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Abstract This paper deals with the robust control of an
uncertain conduction–convection system in the framework
of probabilistic control design based on both the geomet-
ric control and the scenario optimization approach. Thus,
a robust control strategy that copes with parameter uncer-
tainties is proposed for a heated rod taken as an application
example of a conduction–convection system. The design
approach consists in two steps. In the first step, assuming
a nominal model, a state feedback that yields a stable lin-
ear lumped parameter system, of first order, in closed loop
is designed by means of geometric control theory. The sta-
bility of the resulting closed-loop system is demonstrated
based on the perturbation theorem from semigroup theory.
The second step consists in defining the input reference of the
designed state feedback by a structured robust controller. The
parameter tuning of the structured controller is formulated
as a semi-infinite (or robust) optimization problem which
is, then, relaxed using the scenario approach leading to a
standard finite optimization problem. The solution of this
scenario optimization problem is achieved using a genetic
algorithm. The proposed control strategy is adopted to cope
with parameter uncertainties in the problem of heating a steel
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rod. The effectiveness of the proposed robust control strategy
is demonstrated by simulation.
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1 Introduction

Most physical systems are distributed in nature, i.e., the char-
acteristic variables (states, controls and outputs) depend on
several independent coordinates that are often space and time
variables (Christofides 2001; Li and Qi 2010; Ray 1989;
Singh 1977). These systems are termed distributed parameter
systems (DPSs), and their dynamic behavior is described by
partial differential equations (PDEs) involving bounded vari-
able parameters that represent uncertainties. To ensure both
stability and desired performance specifications, in closed
loop, despite parameter uncertainties, a robust controller
must be implemented.

Robust control theory of DPSs is an active research area
and constitutes a challenging field (Christofides 2001; Cur-
tain and Zwart 1995; Keulen 1993). A survey of the different
established developments in this field can be found in Padhi
and Faruque (2009). For DPSs, which are of infinite dimen-
sion, the design of a robust controller is more difficult and
few contributions are reported in the literature (Armaou and
Christofides 2001; Christofides 1998; Christofides andBaker
1999; Christofides and Daoutidis 1998; Ding et al. 2009).
A straightforward approach, termed early lumping, consists
in approximating the DPS by a lumped parameter system
(LPS) commonly obtained by discretization of either the
PDEs or their solution (Li and Qi 2010). The aim is to
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exploit the existing robust control theory for lumped param-
eter systems (LPSs) that provides powerful controller design
methods. This approachpresents the drawback that it requires
an approximate LPS with a high dimensionality (order) to
capture the dynamics of the original DPS. Consequently, due
to the dimension of the obtained LPS, the design of the robust
controller is a complex and seldom tractable task, being NP-
hard (Alamo et al. 2015). An alternative approach, termed
late lumping, consists in using directly the PDE model with-
out any approximation. This approach, also, leads toNP-hard
robust optimization problems, in infinite-dimensional space,
which remains NP-hard even though it is discretized (Borzì
and Schulz 2012).

Robust control ofLPSshas attained a certain level ofmatu-
rity, and sophisticated design methods have been developed.
For robust control of LPSs, twomajor approaches can be dis-
tinguished (Calafiore and Campi 2006; Petersen and Tempo
2014). The first approach, termed worst-case design, tries to
enforce the design constraints over the domain of potential
uncertainties (Calafiore and Campi 2006; Campi et al. 2009;
Toscano 2013). This approach leads to robust (semi-infinite)
optimization problems, which are classified NP-hard, and
their degree of complexity increases with the dimension of
system (Alamo et al. 2015; Blondel and Tsitsiklis 1997,
2000; Toscano 2013). The second approach, which is an
interesting and promising alternative to the worst case, is the
probabilistic robust design (Alamo et al. 2015; Calafiore and
Campi 2006; Dabbene and Tempo 2010; Tempo et al. 2013).
This approach can be seen as a relaxation of the robust opti-
mization problem by a random sampling of the constraints.
In this case, a standard optimization problem with a finite
number of constraints is obtained and solved with a risk of
violation of the desired performances for a very small frac-
tion of uncertainties (Calafiore and Campi 2006; Dabbene
and Tempo 2010). Among the probabilistic robust design
methods, the scenario approach is a well-established method
that can tackle robust optimization problems (Calafiore and
Campi 2006; Campi et al. 2009; Tempo et al. 2013). This
non-sequential approach has been applied with success to
solve several control design problems (Calafiore and Campi
2006; Campi et al. 2009).

In this work, based on the scenario approach for non-
convex robust optimization problems (Grammatico et al.
2014), a robust control strategy is proposed for an uncertain
conduction–convection system. To the best knowledge of the
authors, the probabilistic robust design was never applied for
DPSs, which makes the present work a first contribution in
this field. The main idea is to overcome the NP-hardness of
the robust optimization problem due to the high dimensional-
ity of the linear diffusion–reaction equation. From this point
of view, it is proposed first to design, based on the characteris-
tic index from geometric control (Christofides and Daoutidis
1996), a state feedback that ensures both output-tracking

and stabilization in closed loop. Then, to cope with param-
eter uncertainties, a structured linear robust controller that
defines the input reference of the state feedback is designed
using the scenario approach. For the design of the struc-
tured robust controller, a non-convex robust optimization
problem is formulated where the objective is the minimiza-
tion of a performance index, with respect to the controller
tuning parameters, subject both to stability and robustness
constraints. This constrained non-convex robust optimiza-
tion problem is then relaxed by the scenario approach. The
resulting non-convex standard finite optimization problem is
solved by a genetic algorithm. Note that this design approach
of the structured robust controller can be applied to linear
LPSs, which constitutes another contribution of the present
work. The performance of the proposed control strategy is
demonstrated, through simulation, in the case of problem of
heating a steel rod with uncertain radius and physical param-
eters. The objective is to achieve a desired set point for the
average temperature, along the rod, despite these parameter
uncertainties.

The rest of the paper is organized as follows: the control
problem of a heated rod, taken as an example of conduction–
convection system, is presented in Sect. 2. Section 3 is
devoted to the proposed robust control strategy. In the first
subsection, a geometric control law that enforces the output-
tracking is designed in the framework of geometric control
based on the characteristic index concept and the stability of
the resulting closed-loop system is demonstrated using the
perturbation theorem from semigroup theory. In the second
subsection, a design approach of a structured robust con-
troller is proposed and applied to define the reference input
of the state feedback to enhance the performance. The design
problem is formulated as a semi-infinite optimization prob-
lem,which is relaxed using the scenario approach leading to a
standard finite optimization problem. An application exam-
ple that illustrates, by simulation, the effectiveness of the
proposed control strategy, concerning the problem of heat-
ing a steel rod with uncertain radius and physical parameters,
is given in Sect. 4, while Sect. 5 concludes the paper.

2 Control Problem Statement

As an example of conduction–convection system, let us con-
sider a one-dimensional metal rod, of length L , heated with
a distributed heat flux Q′′(t) (Fig. 1). It is assumed that the
rod is subject to heat exchange, across the lateral sides, with
the environment and both boundaries are in contact with the
surrounding medium. The energy balance, in the case of a
cylindrical rod of radius R, yields the following model (Far-
low 1993)
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Fig. 1 Heated rod with a distributed heat flux Q′′(t)

ρ cp
∂T (z, t)

∂t
= λ

∂2T (z, t)

∂z2
− 2 h

R
(T (z, t) − Tenv)

+ d(z) Q′′(t), 0 < z < L (1)

T (0, t) = Tenv (2)

T (L , t) = Tenv (3)

T (z, 0) = T0(z) (4)

where T (z, t) ∈ L2(0, L) is the rod temperature; z ∈ [0, L]
and t ∈ [0, ∞) are the space and time variables, respectively.
ρ, cp, λ and h are the rod physical properties and denote
density, heat capacity, thermal conductivity and heat transfer
coefficient, restrictively. Tenv is the environment temperature,
and T0(z) ∈ L2(0, L) is the spatial temperature profile at
t = 0. Q′′(t) ∈ L2(0, +∞; �) is the manipulated heat
flux, and d(z) ∈ L2(0, L) is a known smooth function that
characterizes the distribution of Q′′(t) on the space domain
]0, L[. L2(0, L) is the Hilbert space of the Lebesgue square
integrable functions, defined on the domain space [0, L],
endowed with inner product (Atkinson and Han 2009)

〈 f (z) , g(z)〉L2(0, L) =
∫ L

0
f (z) g(z) dz (5)

and the norm

‖ f (z)‖2L2(0, L)
= 〈 f (z) , f (z)〉L2(0, L) (6)

Using the dimensionless variables

θ(ξ, τ ) = T (z, t) − Tenv
T f − Tenv

, ξ = z

L
, τ = λ t

ρ cp L2 (7)

where T f is the fusion temperature of themetal, the following
dimensionless model results

∂θ(ξ, τ )

∂τ
= ∂2θ(ξ, τ )

∂ξ2
− β θ(ξ, τ )

+ b(ξ) q ′′(τ ), 0 < ξ < 1 (8)

θ(0, τ ) = 0 (9)

θ(1, τ ) = 0 (10)

θ(ξ, 0) = θ0(ξ) (11)

where

b(ξ) = L2 d(ξ L)

λ (T f − Tenv)
, q ′′(τ ) = Q′′

(
ρ cp L2 τ

λ

)
,

θ0(ξ) = T0(z) − Tenv
T f − Tenv

(12)

and the uncertain parameter

β = 2 h L2

λ R
(13)

The problem addressed in this work consists in heat-
ing a rod with uncertain radius and physical parameters
before crossing a rolling mill. In the following, it is assumed
that the heat transfer coefficient, the thermal conductivity λ

and the radius R are bounded uncertain parameters within
well-known regions, that is, [hmin, hmax], [λmin, λmax] and
[Rmin, Rmax] leading, according to (13), to the following
bounded interval for the parameter β, that is,

β ∈ [βmin, βmax] (14)

The control objective is to design a heat flux profile q ′′(τ )

that achieves, despite the uncertainty in the parameter β, a
desired temperature for the controlled output defined as the
spatial weighted average of the temperature, along the rod,
expressed mathematically as follows

θm(τ ) =
∫ 1

0
c(ξ) θ(ξ, τ ) dξ (15)

where c(ξ) is a smooth function chosen so that the con-
trol design specifications are met. Note that the functions
b(ξ) and c(ξ) represent key design elements for DPSs
(Christofides and Daoutidis 1996). In the present study, the
choice of the two functions b(ξ) and c(ξ) is stated in the
following Assumptions 1 and 2.

Assumption 1 The two smooth functions b(ξ) and c(ξ) are
chosen not orthogonal (Atkinson and Han 2009), that is,

〈b(ξ), c(ξ)〉L2(0, 1) =
∫ 1

0
b(ξ) c(ξ) dξ 	= 0 (16)

Assumption 2 The function c(ξ) ∈ H2
0 (0, 1)withH2

0 (0, 1)
being the Sobolev space of order 2 defined as follows (Atkin-
son and Han 2009)
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H2
0 (0, 1)

=
{
c(z) ∈ L2(0, 1) : c(k)(z) ∈ L2(0, 1);

k = 1, 2 and c(0) = c(1) = 0
}

(17)

3 Proposed Robust Control Strategy

Tomake the formulated robust control problem tractable and
to exploit the full potential of the probabilistic control design,
the idea is to use the geometric control theory. This well-
developed theory that belongs to early lumping approach
(Christofides and Daoutidis 1996; Maidi and Corriou 2011)
allows to design a state feedback that yields an uncertain
LPS of first order in closed loop. Then, to cope with param-
eter uncertainties of the resulting closed-loop system, it is
proposed to define its reference input by a structured robust
controller designed using the scenario approach. These two
steps are discussed at length in the following subsections.

3.1 State Feedback Design

To design the state feedback, a nominal value βn is assigned
to the uncertain parameterβ, which is taken equal to themean
value, that is, βn = (βmin + βmax)/2. The design process is
based on the use of the characteristic index, from geomet-
ric control theory of DPSs, introduced by Christofides and
Daoutidis (1996). Hence, the calculation of the first deriva-
tive of the controlled output (15) yields

dθm(τ )

dτ
=

∫ 1

0
c(ξ)

∂θ(ξ, τ )

∂τ
dξ (18)

=
∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
−βn θ(ξ, τ )+b(ξ) q ′′(τ )

]
dξ

(19)

=
∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
− βn θ(ξ, τ )

]
dξ

+
[∫ 1

0
c(ξ) b(ξ) dξ

]
q ′′(τ ) (20)

Note that the manipulated heat flux q ′′(τ ) appears linearly
in the first derivative (20) of the controlled output θm(τ ).
Now, since Assumption 1 holds, this means that the char-
acteristic index of the system is σ = 1. Consequently, a
control law q ′′(τ ) that preserves σ = 1 between a refer-
ence input ϑ and the controlled output θm(τ ) can be obtained
(Christofides and Daoutidis 1996). In this case, the dynam-
ics of the obtained closed loop is described by the following
first-order differential equation

γ
dθm(τ )

dτ
+ θm(τ ) = ϑ (21)

where γ is the desired time constant in closed loop and ϑ

is an external input reference assumed to be constant in this
work, that is, a given temperature.

By substituting θm(τ ) and dθm(τ )/dτ by their expres-
sions, given by (15) and (20), respectively, into (21) and
solving the resulting equation with respect to the heat flux
q ′′(τ ), the following control law results

q ′′(τ ) = 1

γ
∫ 1
0 c(ξ) b(ξ) dξ

(
ϑ − θm(τ )

− γ

∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
− βn θ(ξ, τ )

]
dξ

)

(22)

which yields the following closed-loop system

∂θ(ξ, τ )

∂t
= ∂2θ(ξ, τ )

∂ξ2
− β θ(ξ, τ ) + b(ξ)

γ
∫ 1
0 c(ξ) b(ξ) dξ

×
(

ϑ − θm(τ ) − γ

∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2

− βn θ(ξ, τ )

]
dξ

)
(23)

From closed-loop dynamics (21), it follows that the exter-
nal stability is ensured since the time constant γ > 0. This
is not sufficient, of course, to ensure the internal stability of
closed-loop system (23), which must be guaranteed.

Hence, in order to derive the closed-loop internal stability
condition, let us first write the open loop (8) and state feed-
back (22) under the following abstract forms (Curtain and
Zwart 1995; Emirsjlow and Townley 2000)

dθ(τ )

dτ
= Aol θ(τ ) + Bol q

′′(τ ) (24)

and

q ′′(τ ) = −K θ(τ ) + H esf(τ ) (25)

where the operators are defined as follows

Aol = ∂2

∂ξ2
− β, Bol = b(ξ),

K = I
∫ 1

0
c(ξ)

[
∂2

∂ξ2
− βn

]
dξ, H = I γ −1 (26)

with I = [∫ 1
0 c(ξ) b(ξ) dξ ]−1 and esf(τ ) = ϑ − θm(τ )

(sf = state feedback).
Hence, since ϑ is a constant temperature, closed-loop sys-

tem (23) can be rewritten as an interconnection, in abstract
form, as follows
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desf(τ )

dτ
= − 1

γ
esf(τ ) (27)

dθ(τ )

dτ
= Acl θ(τ ) + H esf(τ ) (28)

where Acl = (Aol − BolK) is the resulting state operator in
closed loop.

From (21), since γ > 0 (time constant), it follows that

‖esf(τ )‖ ≤ |esf(0)| e−τ/γ (29)

consequently, closed-loop system (27)–(28) is internally
stable if state operator Acl generates a stable semigroup
(Christofides and Daoutidis 1996). The internal stability
condition of closed-loop system (23) is provided by Propo-
sition 1.

Proposition 1 Closed-loop system (27)–(28) forwhichAssump-
tions 1 and 2 hold is internally stable, that is, the operator
Acl generates an exponentially stable semigroup if

|I |
∥∥∥∥d

2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

∥∥∥b2(ξ)

∥∥∥
L2(0, 1)

< βmin + π2

(30)

Proof Resulting closed-loop state operator Acl represents
open-loop state operatorAol perturbed by the operatorBol K.
Thus, according to bounded operator theorem (Engel and
Nagel 2006, p. 116), since Aol is a generator of a stable
semigroup (Afifi et al. 2012), that is,

‖U (τ )‖ ≤ e−(β+π2) τ , (β > 0 according to (13)) (31)

and if the perturbation BolK is bounded, then the operator
Acl is a generator of the following semigroup

‖S(τ )‖ ≤ e

(
−β−π2+‖Bol K‖L2(0, 1)

)
τ

(32)

which is stable if the following condition

− (β + π2) + ‖BolK)‖L2(0, 1) < 0 (33)

holds.
The linear operator BolK is bounded that amounts to ver-

ify the existence of the constant C such that

‖BolK θ(τ )‖L2(0, 1) ≤ C ‖θ(τ )‖L2(0, 1) (34)

and the smallest C is the norm of the operator BolK.

The first step of the proof is to demonstrate that the oper-
ator BolK is bounded. Calculating the norm of BolK gives

‖Bol K θ(τ )‖2L2(0, 1)

=
∥∥∥∥I b(ξ)

∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
− βn θ(ξ, τ )

]
dξ

∥∥∥∥
2

L2(0, 1)
(35)

=
∫ 1

0

[
I b(ξ)

∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
− βn θ(ξ, τ )

]
dξ

]2
dξ (36)

= I 2
∫ 1

0

[
b(ξ)

∣∣∣∣
∫ 1

0
c(ξ)

[
∂2θ(ξ, τ )

∂ξ2
− βn θ(ξ, τ )

]
dξ

∣∣∣∣
]2

dξ

(37)

By taking into account assumption (2) and boundary con-
ditions (9) and (10), the integration by parts of the first term
of the internal integral in (37) yields

‖BolK θ(τ )‖2L2(0, 1)

= I 2
∫ 1

0

[
b(ξ)

∣∣∣∣
∫ 1

0

(
d2c(ξ)

dξ2
− βn

)
θ(ξ, τ ) dξ

∣∣∣∣
]2

dξ

(38)

Now, Cauchy–Schwartz inequality allows to write

∣∣∣∣
∫ 1

0

(
d2c(ξ)

dξ2
− βn

)
θ(ξ, τ ) dξ

∣∣∣∣
≤

∫ 1

0

∥∥∥∥d
2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

‖θ(ξ, τ )‖L2(0, 1) dξ (39)

hence

‖Bol K θ(τ )‖2L2(0, 1)

≤ I 2
∫ 1

0
b2(ξ)

∥∥∥∥d
2c(ξ)

dξ2
− βn

∥∥∥∥
2

L2(0, 1)
‖θ(ξ, τ )‖2L2(0, 1) dξ (40)

‖Bol K θ(τ )‖L2(0, 1)

≤ |I |
∥∥∥b2(ξ)

∥∥∥
L2(0, 1)

∥∥∥∥d
2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

‖θ(ξ, τ )‖L2(0, 1)

(41)

≤ C ‖θ(ξ, τ )‖L2(0, 1) (42)

where

C = |I |
∥∥∥∥d

2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

∥∥∥b2(ξ)

∥∥∥
L2(0, 1)

(43)

Consequently, it can be concluded that the operator BolK
is bounded and its norm is ‖BolK‖L2(0, 1) = C .

The second step of the proof is to derive internal sta-
bility condition (30). Consequently, according to the above
development, closed-loop state operator Acl generates the
semigroup

‖S(τ )‖ ≤ e−(β+π2−C) τ (44)
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θdm(τ)
Setpoint

filter
+

−

esp(τ) Structured robust

controller
ϑ State

feedback

q (τ) Heated

rod

θ(ξ, τ)

θm(τ)

κ

a s + 1

Fig. 2 Proposed robust control strategy (dotted lines mean equivalence)

which is stable if β + π2 − C > 0, that is,

|I |
∥∥∥∥d

2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

∥∥∥b2(ξ)

∥∥∥
L2(0, 1)

< β + π2 (45)

Since 0 < βmin ≤ β ≤ βmax, it follows that closed-loop
system (27)–(28) is exponentially stable if

|I |
∥∥∥∥d

2c(ξ)

dξ2
− βn

∥∥∥∥
L2(0, 1)

∥∥∥b2(ξ)

∥∥∥
L2(0, 1)

< βmin + π2

(46)

��
Remark 1 The left-hand side of condition (46) depends on
bothb(ξ) and c(ξ); hence, it can be checkedby an appropriate
choice of these two functions which represent key elements
for the control design. ��

Now, designed control law (22) achieves an exact output-
tracking with the desired dynamics characterized by the time
constant γ when β = βn . In the case of deviation of β from
the nominal value βn , the closed-loop dynamics character-
ized by (21) will not be exactly achieved and a deterioration
of the performance will be observed on the controlled output
θm(τ ). Thus, the settling time will be affected and important
bounded steady-state errors will occur (this is illustrated in
the case of the example studied in Sect. 4). Consequently,
the closed-loop system can be described by the following
uncertain continuous transfer function

G(s, δ) = Θm(s)

V(s)
= κ

a s + 1
(47)

with a ∈ [amin, amax] and k ∈ [κmin, κmax] denote the
bounding intervals for the uncertainties a and κ , respectively.
These uncertainties are grouped in the vector δ ∈ Δ, that is,
δ = [a, κ]. Θm(s) and V(s) are the Laplace transforms of
the controlled output θm(τ ) and the reference input ϑ(τ),
respectively.

Since the upper and lower bounds of the uncertain param-
eters a and κ cannot be determined analytically as functions

of β, one can estimate them from the observed output θm(τ )

by assuming several values of the deviation of the parameter
β. This can be easily done through simulation.

To avoid the deterioration of the performance in spite of
the variation of the parameters a and κ , it is proposed to
define the reference input ϑ , of state feedback (22), by an
external structured robust controller as shown in Fig. 2 that
summarizes the adopted control strategy. To design the robust
controller, it is proposed to use the scenario optimization
following a proposed approach developed in Sect. 3.2.

3.2 External Robust Controller Design

In this subsection, a design approach of a structured robust
controller for a LPS is developed. The approach consists,
first, in formulating the design specifications as a semi-
infinite (or robust) optimization problem, which will be then
solved using scenario approach (Calafiore and Campi 2006;
Campi et al. 2009).

3.2.1 Formulation of the Controller Design as a
Semi-infinite Optimization Problem

To design the structure robust controller Gc(s, p), that is, to
determine the tuning parameters p (p ∈ �n p ), it is proposed
to minimize a given performance index. In the following
development, the Integral of Square Error (ISE) is assumed.
The ISE is defined as follows

J (p, δ) =
∞∫

0

e2sp(τ ) dτ (48)

where the tracking error is esp(τ ) = θdm(τ ) − θm(τ )

(sp = set point) with θdm(τ ) the desired set point of the con-
trolled output θm(τ ). Note that the value of the ISE depends
both on the controller parameters p and on the system uncer-
tainties δ.

Assumption 3 In the following development, it is assumed
that the controller Gc(s, p) includes an integral action, that
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is, the tracking error esp(τ ) for a setup input θdm(τ ) is zero,
which implies that the value of ISE (48) is finite.

Our objective is to seek controller parameters p that ensure
best performance by minimizing the ISE whatever the sys-
tem uncertainties δ. Thus, the design of the robust controller
Gc(s, p) can be formulated as amin–maxoptimization prob-
lem as follows

min
p

max
δ

J (p, δ) (49)

where J (p, δ) is the objective function.
In addition, the controller parameters p can be constrained

by assuming robustness and stability constraints of inequality
kind. In this case, the controller design optimization problem
takes the following form

min
p

max
δ

J (p, δ) (50)

subject to:

gr (p, δ) ≤ 0 (51)

gs(p, δ) ≤ 0 (52)

where gr and gs are the robustness and stability constraints,
respectively. These constraint functions are the relations
between the controller parameters p and the uncertain param-
eters δ defined so as to meet both robustness and stability
specifications. For instance to define the stability constraints
gs(p, δ), Routh-Jury criterion (Corriou 2004) can be used.

Formulatedmin–max optimization problem (50)–(52) can
be rewritten under the following form (Campi et al. 2009)

min
p, w

w (53)

subject to:

J (p, δ) ≤ w (54)

gr (p, δ) ≤ 0 (55)

gs(p, δ) ≤ 0 (56)

which is a semi-infinite optimization problem (finite number
of optimization variables p and infinite number of constraints
due the uncertainties δ) termed also robust optimization prob-
lem, which is NP-hard (Blondel and Tsitsiklis 1997, 2000)
and generally non-convex.

Let us first determine the analytical expression of the per-
formance index J (p, δ). The transfer function between the
step input θdm(τ ) and the tracking error esp(τ ) is given as
follows

Esp(s)

Θd
m(s)

= 1

1 + Gc(s, p)G(s, δ)
(57)

where Esp(s) andΘd
m(s) are the Laplace transforms of track-

ing error esp(τ ) and the external input reference θdm(τ ),
respectively.

The value of ISE (48) can be evaluated using the Laplace
transform properties as follows (Åström 1970; Puri andWey-
gandt 1964)

J (p, δ) = 1

2π j

+ j ∞∫

− j ∞
Esp(s) Esp(−s) ds (58)

To evaluate this complex integral, in general, there are two
methods: the transfer function and the state-space methods.
These methods are discussed by Puri and Weygandt (1964),
Åström (1970) and Borne and Rotella (1996).

Once the analytical expression of the objective func-
tion J (p, δ) is determined, robust optimization problem
(53)–(56) can be transformed into a standard finite opti-
mization problem, with a finite number of constraints, using
the scenario approach based on the sampling of constraints
(Calafiore and Campi 2006; Campi et al. 2009).

3.2.2 Solving the Semi-indefinite Optimization Problem
Using the Scenario Approach

The scenario approach is a probabilistic tool used to solve
semi-infinite optimization problems. Its principle consists in
deriving a standard optimization problem with a finite num-
ber of constraints by assuming a random sampling process of
the constraints. In this approach, a probability measure of the
uncertainty is assumed over the uncertainty domain and the
sample set is generated according to this measure (Calafiore
and Campi 2006; Campi et al. 2009).

By using the scenario approach, the solution of formu-
lated non-convex robust optimization problem (53)–(56) is
reduced to the solution of following standard optimization
problem (Alamo et al. 2015; Campi et al. 2009; Toscano
2013)

min
p, w

w (59)

subject to:

J
(
p, δ(i)

)
≤ w (60)

gr
(
p, δ(i)

)
≤ 0 (61)

gs
(
p, δ(i)

)
≤ 0, i = 1, . . . , N (62)

where δ(i) = [a(i), κ(i)] are the independent identically
distributed samples, generated according to the assumed
probability measure, and N is the number of samples.

In this case, the solution p∗ of scenario optimization (59)–
(62) satisfies all constraints with a probability not smaller
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than 1 − η, η ∈ (0, 1), with an expectation of constraint
violation probability not larger than ε (ε ∈ (0, 1)). ε and η

are termed violation and confidence parameters, respectively,
that constitute the design parameters of the scenario approach
that fix the number of samples N (Calafiore and Campi 2006;
Campi et al. 2009).

The number of samples N plays a key role in solving
robust optimization problems with a desired probabilistic
specification (η and ε). For convex optimization problems,
several bounds for the sample size are proposed and refined
in the literature (Alamo et al. 2015; Calafiore and Campi
2006; Campi et al. 2009). On the other hand, the sample size
of a non-convex optimization problems remains very chal-
lenging. This issue has not beenwidely investigated, and only
few interesting results are reported in the literature (Alamo
et al. 2009; Grammatico et al. 2014). In this work, the bound
on the sample size N developed recently by Grammatico
et al. (2014) is used to relax non-convex robust optimization
problem (59)–(62). This bound is given by following formula
(Grammatico et al. 2014, Corollary 1)

N ≥
exp(1)

exp(1) − 1
(d + 1)

ε

(
d − 1 + ln

(
M

η

))
(63)

where the integer M satisfies M ≥ d + 1.
It is worth noticing that bound (63) is easy to determine

since it is a function of the parameters ε, η and the number of
the optimization variables d of scenario optimization prob-
lem (59)–(62), that is, d = n p + 1 (the number of the tuning
parameters n p of the structured robust controller Gc(s, p)
plus the introduced optimization variable w).

4 Application Example

In this section, the tracking performance of the proposed
robust control strategy is demonstrated through numerical
simulation runs. The rod is made of steel that has the physical
properties (Taler andDuda 2006): ρ = 7350.8kg·m−3, cp =
570 J·kg−1·K−1 and h = 4.19 W·m−2·K−1. The rod length
is L = 1m, while the radius R is uncertain with the bounded
interval [0.15m, 0.35m], which gives, according to (13),
β ∈ [0.6667, 1.3317]. The distribution function of the heat
flux is b(ξ) = 1 (uniform distribution) and the sensing func-
tion c(ξ) = ξ (1− ξ). The assumed data leads, according to
(22), to the following state feedback

q ′′(τ ) = 6

γ

(
ϑ − θm(τ ) − γ

∫ 1

0
ξ (1 − ξ)

[
∂2θ(ξ, τ )

∂ξ2

−βn θ(ξ, τ )

]
dξ

)
(64)
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Fig. 3 Performance of state feedback control law (64). The solid line
is the controlled output θm(τ ), dotted line is the input reference ϑ , and
the filled area (in gray) is the variation domain of the controlled output
θm(τ ) for all possible uncertainties in δ ∈ Δ

The closed-loop system is simulated using the method of
lines (Van de Wouwer et al. 2001) by assuming a = 3 and
βn = 0.8889 (the nominal value βn is obtained using (13) for
R = Rn with the nominal radius Rn = (Rmin + Rmax)/2).

The first simulation run consists in determining the
bounded intervals for the uncertain parameters a and κ . Thus,
the input reference ϑ is taken equal to 0.5 and several values
of β, linearly spaced between its bounds, are considered. The
evolution of the controlled output θm(τ ) is given in Fig. 3.
The obtained results show clearly that in the presence of
uncertainties β 	= βn , designed state feedback (64) is unable
to achieve the set point tracking, that is, the controlled output
θm(t) does not track its set point ϑ . Note that the set point
tracking is achieved only when β = βn , which is expected
because state feedback (64) is designed by considering the
nominal value βn of the uncertain parameter β. The evo-
lutions of the parameters a and κ , of uncertain model (47),
with respect to the variation of the parameterβ are depicted in
Fig. 4, which shows a nonlinear evolution of both parameters.
The bounded intervals are identified as a ∈ [0.4293, 2.9925]
and κ ∈ [1.2872, 8.9770] leading to δ = [a, κ] ∈ Δ =
[0.4293, 2.9925] × [1.2872, 8.9770] ∈ �2.

Now, let us define the input reference ϑ by means of a
structured controller. The PID controller remains the widely
used structured controller in industry (Toscano 2013). In this
section, the proposed design approach, based on the scenario
optimization, is applied to design this kind of structured con-
troller for resulting LPS (21).

The transfer function of the PID controller is

Gc(s, p) = Kc

(
1 + 1

Ti s
+ Td s

)
(65)
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Fig. 4 Variations of the model parameters a and κ with respect to the
uncertain parameter β

where Kc, Ti and Td denote the tuning parameters, that is, the
gain, integral constant and derivative constant, respectively.
Thus, p = [Kc, Ti , Td ].

The Laplace transform of the tracking error is

Esp(s) = Ti κ s + Ti
Ti (κ + a Kc Td) s2 + Ti (1 + a Kc) s + a Kc

(66)

The evaluation of ISE (48), using the Åström method
(Åström 1970), yields

J (Kc, Ti , Td , δ)

= Ti
2 (1 + a Kc)

(
1

a Kc
+ κ2

Ti (κ + a Kc Td)

)
(67)

with δ ∈ Δ.
In addition to the choice of the controller structure, some

robustness constraints on its tuning parameters p can be
imposed (Åström and Hädgglund 2006). These constraints
define the robustness region. For instance, for a commercial
PID controller, the time constants are constrained by (Åström
and Hädgglund 2006)

gr (Kc, Ti , Td , δ) : Td − Ti
4

≤ 0 (68)

To ensure the stability of the robust control strategy, the
stability constraints are derivedbasedonRouth-Jury criterion
(Corriou 2004), which yields the following constraints

gr (Kc, Ti , Td , δ) : −Kc ≤ 0 (69)

In addition, the two time constants Ti and Td must be
positive, that is,

Ti > 0, Td > 0 (70)

The scenario optimization problem to solve, to determine
the robust PID controller parameters, is summarized as fol-
lows

min
Kc, Ti , Td , w

w

subject to:

Ti
2 (1 + a(i) Kc)

(
1

a(i) Kc
+

(
κ(i)

)2
Ti (κ(i) + a(i) Kc Td)

)

≤ w, i = 1, . . . , N

Td − Ti
4

≤ 0

− Kc ≤ 0

− Ti ≤ 0

− Td ≤ 0 (71)

where N = 12093 is the number of samples, obtained using
formula (63), that corresponds to ε = 10−2 and η = 10−3.
The samples are generated by assuming a uniformprobability
measure. Note that the number of decision variables of (71)
is d = 4 (Kc, Ti , Td and w) and M is taken equal to d + 1,
i.e., M = 5.

Scenario optimization problem (71) is solved using the
genetic algorithm, which yields the following solution:

K ∗
c = 24.2867, T ∗

i = 13.0724,

T ∗
d = 3.1732 and w∗ = 0.1353 (72)

Fig. 5 Values of performance index (67) for random uncertainties. The
flat surface represents w∗, whereas the second surface is J
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Fig. 6 Performance of the
proposed robust control strategy.
Left: solid line is the nominal
response (β = βn ) of the
controlled output θm(τ ) and its
variation domain (filled area in
gray) in the case of uncertainties
(β 	= βn). Right: evolution of
the manipulated heat flux q ′′(τ ).
Solid line for β = βn (nominal
case) and filled area in gray for
β 	= βn
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Figure 5 gives the different values of performance index
(67) for all possible uncertainties of the parameters a and κ .
It follows that, with obtained optimal tuning (72), the first
constraint of (71) is violated for a very small portion of Δ,
that is, when a and κ are very close to 0.4293 and 8.9770,
respectively. In this case, since the constraint is not signifi-
cantly violated, a low-performance deterioration is observed
in the output response. Note that, in the simulation run, the
desired set point θdm(τ ) is filtered by a first-order filter to
avoid sudden fluctuations of the controlled output θm(τ ) (see
Fig. 2). The evolution of both output θm(τ ) and manipu-
lated heat flux q ′′(τ ) in closed loop for a set of uncertainties
generated randomly is given in Fig. 6. The reported results
show and demonstrate the robustness of the proposed con-
trol strategy. It is clear that despite the parameter uncertainty,
the output-tracking is achieved with low and tolerable devi-
ations with respect to the nominal response. The moves of
the manipulated heat flux q ′′(τ ) remain also physically rea-
sonable whatever the deviation of the parameter β.

Remark 2 In this application, it is assumed that R ∈
[0.15, 0.35] leading to β ∈ [0, 6667, 1.3317]; our aim is
to give an example, which is correct from a practical point
of view. Therefore, reasonable physical limit values of R are
assumed. It is worth noting that the proposed strategy per-
forms well even for large uncertainty of β. ��

5 Conclusion

In this paper, a robust control strategy for a heated rod, mod-
eled by a linear diffusion–reaction equation, with bounded
parameter uncertainties is developed by means of late lump-
ing approach. First, the system is lumped by means of a state
feedback designed in the framework of geometric control
using the characteristic index concept. It is demonstrated that
by an appropriate choice of the sensing and actuation func-
tions, the resulting closed-loop system is exponentially stable
despite the bounded parameter uncertainties. Nevertheless,

the output-tracking is significantly affected when the sys-
tem parameters deviate from their nominal values. Thus, to
achieve a perfect output-tracking, in the presence of uncer-
tainties, it is proposed to define the input reference of the
state feedback by a structured robust controller. From this
point of view, a designed approach of a robust structured con-
troller for LPS is proposed. By assuming that the structure
of the robust controller is well known and includes an inte-
gral action, the parameter tuning problem of the structured
controller is formulated as a semi-infinite optimization that
guarantees both robustness and stability in closed loop. Then,
the formulated robust optimization problem is relaxed using
the scenario approach. The performance of the developed
control strategy is demonstrated by an application example
that concerns the heating problem of a steel rod with uncer-
tain radius and physical parameters. The simulation results
show the effectiveness of the developed control strategy in
coping with parameter uncertainties.

The probabilistic control design approach is a promising
framework for robust control. This approach fully relaxes
the design problem and allows to overcome the complexity
and the intractability of the robust control problems. To the
best of our knowledge, the present work is the first attempt
to apply the probabilistic control design approach for a DPS.
The results obtained, in our opinion, are conclusive and open
the opportunity to investigate this field in the case of DPS
with parameters that exhibit spatio-temporal variation, which
is under investigation of the authors.
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