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Abstract This research paper proposes a wavelet-based
dynamic-state feedback control strategy in the discrete time
domain. In this proposal, the state feedback employs a state-
space description for the fast wavelet transform,which is also
developed in this article. The feedback gains are obtained
through a linear quadratic regulator formulation, with cost
weights adjusted according to suitable performance metrics.
This proposal brings forward efficient results, aswell asmore
robust systems to external perturbations and sensor noises.

Keywords State feedback control ·Discrete linear quadratic
regulator · Wavelet-based dynamic-state feedback

1 Introduction

Linear quadratic regulator (LQR) is an automated way of
finding an appropriate state feedback controller, which has
been used in various applications (Zhang and Fu 1996; Fer-
nando andKumarawadu 2015; Pradhan andGhosh 2015; Liu
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et al. 2013; Zhang et al. 2014). The LQR provides a key role
in many control design methods. Besides being a powerful
design method, it is in many aspects the principle of sev-
eral current systematic control design procedures. Both the
linear quadratic Gaussian or H2 , and H∞ controller design
procedures have usage and philosophy similar to the LQR
methodology (Lublin and Athans 1996;Maccari et al. 2014).

Improving stability margins via dynamic-state feedback
for systems is well studied in Zhang and Fu (1996), Schmi-
tendorf and Stalford (1997), Holmberg et al. (2001), Ulsoy
(2013), Ulsoy (2015) and Verdea et al. (2013). By analyzing
robustness properties of the LQR, in Schmitendorf and Stal-
ford (1997), Holmberg et al. (2001), it has shown that the
guaranteed gain/phase margins of LQR need to be carefully
interpreted. This analysis leads to the discussion of using
dynamic-state feedback. Furthermore, the stability margin
for a linear systemwith constant uncertainty can be increased
beyond that attainable by a static-state feedback with the use
of a dynamic-state feedback controller (Zhang and Fu 1996).

In this paper, a dynamic-state feedback control approach
employing a new state-space description for the multi-level
fast wavelet transform (FWT) is proposed. The main charac-
teristic thatmakes the proposed approach efficient and easy to
implement is the use of the standard discrete linear quadratic
regulator. This proposal is justified by the fact of getting
more robust systems resistant to perturbations and measur-
ing noise.

The state-space description mentioned is developed from
a previous paper that presents the state-space description for
single-level decomposition of the FWT algorithm (Uzinski
et al. 2015). In the state-space description for the entire fil-
ter bank with M decomposition levels, the outputs are the
approximation in the last level and the details in all levels
as in the FWT algorithm. The main characteristics presented
by the single-level formulation are carried to the descrip-
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tion formulti-level decomposition, as the explicit presence of
parameters that can be freely adjusted holding the guarantees
of perfect reconstruction and orthogonality. The state-space
realization proposed to represent the filter bankwith M levels
is controllable and observable.

The paper is organized into three main parts: Sect. 2
deals with the development of the state-space for multi-level
wavelet filter bank and its background, Sect. 3 presents the
proposed dynamic-state feedback approach, and Sect. 4 con-
tains results and analysis.

2 State-Space for Multi-Level FWT

2.1 On the Space of Orthonormal Wavelets

By adapting the work of Vaidyanathan (1993) on the fac-
torization of paraunitary matrices and parameterizing the
space of orthonormal wavelets by a set of angular param-
eters, Sherlock and Monro (1998) devised a simple and
elegant framework to parameterize the space of orthonormal
wavelets by a set of angular parameters (Paiva et al. 2009;
Paiva and Galvão 2012). Sherlock and Monro’s formulation
is presented in the following.

Let H (N )(z) and G(N )(z) be the transfer functions of the
low-pass and high-pass filters, respectively, for an orthonor-
mal filter bank with length-2N , such that

H (N )(z) =
2N−1∑

i=0

h(N )
i z−i (1)

and

G(N )(z) =
2N−1∑

i=0

g(N )
i z−i , (2)

where

g(N )
i = (−1)i+1h(N )

2N−1−i , i = 0, 1, · · · , 2N − 1, (3)

and

h1
0 = cos(α1)

h1
1 = sin(α1)

hN+1
0 = cos(αN+1)hN

0

hN+1
2i = cos(αN+1)hN

2i − sin(αN+1)hN
2i−1,

hN+1
2N = − sin(αN+1)hN

2N−1

hN+1
1 = sin(αN+1)hN

0

hN+1
2i+1 = sin(αN+1)hN

2i + cos(αN+1)hN
2i−1,

hN+1
2N+1 = cos(αN+1)hN

2N−1

(4)

u[k]

z−1 z−2 z−2

C1

C1

C2

C2
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−S1 −S2 −SN

y1

y2

Fig. 1 A DWT decomposition level represented by a lattice structure.
Adapted from Akansu and Haddad (2001)
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Fig. 2 Parameterization of the filter bank in the state-space. Adapted
from Uzinski et al. (2015)

with i = 0, 1, · · · , N −1. In (4), α = [
α1 α2 · · · αN

]
is the

angular parameter set, following the notation defined in the
original work of Sherlock and Monro (1998.)

Let u[k] be an input signal processed in a level of the
discrete wavelet transform (DWT). It has two outputs, y1 and
y2 corresponding to the input signal filtered by the low-pass
filter and by the high-pass filter, respectively. This filtering
process for one decomposition level can be seen through the
implementation of these filters in lattice structure, Fig. 1.

In Fig. 1, symbols Ci and Si denote sin(Θi ) and cos(Θi ),
respectively, where
Θ = [

Θ1 Θ2 · · · ΘN
]
and Θ1 = αN , Θ2 = αN−1, · · · ,

ΘN = α1.

2.2 A State-Space Description for One Single
Decomposition Level of a Wavelet Filter Bank

According to Uzinski et al. (2015), the model for a single-
level in the state-space takes the form

x[k + 1] = Ax[k] + Bu[k] (5)

y[k] = Cx[k] + Du[k]. (6)

where x = [ x1 x2 · · · x2N−1 ]T and k denotes the kth
sampling instant. This state-space description was obtained
through the procedure shown in Fig. 2.

In (5) and (6), A, B, C and D are given by (7), (8), (9) and
(10), respectively.
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0 0 0 · · · 0
0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 · · · 0 0 0 1 0 · · · 0
0 0 0 · · · 0 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 0 · · · 0 0 0 0 0 · · · 1
C1 0 0 · · · 0 0 0 0 0 · · · 0

−S2S1 C2 0 · · · 0 0 0 0 0 · · · 0
−S3C2S1 −S3S2 C3 · · · 0 0 0 0 0 · · · 0

...
...

...
. . .

...
...

...
...

...
. . .

...

SN−1S1
∏N−2

i=2 Ci SN−1S2
∏N−2

i=3 Ci SN−1S3
∏N−2

i=4 Ci · · · CN−1 0 0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

0
−S1

−S2C1
...

−SN−1
∏N−2

i=1 Ci

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

C =
[

S1
∏N

i=2 Ci S2
∏N

i=3 Ci · · · SN−2
∏N

i=N−1 Ci SN−1CN SN 0 · · · 0
−SN S1

∏N−1
i=2 Ci −SN S2

∏N−1
i=3 Ci · · · −SN SN−2

∏N−1
i=N−1 Ci −SN SN−1 CN 0 · · · 0

]
(9)

D =
[ ∏N

i=1 Ci

−SN
∏N−1

i=1 Ci

]
, (10)

The sizes of matricesA,B,C andD are (2N −1)×(2N −
1), (2N − 1) × 1, 2 × (2N − 1) and 2 × 1, respectively. An
important feature of this realization (A, B, C, D) is that it is
minimal, namely reachable and observable. Further discus-
sions, proof and illustrative examples can be found inUzinski
et al. (2015).

2.3 Wavelet Filter Bank and the Algorithme à Trous

After recalling the theory about the parameterization for the
i th decomposition level, it is necessary to show how the fast
wavelet transform (FWT) works. This method uses digital
filter banks in a tree structure, as shown as an example with

u[k]

H(z)

H(z)

H(z) G(z)

G(z)

G(z)

↓ 2

↓ 2

↓ 2↓ 2

↓ 2

↓ 2

y3,1[k]

y3,2[k]

y2,2[k]

y1,2[k]

Fig. 3 Three-level binary tree-structured quadrature mirror filter
(QMF) bank. Adapted from Vaidyanathan (1993)

three decomposition levels, in Fig. 3. In this figure, H(z)
and G(z) indicate the low-pass and high-pass filters and ↓ 2
denotes the downsampling operators (Vaidyanathan 1993).

An equivalent implementation for the FWT, Fig. 3, avoid-
ing the downsampling operations in each decomposition
level is theAlgorithme à Trous (algorithmwith “holes”) (Vet-
terli and Kovačevi 1995), Fig. 4.

As stated by Paiva (2005), Vetterli and Kovačevi (1995),
the relationship between the coefficients yi [k] (FWT) and
y

i
[k] (Algorithme à Trous) is

yi [k] = (↓ 2i )y
i
[k]. (11)

u[k]

H(z)

G(z)

H(z2)

G(z2)

H(z4)

G(z4)

y
3,1

[k]

y
3,2

[k]

y
2,2

[k]

y
1,2

[k]

Fig. 4 Equivalent filter bank to the one in Fig. 3 using the Algorithme
à Trous. Adapted from Vetterli and Kovačevi (1995)
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The Algorithme à Trous is used in the new state-space
description for the multi-level FWT proposed in this paper.

2.4 The State-Space Parameterization for Multiple
Decomposition Levels

In this subsection, the parameterization for one single decom-
position level of a wavelet filter bank presented in Uzinski
et al. (2015) is extended for M decomposition levels of a
perfect-reconstruction wavelet filter bank, which is known
as fast wavelet transform. The Algorithme à Trous, which
was described in Sect. 2.3, was adopted to overcome the dif-
ficulties associated with the downsampling operations.

The state vector associated with the lattice in the i th
decomposition level has 2N − 1 states and it is denoted by

xi [k] =

⎡

⎢⎢⎢⎢⎢⎣

xi,1[k]
xi,2[k]
xi,3[k]

...

xi,2N−1[k]

⎤

⎥⎥⎥⎥⎥⎦
, (12)

the output in the i th decomposition level with y
i,1

[k] and
y

i,2
[k] associated with the low-pass and high-pass channels,

respectively, by

y
i
[k] =

[
y

i,1
[k]

y
i,2

[k]

]
, (13)

and the matrices C and D are conveniently rewritten as

C =
[
C1

C2

]

and

D =
[

D1

D2

]
.

The state-space description for a single decomposition
level i of a wavelet filter bank as previously presented and
its denotations are shown in Fig. 5.
In Fig. 5, the input y

i−1,1
[k] at level i is the low-pass output

at the level i − 1. The elements xi [k], y
i,1

[k] and y
i,2

[k] are
the state variable and two outputs in the i th decomposition
level (algorithm with “holes”), respectively.

By considering the state-space description for the i th
decomposition level and recalling the Algorithme à Trous,
the lattice model in the first decomposition level has the form

x1[k + 1] = Ax1[k] + Bu[k], (14)

y
1
[k] =

[
C1

C2

]
x1[k] +

[
D1

D2

]
u[k], (15)

y
i−1,1

[k] D1

D2

C1

C2

xi[k]

y
i,1

[k]

y
i,2

[k]

Fig. 5 Representation of the state-space description for a single
decomposition level i of a wavelet filter bank

while for i > 1 it is

xi [k + 2i−1] = Axi [k] + By
i−1,1

[k], (16)

y
i
[k] =

[
C1

C2

]
xi [k] +

[
D1

D2

]
y

i−1,1
[k]. (17)

The Algorithme à Trous (Fig. 4) employs filters of the
form H(z2), H(z4), H(z8) and so on. It should be noted that
H(z2) is twice as longer as H(z). This difference in the filter
length is taken into account in (16). In fact, to understand this
point, consider i = 2 in (16). In this case

x2[k + 2] = Ax2[k] + By
1,1

[k]. (18)

Considering an additional state vectorw[k] = x2[k+1], (18)
could be rewritten as

w[k + 1] = Ax2[k] + By
1,1

[k] (19)

x2[k + 1] = w[k], (20)

that is:

[
w
x2

]
[k + 1] =

[
0 A
I 0

] [
w
x2

]
[k] +

[
B
0

]
y
1,1

[k], (21)

where I is an identitymatrix and 0 is a null matrix. Therefore,
using x2[k + 2] in (16) is equivalent to using more states to
describe a longer filter. For i = 2, x2[k + 2] it is necessary
to use twice as many states. For i = 3, x3[k + 4] it means
that four times as many states are necessary and so on.

Taking the entire analysis filter bank, the following state
vector can be defined as the filter bankwith M decomposition
levels, Fig. 6,

x[k] =

⎡

⎢⎢⎢⎢⎢⎣

x1[k]
x2[k]
x3[k]

...

xM [k]

⎤

⎥⎥⎥⎥⎥⎦
. (22)
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y
1,2

y
2,2

y
2,1

y
M,2

y
M,1

x1[k]

x2[k]

xM [k]

u[k]

C2

C2

C2

C1

C1

C1

D1

D1

D1

D2

D2

D2

Fig. 6 Wavelet filter bank with M decomposition levels seen as state-
space description

When the “holes” are considered, the equation for the filter
bank can be written as

⎡

⎢⎢⎢⎣

x1[k + 1]
x2[k + 2]

...

xM [k + 2M−1]

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

Ax1[k] + Bu[k]
Ax2[k] + By

1,1
[k]

...

AxM [k] + By
M−1,1

[k]

⎤

⎥⎥⎥⎥⎦
,

then

⎡

⎢⎢⎢⎣

x1[k + 1]
x2[k + 2]

...

xM [k + 2M−1]

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

A 0 · · · 0
BC1 A · · · 0

...
...

. . .
...

BDM−2
1 C1 · · · BC1 A

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1[k]
x2[k]

...

xM [k]

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

B
BD1

...

BDM−1
1

⎤

⎥⎥⎥⎦ u[k]. (23)

Let y[k] be the output vector, comprising the approxima-
tion in the last level and details in all levels, defined as

y[k] =

⎡

⎢⎢⎢⎢⎢⎢⎣

y
M,1

[k]
y

M,2
[k]

y
M−1,2

[k]
...

y
1,2

[k]

⎤

⎥⎥⎥⎥⎥⎥⎦
, (24)

the output equation can be finally written for the filter bank
as follows:

y[k] =

⎡

⎢⎢⎢⎢⎢⎢⎣

C1xM [k] + D1y
M−1,1

[k]
C2xM [k] + D2y

M−1,1
[k]

C2xM−1[k] + D2y
M−2,1

[k]
...

C2x1[k] + D2u[k]

⎤

⎥⎥⎥⎥⎥⎥⎦
,

thus

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y
M,1

[k]
y

M,2
[k]

y
M−1,2

[k]
.
.
.

y
1,2

[k]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

DM−1
1 C1 · · · D2

1C1 D1C1 C1

D2DM−2
1 C1 · · · D2D1C1 D2C1 C2

D2DM−3
1 C1 · · · D2C1 C2 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

C2 · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x1[k]
x2[k]
x3[k]

.

.

.

xM [k]

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎣

DM
1

D2DM−1
1

D2DM−2
1
.
.
.

D2

⎤

⎥⎥⎥⎥⎥⎥⎦
u[k]. (25)

After all, the version to Fig. 5 for the M decomposition
levels proposal, as previously obtained, is presented in Fig.
6.

However, (23) is not the state equation for multi-level
FWT, some changes are required, and changes in (23) will
imply other changes in (25).

Suitably defining

{
xM+1[k] = x2[k + 1],

⎧
⎨

⎩

xM+2[k] = x3[k + 1],
xM+3[k] = xM+2[k + 1],
xM+4[k] = xM+3[k + 1],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xM+5[k] = x4[k + 1],
xM+6[k] = xM+5[k + 1],

...

xM+11[k] = xM+10[k + 1],

...

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xM+ε+1[k] = xM [k + 1],
xM+ε+2[k] = xM+ε+1[k + 1],

...

xM+ε+2M−1−1[k] = xM+ε+2M−1−2[k + 1],

(26)
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where ε =
M−1∑
i=2

[
2i−1 − 1

]
, hence

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xM+1[k + 1] = x2[k + 2],
xM+4[k + 1] = x3[k + 4],
xM+11[k + 1] = x4[k + 8],

...

xM+ε+2M−1−1[k + 1] = xM [k + 2M−1].

(27)

In this way, vector x[k] becomes

x[k] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]
x2[k]

...

xM [k]
xM+1[k]
xM+2[k]

...

xη[k]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

with η = M +
M−1∑
i=2

[
2i−1 − 1

] + 2M−1 − 1, namely,

η = M + ε + 2M−1 − 1.
Matrices of the state-space realization for M decomposi-

tion levels are denoted as AM , BM , CM and DM .
From (23), (25), (26) and (27), matrix AM takes the form

AM =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 · · · 0 0 0 · · · 0
0 0 · · · 0 I 0 · · · 0
...

...
. . .

...
...

...
. . .

...

BC1 A · · · 0 0 0 · · · 0
0 0 · · · 0 0 I · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · I
BDM−2

1 C1 BDM−3
1 C1 · · · A 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where I is the (2N − 1) × (2N − 1) identity matrix. In the
sameway, each element denoted by 0 is a (2N −1)×(2N −1)
null matrix. While BM is defined as

BM =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
0
...

BD1

0
...

0
BDM−1

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

with 0 being a (2N − 1) × 1 null vector. Matrix CM is given
by

CM =

⎡

⎢⎢⎢⎢⎢⎣

DM−1
1 C1 · · · D2

1C1 D1C1 C1 0 · · · 0
D2DM−2

1 C1 · · · D2D1C1 D2C1 C2 0 · · · 0
D2DM−3

1 C1 · · · D2C1 C2 0 0 · · · 0
...

. . .
...

...
...

. . .
...

C2 · · · 0 0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
,

(31)

with 0 being an 1× (2N −1) null vector. VectorDM is equal
to

DM =

⎡

⎢⎢⎢⎢⎢⎣

DM
1

D2DM−1
1

D2DM−2
1
...

D2

⎤

⎥⎥⎥⎥⎥⎦
. (32)

Finally, matrices (29), (30), (31) and (32) are the descrip-
tion in the state-space for analysis wavelet FIR filter banks
with multiple decomposition levels. This proposal is based
on Algorithme à Trous; therefore, it is necessary to remem-
ber that the relationship among the coefficients yi [k] (FWT)
and y

i
[k] (Algorithme à Trous ) is given by (11); in other

words, the convenient decimation must be done after state-
space description.

Dimensions of the matrices in the state-space description
are:

– dim(AM ) = η(2N − 1) × η(2N − 1);
– dim(BM ) = η(2N − 1) × 1;
– dim(CM ) = (M + 1) × η(2N − 1);
– dim(DM ) = (M + 1) × 1,

and ifRAM ,BM and SCM ,AM are respectively controllabil-
ity and observability matrices, then

– dim(RAM ,BM ) = η(2N − 1) × η(2N − 1);
– dim(SCM ,AM ) = (M + 1)η(2N − 1) × η(2N − 1).

An important result about the state-space description is the
minimality condition, which is the combination of controlla-
bility and observability conditions. For M = 1, the proposed
state-space description isminimal, and this can be checked in
Uzinski et al. (2015). For an arbitrary M , the minimality con-
dition is exploited in Theorem 2. The proof of this theorem
is made by using mathematical induction. For this reason,
Lemma 1 states that the proposed state-space description is
minimal for M = 2 (for M = 1 there is no delay operators
included in the parameterization).
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Lemma 1 A realization (AM , BM , CM , DM ) for M = 2
given by (29), (30), (31) and (32), respectively, with all angles
different from 0, π/2, π and 3π/21, is minimal.

Proof For M = 2 matrices AM , BM and CM become

AM =
⎡

⎣
A 0 0
0 0 I

BC1 A 0

⎤

⎦ , (33)

BM =
⎡

⎣
B
0

BD1

⎤

⎦ (34)

and

CM =
⎡

⎣
D1C1 C1 0
C2C1 C2 0
C2 0 0

⎤

⎦ . (35)

By the mathematical induction principle, it is necessary
to verify that the lemma is true for N = 1 and if it holds for
a certain N this implies that it will be true for N + 1. It is
made as follows.

– For N = 1: A = 0, B = 1, C = [ S1 C1 ]T and
D = [ C1 S1 ]T . By replacing these values in (33), (34)
and (35):

AM =
⎡

⎣
0 0 0
0 0 1
S1 0 0

⎤

⎦ , BM =
⎡

⎣
1
0

C1

⎤

⎦

and CM =
⎡

⎣
C1S1 S1 0
C1C1 C1 0

C1 0 0

⎤

⎦ ,

and after that computing the controllability and observ-
ability matrices, both of them have three linearly inde-
pendent rows and columns.

– Let N be an arbitrary positive integer number. For
N + 1 matrices (33), (34) and (35) hold the same
form that for N , only the dimensions of these matri-
ces will be changed. Consequently, the same fact is
valid for matrices RAM ,BM and SCM ,AM . Therefore,
if matricesRAM ,BM and SCM ,AM have η(2N − 1) lin-
early independent rows and columns for N , they have
η(2(N + 1)− 1) linearly independent rows and columns
for N + 1 (in η, M = 2).

1 The mentioned values should be avoided because they have null sine
or cosine values, which would correspond to zero-valued elements in
the controllability and observability matrices. Therefore, the resulting
matrices would not have full rank.

By the mathematical induction principle, it is demonstrated
that matrices RAM ,BM and SCM ,AM have η(2N − 1) lin-
early independent rows and columns. Thus, any realization
(AM , BM , CM , DM ) (with all angles different from 0, π/2,
π and 3π/2) for M = 2 is minimal.

Theorem 2 A realization (AM , BM , CM , DM ) given by (29),
(30), (31) and (32), respectively,with all angles different from
0, π/2, π and 3π/2, is minimal because it is reachable and
observable.

Proof By the mathematical induction principle and the fol-
lowing conclusions, the proof of the theorem is achieved as
follows.

– For M = 1, it is demonstrated by Uzinski et al. (2015)
that RAM ,BM and SCM ,AM have η(2N − 1) linearly
independent rows and columns (in η, M = 1).

– For M = 2, it is demonstrated by Lemma 1 that
RAM ,BM and SCM ,AM have η(2N − 1) linearly inde-
pendent rows and columns (in η, M = 2).

– For any M ≥ 2, the forms of AM , BM and CM are
the same as stated by (29), (30), (31) and (32), only the
dimensions change according to M . The same fact is valid
for the matrices RAM ,BM and SCM ,AM . Therefore, if
RAM ,BM and SCM ,AM have η(2N − 1) linearly inde-
pendent rows and columns, it implies thatRAM+1 ,BM+1

and SCM+1 ,AM+1 have η(2N − 1) (in η, the value of M
is M + 1) linearly independent rows and columns.

By the mathematical induction principle, it is demonstrated
that matrices RAM ,BM and SCM ,AM have η(2N − 1) lin-
early independent rows and columns. Thus, any realization
(AM , BM , CM , DM ) (with all angles different from 0, π/2,
π and 3π/2) is minimal.

Remark 1 When the designer considers that the dynamical
system has a large number of states and for some reason it can
be unsatisfactory, an order reduction method can be applied
to the states xM of the description (29), (30), (31) and (32).

3 Proposed Dynamic-State Feedback Approach

3.1 Preliminaries: Discrete Linear Quadratic Regulator
(DLQR)

Consider a plant described by a discrete-time model of the
form

xp[k + 1] = Apxp[k] + Bpup[k], (36)

where xp[k] ∈ R
n , up[k] ∈ R

p are the state and control
vectors, and Ap, Bp are matrices of compatible dimensions.
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up

−Kp

xp[k + 1] = Apxp[k] +Bpup[k]

Plant

xp

State feedback

Fig. 7 Discrete linear quadratic regulator

It is assumed that the plant is controllable and the state xp[k]
is available for feedback.

Given the following quadratic cost function:

J =
∞∑

k=0

xT
p [k]Qpxp[k] + uT

p [k]Rpup[k], (37)

with positive-definite state and control weight matrices
Qp,Rp, the optimal control law is of the form

up[k] = −Kpxp[k], (38)

with feedback gain Kp calculated as

Kp = (BT
pPBp + Rp)

−1BT
pPAp, (39)

whereP is the positive-definite solution of the following Ric-
cati equation (Lewis 1986).

P = AT
pPAp − AT

pPBp(Rp + BT
pPBp)

−1BT
pPAp + Qp.

(40)

Fig. 7 shows the block diagram for the resulting con-
trol loop. As will be discussed in Sect. 4 (Case study), the
weight matricesQp,Rp can be adjusted in order to optimize
a robustness or performance metric of interest.

3.2 Discrete Linear Quadratic Regulator Employing a
Wavelet Filter Bank (DLQR-WFB)

In the DLQR-WFB approach proposed herein, a filter bank
is included in the feedback path, as illustrated in Fig. 8. More
specifically, each state of the plant is decomposed by the fast
wavelet transform, in order to obtain an augmented state vec-
tor xpw = [xT

p xT
w]T , with xw comprising the state variables

of the filter bank. Since the fast wavelet transform is applied
to each of the n components of the plant state xp, the filter
bank state xw is formed as

xw =

⎡

⎢⎢⎢⎣

xF B1

xF B2
...

xF Bn

⎤

⎥⎥⎥⎦ , (41)

up

-Kpw

xp[k + 1] = Apxp[k] +Bpup[k]

Plant

xp xwxpw

State feedback

Wavelet filter
bank

Fig. 8 Discrete linear quadratic regulator employing a wavelet filter
bank

where xF Bi is a vector with the filter bank states involved in
the decomposition of the i th plant state.

The dynamics of the plant coupled with the filter bank can
then be described by a state equation of the form

xpw[k + 1] = Apwxpw[k] + Bpwup[k], (42)

where

x pw[k] =
[
xp[k]
xw[k]

]
, Apw =

[
Ap 0
Bw Aw

]
,

Bpw =
[
Bp

0

]
, (43)

with Aw and Bw obtained from the filter bank equations as

Aw =

⎡

⎢⎢⎢⎣

AM 0 · · · 0
0 AM · · · 0
...

...
. . .

...

0 0 · · · AM

⎤

⎥⎥⎥⎦ , Bw =

⎡

⎢⎢⎢⎣

BM 0 · · · 0
0 BM · · · 0
...

...
. . .

...

0 0 · · · BM

⎤

⎥⎥⎥⎦ .

(44)

A discrete linear quadratic regulator with weight matrices
Qpw,Rpw can be designed for the augmented system (42) in
order to obtain a feedback gain Kpw, as illustrated in Fig. 8.

4 Case Study

Consider a two-mass-spring systemdescribedbya continuous-
time state equation of the form ẋ p = Apcx p + Bpcu p, with

Apc =

⎡

⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− Ks
mac

Ks
mac

−
bac+ K2

g Km Kt

Rmr2mp
mac

0
Ks

mpc
− Ks

mpc
0 − bpc

mpc

⎤

⎥⎥⎥⎥⎥⎦
,

Bpc =
[
0 0 Kg Kt

Rmrmp
0
]T

, (45)
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Table 1 Model parameters

Parameter Physical meaning Value

Ks Spring stiffness coefficient 142N/m

mac Active cart mass 1.15kg

mpc Passive cart mass 0.54kg

bac Viscous friction coefficient (active
cart)

5.4Ns/m

bpc Viscous friction coefficient
(passive cart)

2.2Ns/m

Kg Gearbox ratio 3.71

Km Counter-electromotive force
constant

7.67 × 10−3 Vs/rad

Kt Motor torque constant 7.67 × 10−3 Nm/A

Rm Motor armature resistance 2.6Ω

rmp Motor pinion radius 6.35mm

with parameter values given in Table 1 (Colombo Junior et al.
2016). Thismodelwas discretized into the form (36) by using
the zero-order hold method with a sampling period T = 15
ms, as in Colombo Junior et al. (2016).

In the present example, the proposed DLQR-WFB
approach for dynamic-state feedback will be illustrated by
using a db3 wavelet filter bank with M = 2 levels. This filter
bank can be described by a state-space model with AM , BM ,
CM , DM matrices as in (29), (30), (31), (32) where A, B, C,
D are given by (7), (8), (9), (10). The numerical values for
the coefficients in A, B, C, D can be found in Uzinski et al.
(2015). By using a balanced realization and removing the
states corresponding to small Hankel singular values (Laub
et al. 1987), the model order for the filter bank was reduced
from 15 to 10. It is worth noting that four separate filter banks
will be employed in the control loop (one for each of the four
plant states). Therefore, the overall order of the augmented
system will be 4 + 10 + 10 + 10 + 10 = 44.

Inwhat follows, theDLQR (Fig. 7) andDLQR-WFB (Fig.
8) methods will be compared in two numerical investigations
using different evaluation metrics.

The numerical resultswere obtained byusing theMatlab�

software, with the Optimization and Control System
ToolboxesT M .

4.1 Sensitivity

Let S(z) be a sensitivity function defined for the DLQR case
as

S(z) = 1

1 + Kp(zI − Ap)−1Bp
, (46)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

|S(ejω1)|

|S
(e

jω
2)
|

DLQR
DLQR−WFB

Fig. 9 Sensitivity values at ω1 = 0.15 and ω2 = 0.60 obtained by
optimizing the state weights in the DLQR and DLQR-WFB formula-
tions

with a similar definition in the DLQR-WFB case (replacing
Kp, Ap, Bp with Kpw, Apw, Bpw, respectively) (Franklin
et al. 1998).

This sensitivity function can be used as a robustness mea-
sure, since the value |S(e jω)| is the reciprocal of the distance
between the Nyquist curve and the critical point −1, consid-
ering the loop broken at the plant input (Franklin et al. 1998).
In this sense, a possible design goal may consist of obtain-
ing small values of |S(e jω)| at a given set of frequencies
ω. This can be achieved by using a numerical optimization
method to adjust the control and state weights in the DLQR
or DLQR-WFB formulations.

In this example, diagonal weight matrices were adopted
for simplicity. The control weight was set to one and a
diagonal form was adopted for the state weight matrix,
with diagonal elements optimized by using the sequential
quadratic programming (SQP) method (Nocedal and Wright
2006). For this purpose, the fmincon function of the MAT-
LAB Optimization ToolboxT M was employed, with default
settings for the numerical search procedure. Theweights cor-
responding to the four plant states were initialized by using
81 different combinations of the values 10−4, 100 and 104. In
the DLQR-WFB case, the weights corresponding to the fil-
ter bank states were initialized with null values. The index to
be minimized was defined as |S(e jω1)| + ρ|S(e jω2)|, where
ω1 = 0.15, ω2 = 0.60 and ρ is a positive scalar that can
be adjusted to place larger emphasis on the minimization of
|S(e jω1)| or |S(e jω2)|.

Fig. 9 presents the DLQR and DLQR-WFB results
obtained by varying the value of ρ. As can be seen, smaller
values of |S(e jω1)| and |S(e jω2)| can be achieved byusing the
proposed DLQR-WFB formulation. Line segments connect-
ing the non-dominated solutions (in the usual multi-objective
sense) are included in the graphs, for better visualization.
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4.2 Effect of External Disturbances and Measurement
Noise

Consider the plant model (45) with a scalar output yp defined
as

yp[k] = Cpxp[k], (47)

where Cp is a row vector of compatible dimension. In the
present example, the output will be defined as the first state
variable, i.e., Cp = [1 0 0 0].

Assume that a disturbance d is applied at the plant input.
In the DLQR case, the effect of the disturbance on the plant
output yp can be evaluated by replacing (38) with

u p[k] = −Kpxp[k] + d[k]. (48)

From (36), (47) and (48), a transfer function Hdy(z) can be
obtained as

Hdy(z) = Yp(z)

D(z)
= Cp(zI − Ap + BpKp)

−1Bp. (49)

The effect of the disturbance on the plant output can then
be evaluated in terms of the H2 norm of Hdyp (z), which is
defined as, (Bunse-Gerstner et al. 2010),

‖Hdy‖2 =
√

1

2π

∫ 2π

0
|Hdy(e jω)|2dω. (50)

A similar transfer function can be obtained in the DLQR-
WFB case, by replacingKp,Ap,Bp andCp withKpw,Apw,
Bpw and [Cp 0], respectively.

Now, instead of considering an input disturbance, assume
that the state values employed in the feedback control law
are corrupted with a measurement noise term n such that

u p[k] = −Kp(xp[k] + Epn[k]) (51)

in theDLQRcase,whereEp is a columnvector of compatible
dimension. In the present example, the noise will be included
in the measurement of the first state variable, i.e., Ep =
[1 0 0 0]T . From (36), (47) and (51), a transfer function
Hny(z) can be obtained as

Hny(z) = Yp(z)

N (z)
= −Cp(zI − Ap + BpKp)

−1BpKpEp.

(52)

The H2 norm of Hny(z) can then be used to evaluate the
effect of themeasurement noise on the plant output. A similar
transfer function can be obtained in the DLQR-WFB case,

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

103

||Hdy||2

||H
ny
|| 2 DLQR

DLQR−WFB

Fig. 10 Comparative evaluation of the DLQR and DLQR-WFB for-
mulations in terms of external disturbance and measurement noise
effects

by replacing Kp, Ap, Bp, Cp and Ep with Kpw, Apw, Bpw,
[Cp 0] and [ET

p 0]T , respectively.
As in the sensitivity study presented in Sect. 4.1, the state

weights in the DLQR and DLQR-WFB formulations were
optimized by using the SQP method. In this case, the index
to be minimized was defined as ‖Hdy‖2 + ρ‖Hny‖2. Fig.
10 presents the DLQR and DLQR-WFB results obtained by
varying the value of ρ. Again, the proposed DLQR-WFB
approach leads to better results, in that smaller values of
‖Hdy‖2 and ‖Hny‖2 can be achieved as compared to the
DLQR formulation.

5 Conclusions

This paper presented a new state-space description for
wavelet filter banks (WFBs) with multiple decomposition
levels, thus extending previous work on single-level decom-
position schemes. The proposed description can be used to
design dynamic-state feedback control laws involving the
decomposition of the plant states by the filter bank. A sim-
ple synthesis procedure consists of designing a discrete linear
quadratic regulator (DLQR) for the augmented system incor-
porating the plant model and the filter bank.

Anumerical examplewas presented to illustrate the poten-
tial advantages of the proposed DLQR-WFB approach. For
this purpose, a standard DLQR design was employed for
comparison. As a result, the proposed approach was shown
to provide better results in terms of sensitivity values, as well
as rejection of external disturbances and measurement noise.

Future research could be concerned with the development
of guidelines for choosing the type ofwavelet and the number
of decomposition levels in view of the design requirements
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for the closed-loop system. The use of WFBs with control
design methods other than DLQR could also be investigated.
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