (16)−(19) that
represent the algebraic equations for the real (r ) and imagi-
nary (m) components, which are to be incorporated into the
CSM for buses k and i common to the TCSC installation.
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Fig. 5 Block diagram: generic structure of PSS and POD controllers

(a) (b)

Fig. 6 Block diagrams: control loop of the AVRs (a) and the TCSC
(b)

0 = �Igkr + �Itcsck,r −
∑

i∈Ωk

�Ikir − �Ilkr (16)

0 = �Igkm + �Itcsck,m −
∑

i∈Ωk

�Ikim − �Ilkm (17)

0 = �Itcsci,r −
∑

k∈Ωi

�Iikr − �Ilir (18)

0 = �Itcsci,m −
∑

k∈Ωi

�Iikm − �Ilim (19)

4 Power System Stabilizer and Power Oscillation
Damping

The PSS and POD controllers can be introduced to the sys-
tem to insert additional damping to the EPS. The structures
of these two controllers are similar; both have a gain, an
input washout filter and two lead-lag compensator blocks.
The generic structure of the PSS and POD is shown in Fig. 5.

In Fig. 5,�Vin and�Vout are the input and output signals,
respectively. The gain K acts on the amplification or attenua-
tion of the processed signal. Thewashout filter, formed by the
time constant Tω, has the function of attenuating the varia-
tion of the input signal and zeroing the controller response in
steady state. The lead-lag compensator blocks are responsi-
ble for phase compensation of the oscillatorymode of interest
using the time constants T1, T2, T3 and T4.

The difference between the controllers is in the operat-
ing mode and the input and output signals. In this work, the
PSS uses variations of the rotor angular velocity (�ωk) as
its input signal because it is an easily obtainable local sig-
nal. The controller inserts the output signal (�Vpssk ) into the
AVR control loop of the generator in which it is installed,
as shown in Fig. 6a, where Kak is the gain and Tak is the
time constant of the AVR.�E fdk

,�Vrefk and�Vk represent
the field, reference and terminal voltages of the generator k,
respectively.

The POD controller inserts an output stabilizing signal
(�Xpod) into the control loop of the FACTS. In this work,
the POD uses the variation of the active power of the trans-
mission line (�Pkm) in which the TCSC is installed as the
input signal, and this was chosen as it is a local signal and
so avoids the use of an auxiliary communication system, in
addition to have a high observability. It is also considered
a first-order model for the FACTS. The TCSC–POD output
stage is shown in Fig. 6b, where �Xref and �X tcsc repre-
sent the reference and TCSC reactances, and Ttcsc is the time
constant of the FACTS device.

On analyzing the block diagrams in Figs. 5 and 6, it is
possible to deduce the equations representing the dynamic
behavior of the controllers, which can also be found in Fortes
et al. (2016). With the modeling presented, the inclusion
of the PSS controller introduces three new state variables
into the model, which are expressed in Eqs. (20)−(22). The
output modulated by the PSS with respect to the field volt-
age of the synchronous generator is shown in Eq. (23). The
dynamic behavior of the POD controller is expressed in Eqs.
(24)−(26), the inserted stabilizer signal in Eq. (27) and the
state variable relating to the output signal in Eq. (28).

�V̇1k = �ω̇k Kpssi − 1

Tω

�V1k (20)

�V̇2k = 1

T2i
�V1k + T1i

T2i
�V̇1k − 1

T2i
�V2k (21)

�V̇pssk = 1

T4i
�V2k + T3i

T4i
�V̇2k − 1

T4i
�Vpssk (22)

�Ė f dk = Kak

Tak

(
�Vpssk + �Vrefk − �Vk

) − 1

Tak
�E f dk

(23)

�Ẋ1 = 1

Tωp

(
Kpod�Pkm − �X1

)
(24)

�Ẋ2 = 1

T2p

[(
1 − T1p

T2p

)
(
Kpod�Pkm − �X1

) −�X2]

(25)

�Ẋ3 = 1

T4p

{[
�X2 + T1p

T2p

(
Kpod�Pkm − �X1

)
]

(
1 − T3p

T4p

)
− �X3

}
(26)

�Xpod = �X3 + T3p
T4p

[
�X2 + T1p

T2p

(
Kpod�Pkm − �X1

)]

(27)

�Ẋ tcsc = 1

Ttcsc
(�Xpod + �Xref − �X tcsc) (28)

The parameters to be tuned by the optimization method
are the time constants T1i − T4i , T1p − T4p and the gains
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Kpss and Kpod. However, it is usual to consider the same
time constants for both compensator blocks, i.e., T1i = T3i
and T2i = T4i , with the same relation being true for the time
constants of the POD.

5 Coordinated Tuning Method for the PSS and
POD Controllers

In order for controllers to provide damping to the system
efficiently, ensuring small-signal stability and the desired
damping levels, their parameters must be tuned accordingly.
In this section, the optimization problem is defined and the
proposed tuning method based on the metaheuristic BVNS
is presented.

5.1 Definition of the Optimization Problem

The tuning of the PSS and POD controllers occurs with the
resolution of a constraint satisfaction problem, that is, act
on their parameters to obtain predetermined damping lev-
els, always taking into account the limits of the variables
involved.

In this work, the optimization problem is formulated as
shown in Eqs. (29)−(37), which is a modified version of
the objective function presented in Do Bomfim et al. (2000).
The objective function in Eq. (29) seeks to reduce the differ-
ence between the desired damping (ξdesi ) and the calculated
damping (ξ calci ) for all the m oscillatory modes of interest
as shown in Eq. (36), considering the limits of the set of
constraints expressed in Eqs. (30)−(35).

min F1(x) =
m∑

i=1

Gi (29)

s.t. Tmin
1 ≤ T1i ≤ Tmax

1 (30)

Tmin
2 ≤ T2i ≤ Tmax

2 (31)

Tmin
1p ≤ T1p ≤ Tmax

1p (32)

Tmin
2p ≤ T2p ≤ Tmax

2p (33)

Kmin
pss ≤ Kpssi ≤ Kmax

pss (34)

Kmin
pod ≤ Kpod ≤ Kmax

pod (35)

Gi =
{

0 if ξdesi ≤ ξ calci
ξdesi − ξ calci if ξdesi > ξ calci

(36)

Fig. 7 Desired displacement for the eigenvalues of interest

A sophisticated version of the objective function F1(x) is
presented in Eq. (37); the objective function F2(x) considers
additionally n scenarios of load variations for the EPS, thus
assigning a relative robustness to the tuning obtained.

F2(x) =
n∑

j=1

m∑

i=1

Gi, j (37)

Equations (38) and (39) can be used to obtain the cal-
culated damping (ξ calci ), where λi is the mode of interest i
obtained by calculating the eigenvalues of the state matrix A
expressed in Eq. (8), and σi and ωdi represent the real part
and the natural damped frequency of this oscillatory mode,
respectively.

λi = σi ± jωdi (38)

ξ calci = − σi

|λi | (39)

A graphical interpretation of the formulated problem is
shown in Fig. 7. Note that in obtaining the minimum value of
the objective function F1(x) or F2(x), which in the proposed
formulation is zero, it is expected that the eigenvalues of
interest have moved to a predefined region from the choice
of the desired damping (ξdesi ).

5.2 Basic Variable Neighborhood Search

Variable neighborhood search algorithms are simplemethods
that efficiently exploit the search space through systematic
exchanges in the neighborhood structures linked to a local
search stage, thus making it possible to obtain optimal solu-
tions, while maintaining the ability to avoid stagnation at a
local optimum (Mladenović and Hansen 1997). In this work,
a method is proposed to tune the PSS and POD based on a
BVNS algorithm. Figure 8 shows the algorithm pseudocode.
Adaptations for the proposed problem include a continuous
coding between 0 and 1, neighborhood structures based on
the exchange of the values stored in the solution vector and
a local search using the concept of sensitivity.
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Fig. 8 Pseudocode of Basic Variable Neighborhood Search

5.2.1 Continuous Coding

The controllers parameters are continuous variables formed
of time constants (seconds) and gains (pu). Thus, it is interest-
ing to perform a parameterization so that the variables in the
coding can be treated as dimensionless and in the same range
of magnitude (between 0 and 1); hence, a greater number of
possible neighborhood structures can be explored, expand-
ing the search capability of the method to different regions.
The proposed coding is obtained with Eqs. (40) and (41).

μn = xnmax − xnmin (40)

xni = xnmin + αiμ
n (41)

In Eqs. (40) and (41), μn is the scaling factor for the dif-
ference between the maximum (xnmax) and minimum (xnmin)
limits of any parameter n of the controllers, αi is a dimen-
sionless continuous variable between 0 and 1 that occupies
the position i of the solution vector used internally by the
BVNS. Finally, xni is the value of the n parameter in the i-
th position of the solution vector as it returns to its original
dimension.

In other words, the BVNS works with an internal coding
(αi ); however when it is necessary to calculate the objective
function for decision making, the method uses Eq. (41) to
return to the original dimensions (seconds and pu). A further
advantage of the proposed coding is that by ensuring that αi

is always between 0 and 1, it also guarantees that the param-
eters of the controllers will always be within their limits,
thus eliminating the need to penalize the objective function
to deal with infeasible solutions or even multi-objective opti-
mization.

5.2.2 Neighborhood Structures

A relevant task is to select the set Nk of neighborhood struc-
tures to be explored, where k = 1, 2, . . . , kfinal. With the
proposed coding, it is possible to use neighborhood struc-
tures based on position exchanges as shown in Fig. 9.

(a)

(b)

Fig. 9 Neighborhood structure: exchange in two (a); three (b) posi-
tions

The neighborhood structures perform exchanges between
two or more positions (stored values) of the solution vector
with these positions being defined randomly after choosing
between two sets. The first set is formed by the time constants
and the second set by the gains of the controllers. The sets are
defined so that it is possible tomaintain the physicalmeaning.
The neighborhood structure selects one of the sets and defines
the positions in this set that will have the values changed.

The greater the number of exchanges to generate a neigh-
boring solution, the greater the possibility of leaving a local
optimumand exploring other regions; hence, theBVNSstarts
with simple structures and evolves to more complex ones.

5.2.3 Local Search

The implemented LS is based on the concept of sensitiv-
ity and considers small variations in the values stored in the
solution vector, and the LS pseudocode is shown in Fig. 10.
Initially, a parameter is randomly chosen to suffer change,

Fig. 10 Local search pseudocode

Fig. 11 Variation of a parameter in the local search
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Fig. 12 Proposed solution vector for the optimization methods

then a positive variation is applied and the objective func-
tion is evaluated. If there is an improvement in the objective
function, another positive variation is applied and the pro-
cess continues until there is no improvement or the limit for
the parameter is reached. The successive variations must also
cease if the limit of variations nv for the same parameter is
reached; this limit is defined in order to avoid parameters
migrating excessively to their extremes causing cycling dur-
ing the process.

When, on applying a positive variation, the objective func-
tion of the generated solution is worse than the original,
the variation to be applied must be negative and the pro-
cess works in a similar manner to that described for positive
variations. The variations consider ns search parameters ran-
domly selected during the LS. The variation in a parameter
i is expressed in Eq. (42), where x ′ is the original solution,
�x is the small variation and z is the solution vector after
the variation. Figure 11 shows the possible variations in a
parameter.

z(i) = x ′(i) ± �x (42)

5.3 Coding of the Optimization Methods

The solution vector is shown in Fig. 12,where each controller
has three parameters to be tuned (two time constants and one
gain). The first positions are occupied by the time constants
followed by the gains, thus dividing into two sets.

6 Simulations and Results

The methods used to tune the parameters of the controllers
were implemented usingMATLAB software and a computer
with an Intel Core I7 6700 processor and 16 GB of RAM.

The simulations were performed in a test system known as
New England that has 10 generators, 39 buses and 46 trans-
mission lines. The single-line diagram of the test system is
shown in Fig. 13, where Area 1 is compactly represented by
the equivalent generator G10 (New York system) and Area 2
by the other generators (New England system); its complete
description can be found in Araujo and Zaneta (2001). The
initial conditions for the simulated scenarios are obtained
by calculating the power flow with the Newton–Raphson
method.

6.1 Dynamic Analysis of the Test System

The calculation of the initial conditions makes it possible
to obtain the state matrix. The dominant eigenvalues of the
state matrix, as well as the natural undamped frequencies
(ωn = |λi |

2π ) and the damping rates (ξ ) are given in Table 1.
There are nine oscillatory modes, eight local (λL1 − λL8 )

and one inter-area (λI ), and this conclusion is based on the
analysis of the natural undamped frequencies and the par-
ticipation factors (Kundur 1994). On analyzing Table 1, it
is possible to conclude that the system at this point of oper-
ation is unstable, since the inter-area mode and three local
modes (λL1, λL4 e λL8 ) have positive real parts. Moreover,
the stable modes are weakly damped. Thus, the installation
of three PSSs controllers and one TCSC–POD should lead
the system to stability; however, in this configuration, the
controllers are not able to increase the damping levels of all
oscillatory modes to desired levels, as presented in Menezes

Fig. 13 One-line diagram of
the New England system
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Table 1 Dominant eigenvalues of the New England system

Modes Eigenvalues ξ ωn (Hz)

λL1 0.0549 ± j6.8700 −0.0080 1.0934

λL2 −0.2129 ± j7.1722 0.0297 1.1420

λL3 −0.1968 ± j8.2651 0.0238 1.3158

λL4 0.1483 ± j5.9635 −0.0249 0.9494

λL5 −0.1195 ± j6.4838 0.0184 1.0321

λL6 −0.2693 ± j8.1015 0.0332 1.2901

λL7 −0.2433 ± j8.3173 0.0292 1.3243

λL8 0.1641 ± j6.3721 −0.0257 1.0145

λI 0.0216 ± j3.9392 −0.0055 0.6270

et al. (2016). Based on this, it is proposed to install a con-
troller for each oscillatory mode, eight PSSs (local modes)
and one TCSC–POD (inter-areamode)with the aim of ensur-
ing small-signal stability and increasing the damping of all
modes to desired levels.

Simulations not presented in this work were performed
to determine the best location for the controllers, and it was
considered the participation factors for the PSSs (Kundur
1994) and the open-loop transfer function (OLTF) for the
POD (Moura et al. 2012). Generators G1, G2, G3, G4, G5,
G7, G8 and G9 were identified as the best locations to install
the PSSs. As for the POD, the OLTF shows that the trans-
mission line between buses 30 and 31 has a large distance
between the pole of interest and its respective zero, justifying
its installation in this transmission line. The compensation
applied by the TCSC is set at 10% and the time constant Ttcsc
at 0.005 s.

6.2 Simulated Scenarios and Parameters of the Methods

The BVNS proposed for the coordinated tuning of the PSS
and POD controllers is compared with three methods: LS,
ILS and PSO. For each method, 200 tests were performed
in each of the three simulated scenarios: ξdesi ≥ 10% and
ξdesi ≥ 15% using the objective function F1(x) from Eq.
(29) and ξdesi ≥ 15% with the objective function F2(x) from
Eq. (37).

The objective function F1(x) considers only the loading of
the Base Case. The objective function F2(x) considers n load
variations in the system around the Base Case, as follows:

– Base case (n = 1): load conditions considered as given
in Araujo and Zaneta (2001);

– Case 1 (n = 2): an increase of 5% in reactive loads;
– Case 2 (n = 3): a 5% decrease in reactive loads;
– Case 3 (n = 4): a 5% decrease in active and reactive
loads;

– Case 4 (n = 5): a 5% decrease in active loads;

Table 2 Limits of the parameters of the PSS and POD controllers

Limit T1i T2i Tp1 Tp2 Kpssi Kpod

Lower 0.10 0.01 0.05 0.10 1.00 0.05

Upper 1.50 0.10 0.10 1.00 12.0 0.50

– Case 5 (n = 6): a 5% decrease in active loads and a 5%
increase in reactive loads;

– Case 6 (n = 7): a 5% increase in active and reactive
loads;

– Case 7 (n = 8): a 5% increase in active loads;
– Case 8 (n = 9): a 5% increase in active loads and a 5%
decrease in reactive loads.

The stop criterion for the methods is the limit of objective
function evaluations (2500) or obtaining theminimumdamp-
ing for all the oscillatory modes in the scenario under analy-
sis, while meeting the restrictions shown in Eqs. (30)−(35).
The limits of the time constants (seconds) and gains (pu) are
defined in Table 2; these limits are based on values found in
the literature as in Abido (2000) and Fortes et al. (2016).

The BVNS parameters were defined from a series of pre-
liminary tests considering the New England system with 27
parameters to be tuned (TCSC–POD and 8 PSSs). From the
tests it is possible to conclude that the value of ns should
not be close to the number of positions of the solution vec-
tor (ns ≥ 20); in this case the BVNS works basically as a
local search, which can stagnate the evolution of the method
when finding a local optimum. However, the value of ns
should not be too small (ns ≤ 5), since the local search
would have few possibilities to find better solutions. The
maximum variation in the local search should not be large
(nv�x ≤ 0.25), in order to avoid the variables migrating
excessively to their extremes. In addition, the variation �x
should be small (�x ≤ 0.05) so that quality solutions are not
ignored when applying variations. The set of neighborhood
structures should generate solutions that are capable of leav-
ing a local optimum without restarting the process, i.e., the
number of exchange positions should be much smaller than
the total number of positions.

Considering the above, the BVNS parameters were
defined based on the best performance obtained: ns =
10, nv = 5 and �x = 0.04. The set of neighborhood struc-
tures Nk is formed by:

– (k = 1): 2 positions of the solution vector are changed;
– (k = 2): 3 positions of the solution vector are changed;
– (k = 3): 4 positions of the solution vector are changed;
– (k = kfinal): 8 positions of the solution vector are

changed;
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Table 3 Performance of the optimization methods in the coordinated tuning of PSS and POD controllers

Method Scenario (%) Convergence rate (%) Time of convergence (s) No. of obj. func. evaluations

Min. Max. Avg. Min. Max. Avg.

LS F1 − ξdesi ≥ 10 100 1.38 75.17 22.68 3 287 88

F1 − ξdesi ≥ 15 92.0 19.94 611.05 178.07 64 2202 635

F2 − ξdesi ≥ 15 64.0 501.78 2588.11 1803.49 451 2339 1612

ILS F1 − ξdesi ≥ 10 100 1.96 80.54 25.32 4 231 75

F1 − ξdesi ≥ 15 93.5 24.19 679.72 166.82 71 2008 504

F2 − ξdesi ≥ 15 75.5 516.68 2643.14 1673.93 432 2224 1389

PSO F1 − ξdesi ≥ 10 100 4.97 97.31 31.91 31 525 182

F1 − ξdesi ≥ 15 86.0 27.01 554.39 207.85 128 2485 1021

F2 − ξdesi ≥ 15 37.0 656.81 2446.55 1892.78 669 2467 1940

BVNS F1 − ξdesi ≥ 10 100 1.82 64.72 21.50 4 208 68

F1 − ξdesi ≥ 15 99.5 22.78 536.11 124.46 69 1703 388

F2 − ξdesi ≥ 15 93.0 455.63 2602.72 1310.62 393 2306 1163

The pseudocode and parameters used by the LS are similar
to the local search stage of the BVNS. The difference is in
the random generation of the initial solution (in the BVNS,
it comes from the neighborhood structure) and that there is
no stop condition to limit the search parameters (ns), and the
method ends when the objective or the limit of evaluations is
reached.

The ILS method generates the initial solution and goes
through a perturbation stage (x ′(i) = |x(i) − 1|), where
two of the solution vector parameters are randomly selected
and their values are replaced by the difference in modulus
between their current values x(i) and 1, thus taking on new
values x ′(i). The local search stage is the same used by
BVNS. The acceptance criterion considers the best solutions
found.

Finally, the PSO has the following parameters: The popu-
lation size is 30 particles, the acceleration constants c1 and c2
are set at 2.15 and the inertia factor decays linearly with the
number of iterations (W ∈ [0.3, 1.5]). More details on the
methods presented in this section can be found in Kennedy
and Eberhart (1995),Mladenović andHansen (1997), Glover
and Kochenberger (2003) and Lourenço et al. (2010).

6.3 Performance Evaluation of the Optimization
Methods

Table 3 presents the performance of the optimization meth-
ods showing the convergence rates, the processing times and
the number of evaluations of the objective function required
for convergence. In this work, convergence is considered as
obtaining a feasible solution that meets the objective of the
scenario, within the limit of 2500 evaluations.

On analyzing Table 3, it can be concluded that all meth-
ods were able to achieve 100% convergence for the simplest

scenario (F1−ξi ≥ 10%), where the BVNS and LSmethods
required the shortest processing times on average.

On making the optimization problem more complex by
increasing the desired damping and adding different load
conditions, the success rate of the methods decreased; for
example, the PSO was successful in only 37% of the tests
for the most complex scenario. Again, the BVNS stood out
with convergence rates close to 100% and with the shortest
average processing times, it was 25.39 and 21.70% faster
than the ILS (the second best method in this regard) for the
intermediate and most complex scenarios, respectively.

Although a simplemethod, the LSwas superior to the oth-
ers with respect to the minimum processing time in almost
all scenarios. This is justified because it is a method depen-
dent on the initial solution and is most effective when the
desired solution is near to the start solution. The excellent
performance of the BVNS is based on the ability of the local
search to find optimal solutions, but it still has the capacity
to leave a local optimum and explore different regions with
changes in neighborhood structure; hence, themethod is able
to achieve a better performance.

The results presented in this section show that of the tested
methods, theBVNS is the best adapted for the problem.Thus,
the BVNS is used to tune the controllers in the test system.
Figure 14 shows the lowest and the highest damping among
the modes of interest for each evaluation of the objective
function, as well as the steps of the BVNS until convergence
considering a test performed for the F1 − ξdesi ≥ 10% sce-
nario.

6.4 Small-Signal Stability with PSS and POD Included

In this section, the analysis of small-signal stability considers
only the most complex scenario (F2 − ξdesi ≥ 15%), since
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Fig. 14 Dynamics of the processing of the BVNS to tune the con-
trollers

Table 4 Gains (pu) and time constants (seconds) of the PSS and POD

Devices K T1 = T3 T2 = T4 Tw

PSS G1 9.8814 1.1481 0.0507 10

PSS G2 6.0704 0.6697 0.0638 10

PSS G3 6.0598 0.6560 0.0540 10

PSS G4 4.8161 0.6240 0.0658 10

PSS G5 3.9515 0.4706 0.0417 10

PSS G7 2.7230 0.4002 0.0699 10

PSS G8 6.1523 0.7099 0.0360 10

PSS G9 5.4370 0.3176 0.0907 10

POD 0.4750 0.0500 0.7200 1

Table 5 Dominant eigenvalues with PSS and POD installed

Mode Eigenvalues ξ ωn(Hz)

λL1 −1.0749 ± j6.6536 0.1595 1.0727

λL2 −1.2454 ± j6.8634 0.1785 1.1102

λL3 −1.2529 ± j8.0752 0.1533 1.3006

λL4 −0.8148 ± j4.9637 0.1620 0.8006

λL5 −1.0210 ± j6.3533 0.1587 1.0241

λL6 −1.2629 ± j7.2679 0.1712 1.1741

λL7 −1.0842 ± j7.0356 0.1523 1.1330

λL8 −0.9454 ± j5.8354 0.1599 0.9408

λI −0.5389 ± j3.4717 0.1534 0.5592

an adjustment that solves this scenario is also valid for the
others. Table 4 shows a tuning found by BVNS, which was
randomly selected from all the tests performed. The time
constant of the washout filter (Tw) is set previously and is
not tuned by the method. Table 5 shows the eigenvalues of
the test system with the inclusion of the damping controllers
tuned according to the data shown in Table 4.

The inclusion of the PSS and TCSC–POD properly tuned
made the test system stable, since all the oscillatory modes
of interest have a real negative part and present adequate

Fig. 15 Displacement of the eigenvalues of interest

Fig. 16 Variation of the angular speed of generator G9 of the test sys-
tem

damping levels, guaranteeing good functioning of the EPS
from the point of view of the small-signal stability.

To better understand the stability analysis in the frequency
domain, the displacement of the eigenvalues in the complex
plane for the Base Case after inclusion of the PSS and POD
is shown in Fig. 15.

On analyzing Fig. 15, it can be concluded that all eigen-
values have been shifted to the predefined region as desired.
It would be possible to further shift the eigenvalues to the left
side of the complex plane, but it would require a greater effort
from the controllers (higher gains). Furthermore, if the limits
of the controllers parameters and the limit of 2500 evalua-
tions were maintained, the complexity of the optimization
problem would increase considerably by requiring a higher
damping of the oscillatory modes, which would lead to a
decrease in the convergence rates and a small increase in the
processing times for the optimization methods. However, the
damping levels required in this work provide a safety mar-
gin in the operation of the SEP with respect to small-signal
stability, as shown in Fig. 15.

For the analysis of the stability in the time domain, a 5%
step-like perturbation in the mechanical power of generator
G2 (system reference) is considered. The variation in the
angular velocity of generator G9 after the perturbation is
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Fig. 17 Damping rates of the oscillatory modes considering load variations in the New England system

shown in Fig. 16, considering the scenarios without and with
the inclusion of the PSSs and the TCSC–POD controllers.

The curve of the system without the inclusion of the con-
trollers is characteristic of an unstable system, since it is
composed of oscillations of increasing amplitudes. With the
inclusion of the controllers, the system is stable as the curve
related to this scenario is composed of oscillations of decreas-
ing amplitude with the final value tending to zero.

Finally, the damping coefficients of the modes of interest
with the n load variations considered in the last scenario are
shown in Fig. 17. The tuning ensures damping (ξ ) of at least
15%for allmodes, regardless of variations (active or reactive)
of up to 5% that occur in the load conditions of the EPS.

7 Conclusions

In this work, a BVNS algorithm was proposed to perform
the coordinated and simultaneous tuning of the parameters
of PSS and TCSC–POD damping controllers. The objective
was to introduce additional damping to low-frequency elec-
tromechanical oscillations, and thus ensure the small-signal
stability of the New England test system. For this, model-
ing of the TCSC by current injection was presented, which
allowed its inclusion in the CSM used to represent the EPS.

The proposed BVNS method obtained high convergence
rates for the simulated scenarios, as well as low processing
times compared to other threemethods used in this work (LS,
ILS and PSO). The dynamic analysis of the system was per-
formed considering the inclusion of the PSS and POD tuned
by the BVNS, and the system became stable with desired
damping levels regardless of load variations of up to 5%,

which shows the robustness of the solutions found by the
method.

In view of the above, the BVNS is accredited as a quality
tool in the coordinated tuning of damping controllers, being
possible the exploration of the method in other important
applications in the analysis of the small-signal stability. A
feature of the BVNS that should be explored in future works
is the ability to find an optimal solution quickly, especially
when the initial solution is close to the desired solution or if
the search space is not verywide. However, it should be noted
that the method may require higher processing times when
the search space is very wide, in this case, a possible solution
would be the discretization of the entire search space, thus
reducing the number of possible solutions for exploration.
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